Product Summary Series

W
c
2
hmad
I
9
=
)
v
o
)
=)
=)
S
=)
S
S

781.1 i

(30.75)

1524

Side view

Dimensions in millimeters
Inches in parentheses for reference

DG-06856

Dimensions: Width Depth Height
Millimeters 2089.1 781.1 1524
Inches 82.5 30.75 60

Service Clearances: Front Rear Right Left

Millimeters 1219.2 1219.2 787 787
Inches 48 48 31 31
Weight: Empty Fully Loaded
Kilograms 359 585

Pounds 791 1289

Heat Qutput: Watts BTU/hr

Man Bay: 3,000 10,230

Expansion Bays: 220 each 750.2

Operating Environment:

Temperature (max) 32.2°C 90°F

Relative Humidity (max) 90%

Altitude 3084 m (10,000 ft)
Areas Inches ¢m

Usable Vertical 25 43.75 111

Rack Space Per
Expansion Bay

Front view

Power Requirements: (Main Bay + Expansion Bays)
(Domestic)
Voltage 120/208
Hz 60+.5
Amp per Phase (24 + 20 + 20)
Main Bay Expansion Bay
Phase 30 19
Startup Surge per Phase 60 Amps for 50 milliseconds

Power Requirements:

(Export)

Voltage 220 220/380 240/415
Hz 50+.5 50=*.5 50+.5
Amp per Phase 24+15 24+15 24415
Phase 3 3 3

Startup Surge per Phase 60 Amps for 50 milliseconds

Cables: (User Supplied)

Primary Power - Main Bay Conn

Domestic 60 Hz L21-30R

Export 50 Hz

Primary Power-Expansion Bays

Domestic L41-30R

Export L6-15R

Power available Each Total (All bays all recp.)
Domestic 120 V 16 30.0

Export 220/240 V 15 14.25

Specifications and Performance

Word size
Instruction widths

Virtual address range

Physical address range
Processor minor cycle time
Processor major cycle time

Memaory transfer time

Typical instruction execution times (32-bit)

Memory transfer rate
1/0-to-memory transfer rate

CPU-to-memaory transfer rate

Configuration Specifications
(Maximum -- cannot be reached simultaneously)

Main memory size

On-line storage capacity
DG/Disc storage subsystems
277-Mbyte disc drives
Fixed-head DG/disc subsystems
Fixed-head DG/disc drives
Terminals

Dual-mode tape drives

Data control units

Card readers

Incremental plotters

Operating System Parameters (Max.)

Users
Processes

Program size

Programming Languages Supported

ANSI FORTRAN 77 COBOL

Utilities

ANSI BASIC DG/L

ANSI PL/I Extended BASIC
FORTRAN & RPG Il

SWAT AZ-TEXT

MASM RJEBO

REPORT HASP Il

LINK RCX70

INFOS 1i MPL

SORT TPMS

INFOS QUERY Idea
DBMS

32 bits

16 - 80 bits

4 Gbytes
(4,294,967,296 bytes)
4 Mbytes (max.)

110 ns

220 ns

27.5 ns/byte

440 ns/hlock of 16 bytes
32-bit fixed-point add 220ns
32-bit floating-point:

Arewnwing 0008/AW

Multiply 2200 ns
Add 880 ns
Store 440 ns

36.4 Mbytes/s
18.2 Mbytes/s
18.2 Mbytes/s

4 Mbytes
6.648 Gbytes
6

24

6

24

128

16

128
255
512 Mbytes

- ECLIPSE MV/8000"

Product Summary

Table of Contents

1 Overview and Summary 3

Overview 3
Hardware 3
System [/O 4
Software 4

Summary 5
Instruction Set 3§
Architecture 5
Hardware 6

2 Architectural Features 7

Design Goals 7
Virtual Memory 7
Segments 8
Rings 8
Resource Management 9
Central Processing and Control 11
System Control, Diagnostics, and Console Control 11
Asynchronous Communications 12
Synchronous Communications 12
Instruction Set 12
New Functions 12
Symmetrical Data Treatment 12

3 Hardware Features 13

Memory System 13
Memory Modules 13
Bank Controller 15
System Cache 15

Central Processing System 17
Address Translation Unit 17
Processor 19

1/0O Subsystem 20
High-Speed /O — The BMC 20
Medium-Speed 1/O — The Data Channel 20
Low-Speed 1/0O — Programmed [/O 20
Communications 22

4 The Operating System

23

Design Objectives 23
System Architecture 23
Overview 23
Memory Management 24
Demand Paging 25
Process and Task Management 25
File Management 26
I/O Management 26
Programming Language and Utilities Support
Programming Languages 26
Utilities 27

5 Instruction Set

26

29

MV /8000 Addressing 29

MV /8000 Data Formats 30
Fixed-Point Data Formats 30
Floating-Point Data Formats 30
Commercial Data Formats 31

Instruction Mnemonics and Formats 33
Instruction Mnemonics 33
ALC Format 33

Summary of the MV /8000 Instruction Set 33
Fixed-Point Instructions 33
Floating-Point Instructions 34
System Control Instructions 34
Stack Instructions 35
Program-Flow Instructions 35
Commercial Instructions 35
1/O Instructions 35

6 Peripherals

37

Disc Storage Subsystems 37
Magnetic Tape Subsystems 39
User Terminals 40

Line Printers 41

Synchronous
Communications

Data
Control
Central Unit
Processor
with Instruction
Cache

On-Line
System 1/O Processor Storage
Control
Processor

Asynchronous
Communications

Figure 1.1 Block diagram of the ECLIPSE MV/8000 system

Overview

Hardware

Chapter 1

Overview and Summary

The ECLIPSE MV /8000 system extends minicomputer technology in the area of
mainframe computational characteristics. It is a sophisticated, state of the art, 32-bit
data processing system that retains substantial hardware and mode-free software
compatibility with previous 16-bit ECLIPSE® systems.

Figure 1.1 shows a diagram of the MV /8000 system.

The MV /8000 hardware design achieves high throughput with the aid of several distinct
processors distributed throughout the system. A system cache and an instruction cache
further improve system performance.

Processors :
Four separate processors are incorporated into the MV /8000 design:

» The central processing unit (CPU),

* The system control processor (SCP),

e The I/O processor (I10P),

e The optional data control unit (DCU).

These processors allow for efficient placement and management of resources at their
point of use, increased system performance, and a minimum of data movement and
system overhead.

All four processors have access to the system memory, and all but the CPU have their
own local memories. To avoid confusion, we refer to system memory as main memory in
this book.

The central processor is a 32-bit ECLIPSE CPU employing pipelining techniques and a
220-ns major cycle time (110-ns minor cycle time) for high-speed instruction execution.
The CPU architecture is based on a segmented virtual memory and an associated ring

protection mechanism. As a result, the MV /8000 computer supports user programs of

512 Mbytes (536,870,912 bytes); it also supports distributed operating system structures
in a virtual address space of 4 Gbytes (4,294,967,296 bytes).

4 Overview and Summary

System [/0O

Software

The system control processor (SCP) is a microNOVA® system, which oversees the
entire MV /8000 system. This includes monitoring vital system parameters via the
diagnostic scan bus, logging hardware errors, managing the operator’s terminal,
controlling system diagnostics, and loading the microcode control store at power up. The
SCP contains 4 Kbytes of PROM and 32 Kbytes of RAM, along with its own 1.2-Mbyte
diskette.

The 1/0 processor (IOP) is a 16-bit ECLIPSE CPU that controls all asynchronous
communications for up to 128 user terminals plus card readers and plotters. Using its
64-Kbyte local memory and a direct link to main memory, it significantly reduces the
load on the 32-bit central processor.

A fourth processor, the data control unit (DCU/200), is available for handling
synchronous line protocols. By using its 8-Kbyte local memory and a direct link to main
memory, the DCU handles communications supporting distributed processing
environments.

Caches

A 16-Kbyte system cache acts as a high-speed look-ahead /look-behind buffer for main
memory. It has separate CPU and 1/O ports that operate without interfering with one
another. The system cache is direct-mapped to main memory and employs write-back

techniques to reduce the number of main memory write cycles.

The system cache transfers data between main memory and the central processor at a
maximum rate of 18.2 Mbytes/second. It also transfers data concurrently between main
memory and the I/O subsystem at the same maximum rate over a separate bus. The
combination of busses yields a total cache-to-main-memory bandwidth of 36.4
Mbytes/second.

The CPU contains a separate 1-Kbyte instruction cache, which profstches instructions
during sequential execution. The instruction cache acts as a look ad/look-behind
buffer for the instruction stream.

MV /8000 1/0 is both electrically compatible and program compatible with 16-bit
ECLIPSE 1/0, thus supporting the family of standard Data General peripherals.

The I/O subsystem provides three levels of 1/0:
* A high-speed burst multiplexor channel (BMC) providing transfer rates up to 16.16

Mbytes/second for high-speed devices such as discs;

* A data channel providing transfer rates up to 2.27 Mbytes/second for medium-speed
devices such as tape units;

e Programmed I/O providing transfer rates of one or two bytes per 1/O instruction.

The Advanced Operating System/Virtual Storage (AOS/VS) extends the functions of
Data General’s Advanced Operating System (AOS) into the 32-bit virtual memory
environment of the MV /8000 system.

Overview and Summary 5

Programming Languages

AOS/VS supports three 32-bit programming languages: ANSI PL/I, ANSI FORTRAN
77, and ANSI BASIC. It also supports several 16-bit languages such as COBOL,
FORTRAN 5, DG/L® Systems Development Language, and RPG II. Together these
provide a broad range of options to the programmer, from the simple sophistication of
BASIC to the sophisticated data-handling abilities of PL/I and FORTRAN 77.

Utilities

AOS/VS supports a variety of utilities to assist the programming process. These include
the SWAT® Debugger, which permits debugging in the programming language; the
macroassembler and linking loader; and the Command Line Interpreter (CLI), which
provides an interface to the user working at a system terminal. In addition, the operating
system supports data management, transaction processing, and word processing software
such as INFOS® II File Management System, DG/DBMS, TPMS, and AZ-TEXT®
word processing software.

Summary

Instruction Set

o The 32-bit MV /8000 instruction set is a superset of the 16-bit ECLIPSE instruction
set.

* The combined instruction set provides mode-free compatibility at the binary level
with existing 16-bit programs plus the full flexibility of new 32-bit instructions.

e Sixteen-bit and 32-bit program development and debugging are included on one
system.

e Fixed-point instructions manipulate 8-, 16-, and 32-bit data symmetrically without
mode switching.

¢ Floating-point instructions use either of two floating-point rounding algorithms for
maximum flexibility and accuracy.

Architecture

¢ Segmented memory, consisting of eight 512-Mbyte segments, provides efficient
management of a 4-Gbyte logical address space. One- or two-level page table
translations are possible for each segment.

« Eight hardware-implemented protection rings permit system functions to be embedded
in the user’s logical address space. This results in reduced overhead during the
processing of operating system calls. All operating-system calls are inward, cross-ring
calls, which aid in the construction of a layered operating system and in the production
of reliable and modular software.

¢ Hardware-maintained page-referenced and page-modified bits record a reference or
change to each 2-Kbyte page. This permits the use of sophisticated page replacement
algorithms, thus reducing the page fault rate.

¢ The maximum contiguous memory necessary to support programs of any size is one
page, because of the 2048-byte page size. This allows optimal performance for both
large and small programs.

» The system control processor provides sophisticated and thorough control of the

processor, system error logging, and diagnostics. It also implements the soft control
console.

6 Overview and Summary

Hardware

A dual-ported system cache acts as a 16-Kbyte direct-mapped buffer for main
memory. The cache provides a high-performance memory system that segregates
CPU and I/O memory accesses.

A separate instruction cache acts as a 1-Kbyte direct-mapped buffer for the instruction
stream. The instruction cache permits simultaneous fetch and decoding of one
instruction with concurrent execution (including data fetching) of another. Up to four
instructions can be in the pipeline.

A high aggregate 1/0 bandwidth of 18.2 Mbytes/second helps eliminate I/O
bottlenecks.

A high main memory bandwidth of 36.4 Mbytes/second reduces CPU-1/O
interference.

A sniffing feature provides error detection and correction during memory refresh,
thus increasing system reliability. Each memory location is checked every four seconds
and corrected if necessary.

Data channel and BMC I/O use existing data channel and BMC controllers, thus
supporting the standard family of Data General peripherals. All peripheral diagnostics
run on the MV /8000 system.

An alterable control store, consisting of 4K x 75 bits of RAM, permits microcode
updates to be implemented in a straightforward manner and the diagnostic instruction
set to overlay the standard instruction set.

A 4-line diagnostic scan bus (S bus) provides the system control processor with access
to MV /8000 subsystems.

System hardware errors are logged by the system control processor on a 1.2-Mbyte
diskette, providing a record to aid in diagnosis of failing components.

Chapter 2

Architectural Features

Design Goals

The ECLIPSE MV /8000 design concepts specifically included the following goals:

¢ Mode-free compatibility with previous 16-bit ECLIPSE systems;

 Support of sophisticated data base structures in a large address space, using virtual
memory techniques;

= Support of modular software structures independent of memory arrangements, using
segmented address space techniques;

e Hardware-supported protection mechanisms to keep various software functions from
impinging on one another;

» Multitasking resource management;
» Thirty-two-bit manipulation in a single operation;
= A symmetrical instruction set independent of data structure.

Virtual Memory

Virtual memory provides each system user with an address space much larger than the
physical memory space on the machine. Thus, the address space seen by an MV /8000
user (the logical address space) is 4 Gbytes, with 4 Mbytes of physical memory (the
physical address space). The large user address space makes it much easier to handle
sophisticated data bases.

A virtual memory system moves the active portions of a program from disc to memory
during the execution of the program, returning inactive portions of the program to the
disc when more memory space is needed. This process, called demand paging, is
transparent to the user. The MV /8000 demand-paging mechanism moves data in 2-Kbyte
pages, an optimum size for efficient memory management.

When a program tries to use a location not currently represented in physical memory, a
page fault occurs, invoking the demand-paging mechanism which retrieves the page
from the disc.

Any new page must overwrite a page that is already in memory. To improve the
effectiveness of the software page-replacement algorithm, the MV /8000 demand-paging
hardware maintains page-referenced and page-modified bits for each page of physical
memory. Use of these bits significantly lowers the page fault rate of a system.

8 Architectural Features

Segments

Rings

A virtual memory system, by itself, will not support the modular software structures
necessary for flexible handling of large and sophisticated data bases. Some division of
the address space is necessary.

The MV /8000 logical address space is divided into eight units of 512 Mbytes each,
called segments. These segments are independent, but connected by clearly defined
protocols. Thus, each segment can be used for a different function; this makes
management of the entire virtual memory efficient and reliable.

Software modularity also implies protection mechanisms. These mechanisms maintain
the necessary degree of independence or interdependence among the modules. The

MYV /8000 memory system provides a hardware mechanism known as protection rings to
support this function. If a program executing in one segment needs to alter or access the
contents of another segment, the program must follow protocols established by the
protection rings. This fast protection mechanism is transparent to the user.

Each segment in the MV /8000 virtual memory is surrounded by a protection ring,
which is permanently bound to the segment. Thus, ring 0 is bound to and protects
segment 0; ring | similarly is bound to and protects segment 1; and so forth through ring
and segment 7.

The eight segments (with their associated rings) are hierarchically arranged: segment 0
has the greatest ability to alter or access the contents of other segments and is afforded
the greatest protection by ring 0. Segment 7 has the least ability to alter or access other
segments and is afforded the least protection by ring 7. Therefore, segment 0 contains
the kernel of the operating system, while segment 7 is reserved for user programs.
Intermediate segments are used for various operating system or user functions.

A cross-ring data reference is valid only if it originates from a segment with a number
lower than or equal to the target segment. For example, an instruction in segment 4 can
make a reference to data in segment 5, but not to data in segment 3.

A cross-ring subroutine (or system) call is valid only if it originates from a segment with
a number higher than or equal to the target segment. In addition, the call cannot be
made directly to the starting location of the subroutine, but must pass instead through a
gate in the target segment that points to the start of the subroutine. The gate provides
additional protection and ensures that instruction execution starts at the beginning of
the subroutine. Gate checking is hardware supported and transparent to the user. The
gate mechanism also offers a degree of program independence. For example, the caller
of a routine may be provided with only a gate number. Then, the author of that routine
may change its contents, independent of the caller. Linkage is through gates; it is not
hard coded.

A subroutine return is valid only if it originates from a segment with a number lower
than or equal to the target segment. Gates are not used in subroutine returns. Figure 2.1
illustrates these relationships. ’

Architectural Features 9

Cross-ring data reference

Cross-ring
subroutine
call

Cross-ring
subroutine
return

DG-07260

Figure 2.1 Cross-ring references

A large segmented and protected address space containing both the user program and
the operating system provides several significant advantages. System calls become
subroutine calls, thus eliminating time-consuming context switches. Overlays, with
attendant complications, are unnecessary because of the size of the individual segments
(512 Mbytes). User-related faults (e.g., floating-point faults, fixed-point overflow, stack
overflow) can be handled within the current segment without involving the operating
system.

Resource Management

A system designed to support multiple users requires careful resource management. An
efficient way to do this is to off-load some functions that traditionally have been
performed by the central processing unit (CPU). These include message concentration
and networking as well as performance monitoring and self-checking.

The MV /8000 architecture uses the concept of distributed intelligence to implement
these functions. As illustrated in Figure 2.2, this means that four functional groups are
assigned separate processors:

» Central processing and control;

e System control, diagnostics, and console control;

¢ Asynchronous communications;

¢ Synchronous communications.

10 Architectural Features

MV/8000

Central
Processor

System
Control
Processor
(SCP)

Figure 2.2 Distributed intelligence in the ECLIPSE MV/8000 system

Data
Control
Unit (DCU)
Synchronous
Communications

1/O Processor
(10P)
Asynchronous
Communications

Architectural Features 11

Central Processing and Control

The central processing and control functions are handled by a 32-bit pipelined processor.
See Chapter 3 for a more detailed description of this processor.

System Control, Diagnostics, and Console Control

The MV /8000 system control, diagnostic, and console functions are handled by the
system control processor (SCP), which includes a microNOVA CPU, a 32-Kbyte random
access memory (RAM), a 4-Kbyte PROM, a separate operating system and operator’s
console, and a 1.2-Mbyte diskette drive.

The SCP acts as a system overseer. Portions of it are active during normal system
operation and other portions are active during power-up and diagnostic operations.

The SCP uses a 4-line diagnostic and control bus (S bus) to detect the state of major
subsystems, command remedial action, and control a unique diagnostic fault-resolution
system.

System Control Functions
These functions include loading the microcode at system power up, logging hardware
errors, and checking system integrity.

Loading Microcode. Because the MV /8000 control store is made up of alterable RAM,
the microcode for the instruction set must be reloaded each time the machine is powered
up. This is done automatically by the SCP. Updates to the microcode can be made at
any time.

Hardware Error Logging. All hardware errors are logged automatically by the SCP. These
include memory errors detected by the error checking and correction (ERCC) facility,
cache parity errors, and other errors that can indicate hardware problems.

Checking System Integrity. During normal operations, the SCP monitors various system
parameters such as air flow, air temperature, and power supply voltages. If any of these
go out of acceptable range, that fact is logged and the system operator is notified.

Diagnostic Functions

These functions include automatic power-up diagnostics and operator-controlled system
diagnostics.

During power up, the SCP performs diagnostics that check out basic system functions
before loading the microcode. If problems are encountered, the operator is notified.

When system-wide diagnostics are required, the SCP program first checks the SCP
itself, along with the interface between it and the rest of the system. Then, it loads a
diagnostic instruction set into the MV /8000 microstore, overlaying the regular instruction
set. Diagnostic tests use this diagnostic instruction set to test the MV /8000 hardware
rapidly and thoroughly.

When searching for intermittent hardware problems, the operator can vary power supply
voltages and system clock frequencies slightly in order to vary the stress on system
components.

12 Architectural Features

Console Functions

The SCP performs all the console functions traditionally performed by switches. The
operator can load, examine, and modify memory or microcode locations by entering
commands through the operator’s console. The operator can also step through a program
instruction by instruction, or microinstruction by microinstruction.

Asynchronous Communications

The concentration of messages required for asynchronous communications is handled by
a separate I/O processor (IOP), which controls all user terminals. The IOP is a 16-bit
ECLIPSE CPU with a 64-Kbyte local memory and data channel access to main memory.

Synchronous Communications

The protocol functions associated with synchronous communications are handled by a
separate, optional data control unit (DCU/200). The DCU is a 16-bit NOVA® CPU
with an 8-Kbyte local memory and data-channel access to main memory.

Instruction Set

The MV /8000 instruction set is a superset of the 16-bit ECLIPSE instruction set. The
set includes both the 16-bit ECLIPSE instructions and the new MV /8000 instructions,
which offer several new functions. The additions also provide symmetrical treatment of
all data sizes.

New Functions

The new functions implemented in the MV /8000 instruction set include queue and
linked list manipulation, field testing under mask, special instruc’ s to control the
memory management system, new program-flow instructions to 1. .ement subroutine
calls more flexibly, and memory-to-accumulator fixed-point arithmetic instructions.

Symmetrical Data Treatment

The MV /8000 instruction set includes several extensions that increase its flexibility
without destroying the basic simplicity of the 16-bit ECLIPSE instructions. The result is
a large and flexible instruction set that is simple to learn and use.

All data manipulations can be applied to 16- or 32-bit data by using the appropriate
instruction prefix. Similarly, another instruction prefix determines whether a 15-bit or
31-bit displacement is used for memory reference instructions. In each case, however,
the function of the instruction is constant throughout the range of data and address

types.

!

Chapter 3

Hardware Features

In this chapter, we discuss the hardware features of the ECLIPSE MV /8000 computer
that significantly accelerate system performance.

Memory System

The MV /8000 memory system may be divided into three major components:

¢ The memory modules, which provide the main storage for the MV /8000 system;

* The bank controller, which selects the appropriate memory module and performs
error checking and refresh operations;

¢ The system cache, which acts as a high-speed buffer between memory and the rest of
the system.

Figure 3.1 illustrates the relationship between memory and the rest of the system.

Memory Modules

The MV /8000 memory system supports up to eight 256- or 512-Kbyte memory modules,
for a maximum physical address space of 4 Mbytes. Each module contains 64K or 128K
double words of 32 bits each. In addition, seven error checking and correcting (ERCC)
bits are stored with each double word.

The physical addresses of the memory locations on each module are arranged so that
four sequential double words in memory are located on four separate memory planes
that operate concurrently. When access to one of these four double words is requested by
the system cache, the memory module performs the selected read or write starting at
plane 0, and then continues the operation through planes I, 2, and 3.

Because the four planes operate concurrently, the memory operations overlap, making
the transfer of the four double words very rapid. The transfer rate between the memory
modules and the bank controller is 36.4 Mbytes per second, or 110 nanoseconds per four
bytes.

14 Hardware Features

Bank
Controller System
Cache

Memory System

Figure 3.1 Memory in the ECLIPSE MV/8000 system

Hardware Features 15

Bank Controller

The bank controller performs four functions: module selection, error checking and
correction, parity generation and checking, memory refresh and sniffing.

Module Selection
When the system cache requests access to a memory location, the bank controller uses
the physical address to select the proper memory module.

Error Checking and Correction

The bank controller calculates and appends seven ERCC bits to each double word it
sends to a memory module. Each time the bank controller receives a double word from a
memory module, it checks the ERCC code and corrects any single-bit errors in the
double word before passing it on to the system cache. ERCC also detects multiple-bit
errors.

All ERCC errors are logged by the system control processor. ERCC functions increase
the reliability of MV /8000 memory operations and give early warning of memory
problems.

Parity Functions

The bank controller adds one parity bit to each byte it sends to the system cache and
checks the parity of each byte/parity bit combination it receives from the system cache.
Parity generation and checking help maintain the integrity of the system by providing
another level of error detection and reporting.

Memory Refresh and Sniffing

The bank controller performs the refresh operations required by the dynamic random
access memory (RAM) modules. It accomplishes this by addressing all chips
simultaneously, without reading or writing the addressed data. This function is performed
on all of memory every two milliseconds.

Additionally, the bank controller performs an operation called sniffing, which checks for
memory errors during the refresh operation. Sniffing verifies all memory locations,
correcting all single-bit errors even if that memory location is not being used by a
program. This prevents an unused area of memory from collecting single-bit errors and
also prevents intermittent single-bit errors from becoming uncorrectable multiple-bit
errors. Thus, sniffing reduces the possibility of encountering multiple-bit memory errors
and increases system reliability.

The sniffing operation performs a read/correct/write operation on four double words
during memory refresh. With this process, the four double words are read from a
selected memory module, single-bit errors are corrected, and the double words are then
written back into the memory module. The bank controller sniffs all memory locations
for errors every four seconds.

System Cache

A 16-Kbyte direct-mapped system cache funetions as a high-speed look-ahead/
look-behind buffer for the main memory. It significantly reduces the average memory
access time for both the central processing unit (CPU) and the 1/0O subsystem.

16 Hardware Features

The system cache, like main memory, organizes its locations into blocks of 16 bytes
each. The system cache contains 1024 of these blocks. See Figure 3.2 for a diagram of
main memory/system cache mapping.

Physical
System Cache Memory
1024 16-byte blocks; n units of
each block contains 1024 16-byte blocks
corresponding block
from any of n
memory units. Block 0
/ (8192-8199) | T
Block 0 |
Bloek:0 (Address 0-7) iy
Block 1 [
BI -
o1 (8-15) g
Block 2 Block 2 g)-
D R I
i (16-23) (1
° ® i
° . M
e ® _
Block 1023
-
Block 1023 (8184-8191)
DG-07261

Figure 3.2 Main memory/system cache mapping

When a memory reference is made to a location not in the system cache, the cache
retrieves the block of 16 bytes that contains the referenced data. These 16 bytes remain
in the system cache block until a memory reference is made to another main memory
location that maps into the same system cache block.

Data residing in the system cache can be modified by the program as necessary. The
corresponding memory locations are not updated until the cache locations are required
for a different block. Then they are updated only if the cache locations have been
changed. This process is called write back. It reduces the total number of memory write
cycles by ensuring that only necessary writes occur.

In addition to the bus to memory, the system cache has two ports to the rest of the
system — one for the CPU and the other for the I/O system. Each port has a bandwidth
of 18.2 Mbytes/second, equal to half the bandwidth of the cache/memory bus. These
ports can operate simultaneously except when they are contending for the cache/memory
bus.

Hardware Features 17

Central Processing System

The central processing system consists of the address translation unit (ATU), the
instruction processor with its instruction cache, the microsequencer, and the arithmetic
logic unit (ALU). Together, these components execute all user programs and translate
all virtual memory references into physical addresses used by the system cache and
memory. Figure 3.3 shows the processing system in relation to the rest of the system.

The processing system converts logical page addresses to physical page addresses using
table references, called page table translations. A one-level page table translation uses
only one page table reference and can translate any 1 Mbyte of addresses in a segment.
A two-level page table translation uses two sequential page table references and can
translate the full 512 Mbytes of a segment.

One-level translations take less time than two-level translations and require less physical
memory. Therefore, programs that do not need more than 1 Mbyte of virtual memory
gain a significant speed advantage by using one-level translations.

Address Translation Unit

The ATU accelerates the translation process by maintaining a table of 256 recently-used
page translations and access rights. Because memory references tend to cluster in a few
pages, any one memory reference is likely to find a translation entry in the ATU. As the
cluster of pages that form the working set moves through the program’s logical address
space, the ATU updates the entries in its table of page address translations.

The ATU controls the page-modified and page-referenced bits used by page replacement
algorithms. Use of these bits can lower the page fault rate for the system. (See the
discussion of demand paging in Chapter 2.)

The ATU performs all the hardware checking required by the ring protection system,
including checking access privileges and gate entry points. (See the discussion of rings in
Chapter 2.)

Finally, the ATU can emulate the 16-bit ECLIPSE MAP. This permits AOS, all its
utilities, and all 16-bit user programs created for previous 16-bit ECLIPSE systems to
be run on the ECLIPSE MV /8000 system. Sixteen-bit MAP emulation and 32-bit ATU
operations are mutually exclusive.

18 Hardware Features

Figure 3.3 The processing system

Hardware Features 19

Processor

The MV /8000 CPU takes advantage of pipelining techniques to enhance its performance.
Pipelining involves simultaneous performance of the various steps in the instruction
decoding and execution process. That is, while one instruction is being executed, the next
one is being decoded, and the one after that is being fetched from the instruction cache.
For sequential processing, this can substantially reduce the effective instruction execution
time. The steps in the pipeline are as follows.

Step 1: The CPU’s instruction processor fetches an instruction from the instruction

cache.

Step 2: The decode logic in the instruction processor interprets the opcode of the
instruction to obtain the starting microcode address.

Step 3: The microsequencer reads the specified microinstruction from the control
store.

Step 4: The ALU executes the microinstruction.

Instruction Processor

The instruction processor retrieves and decodes instructions for subsequent execution by
the microsequencer. This processor retrieves instructions from the system cache, placing
them in an instruction cache for subsequent decoding.

The 1-Kbyte direct-mapped instruction cache functions as a high-speed, look-ahead/
look-behind buffer for the instruction stream. It reduces the time the CPU is idle while
waiting for an instruction to be fetched.

Figure 3.4 illustrates system cache/instruction cache mapping. When the program
counter references an instruction that is not in the instruction cache, the instruction
processor retrieves that location, as well as the locations following that one in the same
system cache block.

Microsequencer

The microsequencer contains the RAMs that form the MV /8000 control store. The
microprogrammed information (microcode) that forms the MV /8000’s instruction set
resides in this control store, which consists of 4K 75-bit microwords. Because the control
store uses RAMs, the microcode must be reloaded from the system control processor
diskette each time the system is powered up.

With alterable control store, updates to the microcode can be implemented with a
replacement diskette. In addition, a diagnostic instruction set, which overlays the

MYV /8000 instruction set in the control store, makes possible fast and thorough
diagnostics. The system control processor loads and uses the diagnostic instruction set
when it runs system diagnostics.

Arithmetic Logic Unit

The ALU performs the arithmetic and logical manipulations for both fixed- and
floating-point instructions. It contains four 32-bit fixed-point accumulators, four 64-bit
floating-point accumulators, a 64-bit floating-point status register, four 32-bit stack
management registers, and several internal registers not accessible to the programmer.
The ALU operates with a basic cycle time of 110 nanoseconds; e.g., each partial product
for a multiply instruction is calculated every 110 nanoseconds.

20 Hardware Features

Physical
System Cache Memory
1024 16-byte blocks; n units of
each block contains 1024 16-byte blocks
corresponding block
from any cf n
Instruction Cache System Cache memoey usits-
64 16-byte blocks: ‘Subdivided into Block O Block 0
each block contains 16 units of Biock 1 -———— Block 1
corresponding block 64 16-byte blocks Block 2 - Block 2
from any of 16 units T
of system cache, . -
Block O . °
. .
Block 0
Block:0 Block 63 <——1 Biock 63
a Block 64 e Block 64
- —
Block 1 e i— BGERT Block B5 Block 65
L L]
Block 2 - Block 2 -, L
- |[H . .
L] . Block 127 ~«———————{ Block 127 t
° ° — Block 128 ~——————— Block 128 [
L] ° Ll L]
== . . —J
. .
Block 63 - Block 63 — —
Block 1023 fr— Block 1023
DG-07262

Figure 3.4 Memory/system cache/instruction cache mapping

1/0 Subsy

stem

The MV /8000 I/O subsystem, which is compatible with existing Data General
peripherals, handles all communications functions, using the separate I/O processor and
the optional data control unit. Figure 3.5 shows the I/O subsystem in relation to the rest
of the system.

High-Speed /0 — The BMC

The burst multiplexor channel (BMC) transfers data directly between the 1/O port of
the system cache and high-speed system peripherals such as discs. Data are transferred
ata maximum rate of 16.16 Mbytes/second (input to memory) and 14.54 Mbytes/second
(output from memory). Operation of the BMC does not affect the CPU except when the
BMC is contending for the system cache/main memory bus.

Medium-Speed I/0 — The Data Channel

The data channel transfers data between the 1/O port of the system cache and
medium-speed devices. Maximum transfer rates are 2.27 Mbytes/second (input) and
1.3 Mbytes/second (output). As long as the BMC and data channel together do not
exceed the maximum transfer rate of the system cache 1/O port (18.2 Mbytes/second),
they operate without interfering with one another.

Low-Speed 1/0 — Programmed I/0

Programmed 1/0 (PIO) provides I/O transfers directly between the CPU and low-speed
devices and between the CPU and the control registers of medium- and high-speed
devices. Each 1/O instruction executed moves one or two bytes of information.

Hardware Features

1/0 System

Figure 3.5 The 1/0 subsystem

1/0 Data Control Unit
Channel ¢ - (DCU)

o Data Channel
1/0 _and Programmed

Port

e

\

1/O Processor \4

21

22 Hardware Features

Communications

The I/O processor and the data control unit handle all MV /8000 asynchronous and
synchronous communications.

1/0 Processor

The 1/0O processor (IOP) controls up to 128 asynchronous lines connected to data
terminal equipment, card readers, and digital plotters. A MAP permits the IOP to map
some of its logical address space into its 64-Kbyte local memory and the remainder of its
logical address space into MV /8000 data channel address space. Using this feature, the
IOP can quickly transfer data between its local memory and the system cache by moving
data from one area of its logical address space to another. The IOP can change the data
channel translations it needs by itself, giving it access to all main MV /8000 memory.

A cross-interrupt facility permits the IOP and the CPU to interrupt one another when
necessary, reducing the need for either processor to monitor the other.

Data Control Unit

The optional data control unit (DCU) controls up to eight synchronous communications
lines that provide interprocessor communications and other medium- and high-speed
communications functions.

Up to 8 Kbytes of the DCU’s logical address space can be mapped into its 8-Kbyte local
memory. The rest of the logical address space is mapped into MV /8000 data channel
address space. The DCU can transfer data between its local memory and the MV /8000
system cache by moving data from one area of its logical address space to another.

A cross-interrupt facility permits the CPU and DCU to interrupt one another when
necessary, reducing the need for one processor to monitor the other.

Chapter 4
The Operating System

Design Objectives

Data General’s Advanced Operating System/Virtual Storage (AOS/VS) provides the
multiprogramming and virtual storage features required to match the strengths of the
ECLIPSE MV/8000 system. AOS/VS was designed to meet the following objectives.

= Provide mode-free compatibility with 16-bit AOS, including the ability to run existing
16-bit AOS user programs concurrently with new 32-bit user programs;

= Fully exploit the MV /8000 32-bit, hardware-based, segmented virtual memory system;

= Support a large number of users, each with a very large address space, while keeping
system overhead to a minimum;

* Simultaneously support timesharing, multiple batch stream, and real-time processes;

« Support sophisticated multiprogramming techniques, multitasking within processes,
and intertask and interprocess communications;

= Support the latest versions of high-level programming languages, with optimization

and native language debugging, and the full set of standard Data General languages
and utilities.

System Architecture

Overview

AOS/VS is an evolutionary, state-of-the-art, 32-bit operating system built on the firm
base of three years’ experience with AOS — Data General’s 16-bit multiprogramming
operating system. The result is an operating system that maintains mode-free

compatibility with 16-bit AOS, yet exceeds all requirements of the 32-bit environment.

Virtual memory techniques are used by AOS/VS to support up to 128 users, each with
up to 512 Mbytes of programming area. Because AOS/VS makes full use of the

MV /8000 memory management hardware and controls demand paging with a
sophisticated page-fault-frequency paging algorithm, system overhead is unusually low
for this type of operating system.

AOS/VS further reduces its overhead by distributfng the operating system through both
the hardware and the software. In the hardware, portions of the operating system control
the 1/0 processor and the optional data control units (DCU/200). By distributing these

24

The Operating System

functions, the traditional conflict between an I/O-limited and a compute-bound system
is eliminated. In the software, portions of the operating system are embedded in each
user’s address space, simplifying system calls and reducing the need for costly context
switching.

Memory Management

Each user space in AOS/VS corresponds to the 4-Gbyte hardware-supported address
space provided by the MV /8000 virtual memory system (see Chapter 2 for a discussion
of the MV /8000 architecture). AOS/VS also supports the eight 512-Mbyte
hardware-supported subdivisions, or segments, of this address space. Each segment
contains a unit of the software — the user program, a user library module, or an
operating system module.

Because the user program and the operating system reside within one large address
space, a system call is accomplished using a subroutine call rather than context switching.
Calls to library routines in another segment are also subroutine calls; they do not require
any operating system intervention.

To protect the integrity of the software in the segments, each segment is permanently
bound to a hardware-based protection ring. AOS/VS reinforces the ring protection
features of the MV /8000 architecture by selecting gate entry points for the
hardware-enforced gate arrays at each ring boundary. The hardware traps and the
operating system reports all invalid ring-crossing attempts.

Operating System Modules

Figure 4.1 shows how AOS/VS assigns the function of each of the segments in a user’s
address space. Segments 0 through 3 contain most of the operating system. The kernel
resides in segment 0 and is shared by all users. Segments 1 through 3 are unique to each
user. The scheduler, memory manager, debugger, file system, and other operating
system components are distributed among segments 0 through 3.

User Programs, Libraries, and Subroutines

Segments 4 through 6 support programming language libraries and user-written
subroutines. These may contain code shared by different users, thus reducing the
amount of physical memory used, which in turn reduces the system overhead required
for paging. While the target segment for a subroutine call is selected during compiling,
the contents of the target segment can be specified at execution time; this reduces the
time devoted to recompiling programs.

User programs reside in segment 7, which provides 512 Mbytes of logical address space
for user programs and data. Programs and data may be present in any proportion.
Because this space is so large, overlays are unnecessary.

The atin, tem 25

User programs

Segment 4

Libraries and
user-written
subroutines

1
S 0
Operating system
kernel
e Libraries and
user-written
subroutines
Operating
system
DG-07286

Figure 4.1 Structure of AOS/VS

Demand Paging

AOS/VS controls the hardware-based memory management system with a
page-fault-frequency page replacement algorithm in the demand-paging system. This
algorithm, which uses the hardware Page Referenced and Page Modified bits,
dynamically allocates memory pages to the working set of each process, thus maintaining
a constant page fault frequency. This insures that all processes equally share paging
overhead.

Furthermore, any system load that forces the page-fault frequency beyond an
operator-controlled threshold causes the lowest priority job to be swapped out; thus, the
paging overhead is kept within a range that precludes thrashing.

Process and Task Management

AQOS/VS is a process-oriented multiprogramming operating system. A process in
AOS/VS is a collection of program tasks sharing up to 512 Mbytes of address space.
Each process is assigned a set of privileges that determine how much memory and
system resource time that process can use.

One process is created by another process — either a system process or a user process. In
each case the parent process assigns the privileges of the offspring, thus imposing a
“family-tree” hierarchy on all processes to support interprocess control. Parent processes
can also block, unbleck, and kill offspring processes.

The parent process decides whether an offspring process is permanently memory-resident,
preemptible (usually resident but swappable if blocked or if a higher-priority process
needs the space), or swappable. Resident and preemptible processes can have up to 256
levels of priority, while swappable processes can have up to 3 levels of priority. As many
as 255 processes can be active on AOS/VS at any time.

26 The Operating System

A full set of system calls supports interprocess communications and synchronization.
The interprocess communications facility includes the ability to spool messages until the
destination process is ready to receive them.

Up to 32 tasks can be assigned to each process. Multitasking is facilitated on AOS/VS
by a full set of system calls that control task priorities, intertask communications,
synchronization, and timing.

File Management

AOS/VS provides a hierarchical file directory structure that includes complete file
protection by user access. The user of the “family tree” that contains a file directly
controls access to that file by assigning up to five different types of access to any other
user or group of users.

Certain peripheral devices can be treated as files in AOS/VS. This device independence
permits references to files in a program without specifying the device until the program
is run.

I/0 Management

AOS/VS supports dynamic, fixed-length, data sensitive, and variable-length records for
all file I/O. The record type can be specified when creating a file and changed when
opening it for I/O operations. In addition, block 1/0 is supported for discs and magnetic
tape units.

AOS/VS supports a spool queue for each system I/O device, such as a line printer or
asynchronous communication line. Spooling permits more efficient scheduling of the
processors, reducing idle time of the system. Users may assign a priority to a queue entry
that will affect the entry’s ultimate position in the queue. The operator controls the
limits of priority each user may assign.

Programming Language and Utilities Support

The programming languages and utilities provided by an operating system are tools of
the users. AOS/VS provides excellent tools for its users by including versions of languages
that meet the latest industry specifications, as well as standard languages and utilities
that have been field proven through years of use with 16-bit AOS.

Programming Languages

AOS/VS supports implementations of FORTRAN 77, PL/I, and BASIC that meet or
exceed the latest ANSI specification in each case. These languages use the full 32-bit
data and addressing capability of the MV /8000 system and AOS/VS.

FORTRAN 77 and PL/I use compilers that share common code generators and
optimizers, thus increasing the reliability and efficiency of both systems. They also use
the SWAT debugger, which permits debugging in the programming language.

In addition, AOS/VS supports COBOL, FORTRAN 35, Extended BASIC, RPG II,
Idea, and DG/L® System Development Language. These languages use compilers and
runtime systems that have previously been used with 16-bit AOS.

Table 4.1 shows the languages supported by AOS/VS.

- ————t

The Operating System 27

Utilities

Language Specification Features
FORTRAN 77 ANSI FORTRAN | 32-bit data structure; structured
X3.9-78 pr i ity; character
features; three levels of optimization; SWAT)|
debugger.
PL/I ANSI PL/I X3.74 | 32-bit data structure; on-line development

environment for multiple users; three levels
of optimization; SWAT debugger.

BASIC ANSI BASIC Shareable interpreter; 32-bit data structure]
X3.60-1978 i significant i to the ANSI
standard.
COBOL ANSI "74 Screen-handli bilities for

program execution; interactive debug
module; virtual data capability.

FORTRAN 5 ANS|I FORTRAN Global optimization; user sharable compiler;
X3.9-1966 access to INFOS Il file management system.
Extended BASIC Shareable interpreter; message
communications facilities.
RPG Il IBM compatible; supports INFOS Il file

management system.

Idea Interactive data entry and inquiry/response
capabilities; generates screen formats; uses|
INFOS II file management system.
DG/L Systems ALGOL-like syntax for structured
Development Language programming: global optimization; access to|
INFOS Il file management system.

Table 4.1 Programming languages

AOS/VS supports a wide variety of system utilities to simplify data base management,
program development, and system management.

The full complement of AOS-standard data management, transaction processing, and
word processing software is supported by AOS/VS. These include INFOS 11,
DG/DBMS, Interactive Query, TPMS, and AZ-TEXT software subsystems.

Program development utilities include the SWAT native language debugger for
FORTRAN 77 and PL/I, MASM 32-bit macro assembler, AOS Macro Processor for
Procedural Languages (AOS MPL), and a variety of text and file editors.

System management utilities include REPORT for monitoring resource use on the
system, EXEC for managing consoles and batch streams on a timesharing system, and
the Command Line Interpreter (CLI) for controlling the interaction between system
users and the operating system.

Chapter 5

Instruction Set

This chapter describes the addressing and data formats used in the MV /8000 system,
followed by a short summary of the MV/8000 instruction set. For complete information,
see the ECLIPSE MV/8000 Principles of Operation, Programmer’s Reference Series

(DGC No. 014-000648).

MV /8000 Addressing

The MV /8000 instruction set contains memory reference instructions that can address
bits, bytes, words, and double words. The types of addressing and the addressing range
associated with each are shown in Table 5.1.

Addressing Type

Address Range

Relative To Base Value

8-bit word +127,

— 128 words

16-bit word or double word | + 16 Kwords
+ 8 K double words

16-bit byte + 32 Kbytes
31-bit word or double word | Entire address space
32-bit byte Entire address space

Table 5.1 Addressing types and ranges

All of the MV /8000 memory reference instructions use three addressing modes: absolute,
PC (program counter) relative, and AC (accumulator) relative. Each addressing mode
uses a different source for the base value when calculating an address, adding that value
to a displacement coded with the instruction.

Absolute Addressing. The base of the logical address space (location 0) is used as the base
address. Therefore, the displacement itself is the logical address of the desired memory

location.

30 Instruction Set

PC Relative Addressing. The value in the program counter (the logical address of the word
containing the displacement) is used as the base address.

AC Relative Addressing. The value in one of two accumulators is used as the base address.

MYV /8000 Data Formats
The MV /8000 system uses a variety of data formats to facilitate data handling.

Fixed-Point Data Formats
The MV /8000 fixed-point data formats support signed and unsigned 8-, 16-, and 32-bit
integers. Eight-bit integers are supported in 32-bit registers by zero-extending the
integers to 32 bits. Sixteen-bit integers are supported in 32-bit registers by sign-extending
the integers to 32 bits. These formats are shown in Figure 5.1.

16-bit 2's complement intager

= i Ea R T e = o e sy]
@ -
32-bit 2's compilament intager

DG-07264
Figure 5.1 Fixed-point data formats

Floating-Point Data Formats
The MV /8000 floating-point data formats support single-precision (32-bit) and
double-precision (64-bit) floating-point numbers without mode changing. These data
formats can accommodate data representing up to 17 significant decimal digits within a

range of 5.4 X 1079 t0 7.2 X 1075, These formats are shown in Figure 5.2.

Instruction Set 31
Single precision (4 bytes)
Y NOTES:
1) Magnitude = mantissa x 16"
where
01 7 16 23 24 3 Y = true value of exponent
el
Exponent Mantissa (6 hex digits) 2] All exponents are represented
o in excess 64 notation; thus,
X 2 Ward aligned for all floating-point operations the value represented in bits

1-7 of the number is 64 greater

than the true value of the exponent.
Double precision (8 bytes}

———
Exponent

53 54 63
Sign

Mantissa (14 hex digits}

Word aligned for all floating-point operations
DG-04849

Figure 5.2 Floating-point data formats

32 Instruction Set

Unpacked Decimal
oo [T T T T T]

Trailing sign:

I I A B

ASCIl representation of
decimal digits

T 1

~L

ASCII representation WV

owne (T T [T T T 1
e N N 4

ASCil representation of
decimal digits (assumed positive)
Packed Decimal

T I ITI]]

Ve
BCD representation of decimal digits.
extended by a leading O, if necessary,
1o an add number of digits.

Each digit occupies 1/2 byte (4 bits).

Sign: + = 444
- = 16

Two’s Complement Integer
JE

-

=

Vv
2- or 4-byte 2's complement integer

T 31

e

Sign and B
Exponent

DG-08810

Figure 5.3 Commercial data types

Instruction Set 33

Instruction Mnemonics and Formats

Several mnemonic conventions and instruction formats in the MV /8000 system are
worthy of special note.

Instruction Mnemonics

ALC Format

Mnemonic prefixes are used in the MV /8000 system to distinguish between similar
instructions that work with address displacements or data of different lengths:

X Extended displacement (15 bits),
L Long displacement (31 bits),

N Narrow data (16 bits),

W Wide data (32 bits).

The MV /8000 instruction set includes the Arithmetic/Logic Class (ALC) instructions
from the 16-bit ECLIPSE instruction set. These instructions perform functions generally
classed as fixed-point operations (e.g., add, subtract); in addition, they accept mnemonic
suffixes that perform the following operations:

s Preset carry,

« Shift a 16-bit word and carry left or right,

e Swap two bytes of a 16-bit word,

= Test for various conditions of the word or of carry,

= Prevent loading the resulting value into a specified destination accumulator.

The format for these instructions is:

Summary of the MV /8000 Instruction Set

The 32-bit MV /8000 instruction set is a powerful and logical extension of the 16-bit
ECLIPSE instruction set. More than 250 instructions have been added to handle 32-bit
addressing, 32-bit fixed-point operands, memory management functions, and queue and
linked list structures. The instruction set supports 8-, 16-, 32-, and 64-bit data
manipulation, together with a variety of operating system and high-level language
functions.

‘The 16-bit ECLIPSE instruction set is an integral part of the MV /8000 instruction set.

Thus, the ECLIPSE instruction set is available at all times without explicit mode
switching. This simplifies upgrading and ensures continued ability to do program
development for 16-bit ECLIPSE systems.

Fixed-Point Instructions

The 181 fixed-point instructions perform integer arithmetic, logical operations, compares,
and 16-bit Arithmetic/Logic Class (ALC) operations. In addition, some fixed-point
instructions manage bits and bytes. The fixed-point instructions manipulate 8-, 16- and
32-bit operands symmetrically: operations on one data size are identical to operations on
other data sizes. Mixing data sizes requires no explicit function switching.

Instruction Set 35

An example of a queue instruction is the ENQH Enqueue Towards the Head instruction.
This instruction adds a data element to a queue, placing the new data element before a
specified data element already in the queue. It then updates all the appropriate links and
queue descriptors to reflect the change in the queue. The entire operation finishes before
interrupts are enabled to ensure that an interrupt routine does not try to use an
incomplete queue.

Stack Instructions

The 24 stack instructions define and manipulate stacks. The MV /8000 supports three
types of stacks: the wide stack, used by programs incorporating 32-bit instructions; the
narrow stack, used by programs incorporating 16-bit ECLIPSE instructions; and the
vector stack, used by the I/O interrupt facility.

Each stack uses a stack pointer, frame pointer, stack limit, and stack base to define
boundaries and limits of the stack. All of these boundaries and limits can be changed by
the user to adjust the configuration of the stack to meet the user’s needs.

An example of a stack instruction is the SAVE instruction. This instruction is used at the
beginning of subroutines to save the state of the machine prior to entering the body of
the subroutine. The Save instruction pushes a 5-word return block onto the stack and
creates a stack frame, of size determined by the user, for storing values being passed to
or from the subroutine. The frame pointer acts as a reference point for this storage area.

Program-Flow Instructions

The 83 program-flow instructions alter the normally sequential flow of instructions by
placing a new value in the program counter. The new value may be determined by data
coded along with the instruction or by the results of a test on the data. Both fixed-point
and floating-point instructions are included in this category.

An example of a program-flow instruction is the LDSP Dispatch (Long Displacement)
instruction. This instruction uses a table of addresses to transfer control to one of several
possible routines. A number in an accumulator serves as a pointer into the table. The
location pointed to contains the starting address of the desired routine.

Commercial Instructions

The 22 commercial instructions manipulate and convert between the commercial data
types specified in the discussion of commercial data formats earlier in this chapter. In
addition, they convert between decimal integers and floating-point numbers; evaluate
the sign of a decimal number; and move, modify, and test strings of characters.

An example of a commercial instruction is the WEDIT Wide Edit instruction. This
instruction invokes a group of subinstructions that can perform many different operations
on a decimal number and its destination field, including leading zero suppression,
floating fill characters, punctuation control, and insertion of text into the destination
field. The instruction also performs operations on alphanumeric data.

1/0 Instructions

The 20 1/0 instructions control all system input and output. I/O instructions handle
three types of 1/O transfers: programmed I/O transfers data one byte or word at a time,
with each transfer being controlled by a separate /O instruction; data channel I/O
requires 1/Q instructions to set up the parameters of the transfer, but the transfer itself,

32 Instruction Set

Unpacked Decimal

Leading sign:

[1

\

ASCII T

representation ASCII representation o

f decimal digits

of sign
;L
Trailing sign:]] I l j L L I | —‘
L st /
v ASCII
ASCII representation of representation
decimal digits of sign
J L
High-order sign: l i | \l {4 l] I 7
\ = Vi
ASCII representation Vv
of character: defined as ASCII representation
a combination of of remaining decimal
first decimal digit and sign digits
i
Low-order sign: l [| 44 l | | |
7 ¥ / ‘

W

ASCII representation of all
but last decimal digit

ASCII representation of
character: defined as
a combination of last
decimal digit and sign

Unsigned:

-

e

) 1
LS
WV
ASCII representation of
d | digits (d p

)

Packed Decimal

HEEEEE

L

BCD representation of decimal

to an odd number of digits.

Two’s Complement Integer

J L

extended by a leading O, if necessary,

FTTTT1T]

digits, Sign: + = 444

- = 15g

Each digit occupies 1/2 byte (4 bits).

[i

7/

V

Floating Point

2- or 4-byte 2's complement integer

DG-06810

\ Y /
Sign and 32 or 7-byte
Exponent ;
mantissa

Figure 5.3 Commercial data types

Instruction Set

31

Single precision {4 bytes)

NOTES;
. ’ Y
”Byra 0! l Byte 1 I | Byte 2 l I Byte 3 l xh:’::g""“ﬁ“ = mantissa x 16
01 7 8 15 16 23 24 A Y = true value of exponent
St
Exponent Mantissa (6 hex digits) 2) All exponents are represented
Sion in excess 64 notation; thus,
Word aligned for all floating-point operations the value represented in bits

1-7 of the number is 64 greater
than the true value of the exponent.
Double precision (8 bytes)

[IE\ueOJ I_Bylel I [Bv!a 2—| I Byte3|
01 3 8 15 16 23 24 31

——
Exponent l Byte 4 I I Byte 5 I I Byte 6 I | Byte 7 |
32 39 40 47 48 53 54 63

Sign

Mantissa (14 hex digits)

Word aligned for all floating-point operations

DG-04849

Figure 5.2 Floating-point data formats

Commercial Data Formats
The MV /8000 system can handle all standard commercial data types:

Unpacked decimal, leading sign;
Unpacked decimal, trailing sign;
Unpacked decimal, high-order sign;
Unpacked decimal, low-order sign;
Unpacked decimal, unsigned;

Packed decimal;

Two’s complement integer, byte aligned;
Floating point, byte aligned.

Figure 5.3 shows the formats for these data types.

36 Instruction Set

which can include many blocks of data, proceeds without intervention by the program;
and burst multiplexor channel I/O operates similarly to data channel operations — I/O
instructions are required only to set up the transfer of many blocks of data.

An example of an 1/O instruction is the VCT Vector on Interrupting Device Code
instruction. This instruction returns the device code of an interrupting device and uses
that code as an index into a table of pointers to the appropriate interrupt handler.
Depending on the user-specified mode of the instruction, it can also save the state of the
machine by pushing various words onto the stack, create a new vector stack, and set up
an interrupt priority structure.

Chapter 6
Peripherals

The MV /8000 system is designed to work in a heavily-loaded data processing
environment, concurrently supporting timesharing and multiple batch stream processes.
It is therefore dependent on fast, efficient, and reliable I/O.

Much of the MV /8000 internal architecture, in fact, is designed to improve 1/0
performance — for example, the 1/O processor and data control unit both aid overall
system performance by adding I/O capability. For more information on the MV /8000
1/0 subsystem, see the discussion of the I/O subsystem in Chapter 3 and the block
diagram on the inside back cover.

The same environment that requires an excellent subsystem also requires excellent
peripherals: an active demand paging system requires large and fast discs; large and
frequent file backups require fast and reliable tape drives; and a busy and varied user
environment requires reliable and flexible user terminals.

Because the MV /8000 I/O subsystem is both program- and electrically-compatible with
previous 16-bit ECLIPSESs, the full line of standard Data General field-proven peripherals
is available to MV /8000 users. These peripherals provide the capability and reliability
required by this system.

This chapter summarizes the capabilities of these peripherals. For complete information
about peripherals for the MV /8000 system, consult your Data General salesperson.

Disc Storage Subsystems

Disc subsystems in the MV /8000 system support demand paging, virtual address spaces,
and the file structure. Data General’s line of peripherals includes large moving-head disc
storage subsystems and fast fixed-head Winchester technology disc subsystems.

38

Peripherals

Figure 6.1 Disc storage subsystem

One example of the moving-head discs available is the 6122 DG/Disc Storage subsystem.
This Data General-designed and -manufactured disc storage subsystem consists of two
controller boards and up to four stand-alone disc drives. Maximum capacity of a 6122

subsystem is 1.1 billion bytes, using four removable-pack drives with a capacity of 277

million bytes each.

The MV /8000 system can éuppori up to six 6122 subsystems, for a total of 6.6 billion
bytes of on-line storage. The data transfer rate of each subsystem on the burst multiplexor
channel (BMC) is 1.2 million bytes/second; average access time is 43.3 milliseconds.

An example of a fixed-head disc subsystem is the 6064 Fixed-Head DG /Disc subsystem.
This high-performance disc uses Winchester technology to ensure reliability. Each
subsystem consists of two controller boards and up to four drives with a capacity of 2
million bytes each. The MV /8000 system can support up to six 6064 subsystems. The
data transfer rate of each subsystem on the burst multiplexor channel (BMC) is 910,000
bytes/second; average access time is 10.12 milliseconds.

Table 6.1 lists some of the disc storage subsystems available with the MV /8000 system.

Peripherals 39

Device and Model Capacity Typical Application®
Number
6122 Moving-head 277 million Data storage for large systems
disc subsystem bytes/drive
606 1-H Moving-head | 190 million Data storage for large systems
disc subsystem bytes/drive
6060-H Moving-head |96 million Data storage for medium to large systems
disc subsystem bytes/drive
6066-H Fixed-head 4 million High-speed data storage and retrieval
disc subsystem bytes/subsystem
6064-H Fixed-head 2 million High-speed data storage and retrieval
disc subsystem bytes/drive
6097 Dual 1.26 million Data transfer
double-sided, bytes/drive
double-density diskette

Table 6.1 Typical MV/8000 disc storage subsystems
*Each of these models can have up 1o four drives per subsystem.
Magnetic Tape Subsystems

Magnetic tape subsystems support file backup and transfer functions. Two magnetic
tape subsystems are available with the MV /8000 system.

Figure 6.2 Magnetic tape subsystem

The 6026 Magnetic Tape subsystem is the MV /8000’s standard dual-mode tape storage
system, designed and manufactured by Data General. The 6026 supports both 1600-bpi
phase-encoded and 800-bpi NRZI operation. Each 6026 subsystem consists of a controller
board and up to eight cabinet-mounted tape transports.

40

Peripherals

Internal controller buffering of up to eight bytes of data minimizes channel overrun on
systems with multiple high-performance storage devices. The data transfer rates over the
data channel are 120,000 bytes/second at 1600 bpi and 60,000 bytes/second at 800 bpi.

The optional 6027 Magnetic Tape subsystem is a single-mode (800-bpi) tape storage
system that is otherwise identical to the 6026 subsystem. It may be upgraded to a
dual-mode system by adding a dual-mode tape transport.

User Terminals

User terminals support the interface between either the system users or the system
operator and the system. All user terminals on the MV /8000 system connect to the I/O
processor via asynchronous terminal interfaces (ATIs) or asynchronous modem interfaces
(AMIs). The operator’s terminal is controlled by the system control processor (SCP).
Data General manufactures a variety of display and hardcopy terminals to serve all user
needs.

Figure 6.3 User terminal

Two examples of the terminals available are the DASHER D100 and D200 display
terminals. These are 96-character ASCII alphanumeric display terminals. The displays
can provide reduced intensity, underscore, blink, and reverse video. Baud rates are
selectable between 50 and 19,200 baud.

The DASHER D100 keyboard can transmit 96 upper- and lower-case symbols of the
ASCII character set, 30 control characters, and 35 user-defined special function
sequences. The D200 keyboard can transmit all of the above, plus 40 additional special
function sequences.

Both terminals can be ordered with an optional interface for a slave printer. This
interface also allows independent selection of transmit and receive baud rates.

Peripherals 41

Table 6.2 lists some of the terminals available with the MV /8000 system.

Device and Model Typical Application/Special Feature
Number

Display Terminals
6107 DASHER D100 | User’s or operator’s terminal; selectable data rates to 9600 bps;
Display Terminal 35 user-defined special function codes; blink, dim, underscore,
reverse video; EIA printer interface for attaching DASHER TP 1 or|
TP2 printer

6109 DASHER D200 | User’'s or operator's terminal; selectable data rates to 9600 bps;
Display Terminal 75 user-defined special function codes; blink, dim, underscore,
reverse video; EIA printer interface for attaching DASHER TP 1 or|
TP2 printer
Printer Terminals
6040 DASHER TP1 60-character/second terminal printer; 132-column, 5 x 7 dot

Terminal Printer matrix; EIA serial interface; 128 upper- and lower-case ASCII
characters

6077 DASHER TP2 180-character/second logic-seeking, bidirectional terminal

Terminal Printer printer; 132-column, 7 x 9 dot matrix; selectable 6/8 lines/inch;
expanded printing; horizontal and vertical tabs; EIA and 20-mA
interfaces

Table 6.2 Typical MV/8000 user terminals

Line Printers

Line printers provide most of the hardcopy output for a large system. The line printers
available with the MV /8000 system connect to the data channel for high-speed operation
and low system overhead.

One line printer available is the 4245 DG Printer subsystem. This subsystem consists of
a data channel controller board and a stand-alone printer. The printer is capable of
printing 660 lines per minute of upper- and lower-case characters. Horizontal tabbing
and vertical format are both program-controllable.

Table 6.3 lists the printers available with the MV /8000 system.

Device and Model Printing Speed Features®
Number

4244 Line Printer 900 lines per 136 columns, 64 ASCI| upper-case
Subsystem minute characters

4245 Line Printer 660 lines per 136 columns, 96 ASCIl upper- and
Subsystem minute lower-case characters

4215 Line Printer 600 lines per 136 columns, 64 ASCI| upper-case
Subsystem minute characters

4216 Line Printer 436 lines per 136 columns, 96 ASCI| upper- and
Subsystem minute lower-case characters

4218 Line Printer 300 lines per 136 columns, 64 ASCIl upper-case
Subsystem minute characters

4219 Line Printer 240 lines per 136 columns, 96 ASCII upper- and
Subsystem minute lower-case characters

Table 6.3 Typical MV/8000 line printer subsystems

"All of these line printer subsystems offer 6 or 8 lines/inch.

Please help us improve our future

publications by answering the questions below.

Engineering
Publications
Comment Form

Title:

Use the space provided for your comments. Document No. 014-000650-01
Yes No ! . ’ ;
O You (can, cannot) find things easily. O Other:
i ?
St BtiemaliieerioIon O Language (is, is not) appropriate,
O Technical terms (are, are not) defined
as needed.
O Learning to use the equipment O To instruct a class.
In what ways do you find this manual useful ?
O As a reference O Other
O As an introduction to the
product
Q Visuals (are are not} well designed.
o o Do the illustrations help you?
© Labels and captions (are,are not) clear.
O Other:
0o o Does the manual tell you all you need to know?
What additional information would you like?
0o o Is the information accurate?
{If not please specify with page number and
paragraph.)
Name: Title:
Company: Division:
Address: City:
State: Zip: Telephone: Date:
DG-06895

¢»DataGeneral

Data General Corr ion, Westboro, M h 01580

PH-0349

Front panel
I_Diskette SCP system

Asynchronous comm.

P
\ ower

supplies

Memory

32-bit
processor

1/0 system

Mb/s

1.2

Mb/s

§- 48 lines

BMC - 64 lnes

413 Kb/s
—

350 Kb/s
Ay

Maximum On-Line Disc
Storage 6.65 Gbytes

413 Kb/s —
350 Kb/s — IOP 1/O Bus - 48 lines
\j 2 Kb/s 3 Lz Kb/s
12.27 mb/s
10.32 Mb/s

-

Subsystems i !l’lzo Kb/s

fum

i a
| 'ii' | m | 263 Kb/s
m | a3 1] e 555 Kb/s
¥ HE

263 Kb/s
—-—

555 Kb/s
—

625 Kb/s

N o Lexsxbs J [Leaskors
B
gt

625 Kb/s

DCU 1/O Bus - 48 lines

DCU I/O Bus - 48 lines

4 DCU/200°s

frLine Mag o] Jd Leaskeis J Le2ske/s !
- 350 Mbytes csi/ P
263 Kb/s
Line 5BE Kby/s 625 Kb/s DCU 1/0 Bus - 48 lines
Printers
1/0 Bus
PIO 413 Kb/s Out
transfer rates: 455 Kb/s In
Console
Controll Data Channel 1.3 Mb/s Out
transfer rates: 2.27Mb/s in

128 Terminals
Maximum

weiSeiq yoog waisAS 0008/ AW

i

DG-07319

Cache Address, Write Data & Read Data Busses - 72 lines 36.4 Mb/s

Main Memaory Address,
oFiead Data, Write Data Busses- 86 lines
¥36.4 Mb/s

CPU Port Address & Memory Busses - 60 lines 18.2 Mb/s

mw

Diagnostic Scan Hu-s l_l I_[CPU Data Bus -32 hn.sl I I l

IT I
Iy E—

Logical Address Bus -31 lines

RAM Address Bus -12 lines

L

1/0 Bus - 48 lines
micraNOVA
Interface Bus - 34 lines

140 Port Address & Memory Busses - 60 lines

14.54 My
16.16 Mby

18.2 Mb/s

62.5 Kb/s

microNOVA 1/0 Bus
16 lines

DG OFFICES

SALES AND SERVICE OFFICES MANUFACTURER’S REPRESENTATIVES

Alabama: Birmingham
Arizona: Phoenix. Tucson
Arkansas: Little Rock

California: Ei Segundo. Fresno, Palo Alto, Sacramento Sen Diego,

San Francisco, Santa Ana. Santa Barbara, Van Nuys
Colorado: Englewood

Connecticut: North Branford

Florida: Ft. Lauderdale Orlando. Tampa
Georgia: Norcross

Idaho: Boise

Illinois: Peoria, Schaumburg

Indiana: Indianapolis

Kentucky: Louisville

Louisiana: Baton Rouge

Maryland: Baltimore

Massachusetts: Springfield, Wellesley, Worcester
Michigan: Southfield

Minnesota: Richfield

Missouri: Kansas City, St. Louis

Nevada: Las Vegas

New Hampshire: Nashua

New Jersey: Cherry Hill, Wayne

New Mexico: Albuguerque

New York: Buffalo, Latham, Melville, Newfield, New York

Rochester, Syracuse, White Plains

North Carolina: Charlotte, Greensboro
Ohio: Columbus, Dayton, Brooklyn Heights
Oklahoma: Oklahoma City, Tulsa
Oregon: Portland

Pennsylvania: Blue Bell, Carnegie

Rhode Island: Rumford

South Carolina: Columbia

Tennessee: Knoxville, Memphis

Texas: Austin, Dallas. El Paso. Ft. Worth. Houston
Utah: Salt Lake City

Virginia: McLean, Norfolk, Richmond, Salem
Washington: Kirkland

West Virginia: Charleston

Wisconsin: West Allis

Australia: Melbourne, Victoria
France: Le Plessis Robinson

Italy: Milan, Padua, Rome

The Netherlands: Rijswijk

New Zealand: Auckland, Wellington

& DISTRIBUTORS

Argentina: Buenos Arres
Cosla Rica: San Jose
Ecuador: Quito

Egypt: Caro

Finland: Helsink,
Greece: Athens

Hong Kong: Hong Kong
India: Bombay
Indonesia: Jakarta
Iran: Tehran

Israel: Givatayim

Japan: Tokyo

Jordan: Amman

Korea: Seoul

Kuwait: Kuwait
Lebanon: Beirut
Malaysia: Kuala Lumpur
Mexico: Mexico City
Nicaragua: Managua
Nigeria: Lagos, Ibadan
Norway: Oslo

Peru: Lima

Philippine Islands: Manila
Puerto Rico: Hato Rey
Saudi Arabia: Riyadh
Singapore: Singapore
South Africa: Johannesburg, Pretoria
Spain: Barcelona, Bilbao, Madrid, San Sebastian
Taiwan: Taipe:
Thailand: Bangkok
Uruguay: Montevideo
Venezuela: Maracaibo

ADMINISTRATION, MANUFACTURING
RESEARCH AND DEVELOPMENT

Massachusetts: Cambridge. Framingham, Westboro, Southboro

Maine: Westbrook
New Hampshire: Portsmouth
California: Anaheim. Sunnyvale

. Valencia

Sweden: Gothenburg, Malmoe, Stackholm

Switzerland: Lausanne, Zurich

United Kingdom: Birmingham. Dublin, Glasgow London, Manchester
West Germany: Filderstadt, Frankfurt, Hamburg Munich, Ratingen,
Rodelheim

North Carolina: Research Triangle Park, Johnston County

Hong Kong: Kowloon, Tai Po
Thailand: Bangkok

- DG-04976

erataGéneral. '

DataGeneraleporatm %stborpffﬂassad\usells 0]5&)

‘et

34 Instruction Set

An example of fixed-point manipulation is the LWDIV Wide Divide From Memory
(Long Displacement) instruction. This instruction divides a 32-bit integer in an
accumulator by a 32-bit integer in a memory location, placing the quotient in the
accumulator. Along with the instruction, the programmer specifies the address of the
memory word and the number of the accumulator. An overflow flag indicates out-of-range
quotients.

Floating-Point Instructions

The 87 floating-point instructions manipulate single-precision (32-bit) and
double-precision (64-bit) floating-point numbers. Single- and double-precision numbers
are handled interchangeably without the need for explicit conversion instructions.

To increase the accuracy of floating-point operations, one or two hex guard digits are
used during the execution of most floating-point instructions. The result is then truncated
or rounded, depending on the state of a flag controlled by the programmer.

An example of a floating-point operation is the LEMMD Multiply Double (FPAC By
Memory) (Long Displacement) instruction. This instruction multiplies a 64-bit
floating-point number in a specified floating-point accumulator (FPAC) by a 64-bit
floating-point number in a specified memory location. The result is rounded or truncated
and placed in the FPAC.

System Control Instructions

The following groups of instructions are used primarily by the operating system. They
significantly enhance operating system performance by executing complex system
operations in one instruction.

Privileged Instructions .

The nine privileged instructions perform various operating system memory management
functions. These instructions can only be executed in segment 0, where the kernel of the
operating system resides. Privileged instructions flush the address translation unit,
manipulate and test the page-modified and page-referenced bits, change the segment
base registers, and control vectoring on an interrupt.

An example of a privileged instruction is the PATU Purge the ATU instruction. This
instruction purges the entire address translation unit of all entries.

Queue Instructions

The 35 queue instructions manipulate priority-based queue structures and linked lists.
Queues in the MV /8000 consist of individual data elements, each containing a forward
link and a backward link, as well as user information in a form determined by the
programmer. Each queue also consists of a queue descriptor, which contains pointers to
the head and the tail of the queue.

Queue instructions add, remove, or search for elements of a queue or linked list.
Enqueue and dequeue instructions are not interruptible, thus ensuring that a queue will
not be used while in a transition state. Because search queue instructions can take some
time to execute, they are interruptible during portions of their execution. The queue
instructions, while used by various portions of the operating system, are available to all
users.

