FORTRAN 77
Environment Manual
(AOS/VS)

093-000288-01

For the latest enhancements, cautions, documentation changes, and other information on this
product, please see the Release Notice (085-series) supplied with the software.

Ordering No. 093-000288
©Data General Corporation, 1983, 1984
All Rights Reserved
Printed in the United States of America
- Revision 01, January 1984
e Licensed Material - Property of Data General Corporation

/_,,'.,. Sy i

DATA GENERAL CORPORATION (DGC) HAS PREPARED THIS DOCUMENT FOR USE BY
DGC PERSONNEL, LICENSEES, AND CUSTOMERS. THE INFORMATION CONTAINED HERE-
IN IS THE PROPERTY OF DGC; AND THE CONTENTS OF THIS MANUAL SHALL NOT BE
REPRODUCED IN WHOLE OR IN PART NOR USED OTHER THAN AS ALLOWED IN THE
DGC LICENSE AGREEMENT.

DGC reserves the right to make changes in specifications and other information contained in this document
without prior notice, and the reader should in all cases consult DGC to determine whether any such changes
have been made.

THE TERMS AND CONDITIONS GOVERNING THE SALE OF DGC HARDWARE PRODUCTS
AND THE LICENSING OF DGC SOFTWARE CONSIST SOLELY OF THOSE SET FORTH IN
THE WRITTEN CONTRACTS BETWEEN DGC AND ITS CUSTOMERS. NO REPRESENTATION
OR OTHER AFFIRMATION OF FACT CONTAINED IN THIS DOCUMENT INCLUDING BUT
NOT LIMITED TO STATEMENTS REGARDING CAPACITY, RESPONSE-TIME PERFOR-
MANCE, SUITABILITY FOR USE OR PERFORMANCE OF PRODUCTS DESCRIBED HEREIN
SHALL BE DEEMED TO BE A WARRANTY BY DGC FOR ANY PURPOSE, OR GIVE RISE TO
ANY LIABILITY OF DGC WHATSOEVER.

This software is made available solely pursuant to the terms of a DGC license agreement which governs its
use.

CEO, DASHER, DATAPREP, ECLIPSE, ENTERPRISE, INFOS, microNOVA, NOVA, PROXI, SUPERNOVA,
PRESENT, ECLIPSE MV/4000, ECLIPSE MV/6000, ECLIPSE MV/8000, TRENDVIEW, SWAT, GENAP, and
MANAP are U.S. registered trademarks of Data General Corporation, and AZ-TEXT, DG/L, DG/GATE,
DG/XAP, ECLIPSE MV/10000, GW/4000, GDC/1000, REV-UP, XODIAC, DEFINE, SLATE, microECLIPSE,
DESKTOP GENERATION, BusiPEN, BusiGEN and BusiTEXT are U.S. trademarks of Data General Corporation.

FORTRAN 77
Environment Manual
(AOS/VS)
093-000288-01

Revision History: Effective with:
Original Release - April 1983 FORTRAN 77 Rev. 2.10

First Revision - January 1984

CONTENT UNCHANGED

printing and binding details.

The content in this revision is unchanged from 093-000288-00. This revision changes only

Preface

As a programmer fluent in FORTRAN 77 (F77) and familiar with the Advanced Operating
System/Virtual Storage (AOS/VS), you will find this environment manual a useful companion to the
FORTRAN 77 Reference Manual (093-000162). In addition, if you know Data General/Database

Management (DG /DBMS) software, this environment manual helps you process DG/DBMS data via
F77 statements.

Organization

We have organized this manual as follows.

Chapter 1 Summarizes the software environment in which FORTRAN 77 exists.

Chapter 2 Documents the utility subprograms your FORTRAN 77 programs can access.

Chapter 3 Explains how your FORTRAN 77 programs can directly use AOS/VS (i.e., make
system calls) at runtime.

Chapter 4 Presents the general concepts of multitasking. We also detail the individual multi-
tasking subroutines.

Chapter 5 Summarizes debugging. We introduce the SWATTM program as a valuable aid to
debugging.

Chapter 6 Explains subprograms. It shows how to write assembly language subprograms for

FORTRAN 77 programs to CALL and how to write FORTRAN 77 subprograms
that BASIC, C, COBOL, PASCAL, and PL/I programs can access.

Chapter 7 Gives several hints about writing better FORTRAN 77 programs.

Chapter 8 Introduces the FORTRAN 77 preprocessor interface to DG/DBMS. It also describes
the relationship of the preprocessor to DG/DBMS, AOS/VS, and FORTRAN 77.

Chapter 9 Describes DG/DBMS subschemas for FORTRAN 77 programs and how they are
generated.

Chapter 10 Briefly defines the function of every Data Manipulation Language (DML) statement

and describes their use.
Chapter 11 Describes the exact syntax of every DML statement.

Chapter 12 Explains how to compile and link your FORTRAN 77/DBMS programs by using the
preprocessor and runtime routines.

Chapter 13 Contains two sample FORTRAN 77 programs that interface with DG/DBMS.

Chapter 14 Describes DBMS usage issues you must be familiar with. It also lists the restrictions
that the F77/DBMS interface imposes.
Chapter 15 Contains a list of DBMS error messages.

Appendix A Describes FORTRAN 77 heap and stack organization, and changes you can make *o
it.

093-000288 Licensed Material-Property of Data General Corporation III

Related Documentation

Other manuals you may find useful are as follows.
Manual Title

A Guide to Using the Data General/Database
Management System (DG/DBMS)

Command Line Interpreter (CLI) (AOS and AOS/VS)
User’s Manual

FORTRAN 5 Programmer’s Guide (AOS)

Data General/Database Management System (DG/DBMS)
Reference Manual

Advanced Operating System/Virtual Storage
(AOS/VS) Programmer’s Manual

Advanced Operating System/Virtual Storage (AOS/VS)
Macroassembler (MASM) Reference Manual

Advanced Operating System/Virtual Storage (AOS/VS)
Operator’s Guide

Advanced Operating System/Virtual Storage (40S/VS)
Link and Library File Editor (LFE)
User’s Manual

SWATTM Debugger User's Manual

Manual No.

069-000025

093-000122

093-000154
093-000163

093-000241

093-000242

093-000244

093-000245

093-000258

In addition, Data General strongly recommends that you have the Software Release Notices and
Update Notices for FORTRAN 77 and related software. These Notices may contain corrections to this
manual and additional information beyond the scope of this manual. For example, the documentation
for the subroutine to obtain the system date appeared in Release Notices before this manual was
written. And, they may contain suggestions for corrections or adjustments to current software problems.

iV Licensed Material-Property of Data General Corporation

093-000288

Reader, Please Note:
We use these conventions for command formats in this manual:
COMMAND required [optional] ...
Where Means
COMMAND You must enter the command (or its accepted abbreviation) as shown.

required You must enter some argument (such as a filename). Sometimes, we use:

required,
required,
which means you must enter one of the arguments. Don’t enter the braces; they only set

off the choice.

[optional] You have the option of entering this argument. Don’t enter the brackets; they only set
off what’s optional.

You may repeat the preceding entry or entries. The explanation will tell you exactly
what you may repeat.

Additionally, we use certain symbols in special ways:
Symbol Means
) Press the NEW LINE or carriage return (CR) key on your terminal’s keyboard.

O Be sure to put a space here. (We use this only when we must; normally, you can see where to
put spaces.)

All numbers are decimal unless we indicate otherwise; e.g., 353.
Finally, in examples we use

THIS TYPEFACE TO SHOW YOUR ENTRYI
THIS TYPEFACE FOR SYSTEM QUERIES AND RESPONSES.

) is the CLI prompt.

Contacting Data General

« If you have comments on this manual, please use the prepaid Remarks Form that appears after the
Index. We want to know what you like and dislike about this manual.

o If you need additional manuals, please use the enclosed TIPS order form (USA only) or contact your
Data General sales representative.

« If you experience software problems, please notify Data General Systems Engineering.

End of Preface

093-000288 Licensed Material-Property of Data General Corporation \Y)

Contents

Chapter 1 - Introductory Concepts

A Software Summary I-1
The Significance of AOS/VS 1-3
The Significance of Link and the Runtime Libraries 1-3
The Significance of the Release and Update Notices 1-6

Chapter 2 - Utility Runtime Routines

Documentation Categories 2-1
DATE . . 2-2
ERRCODE . .. 2-3
ERRTEXT ... 2-7
EXIT 2-11
RANDOM 2-12
TIME . 2-20

Chapter 3 - System Call Interface

Structure 3-1
Implementing ISYS: an Initial Approach 3-2
Sample Program 3-3
Program Testing 3-3
SUMMATY ... oo 33
Implementing ISYS: a Final Approach 3-4
Files Related to Program F77BUILD_SYM 3-4
Symbol Construction Rules 3-6
Operating Instructions for F77BUILD_SYM 3-7
Reducing QSYM.F77.IN 3-7
Example 3-8

Error Messages 3-10
Updating your Operating System 3-10
ISYS and Sample Program LIST_DIRECTORY 3-10
Program Unit Listings 3-10

Sample Execution of Program LIST_DIRECTORY 3-14

ISYS and Subroutine CLI 3-15
Program Unit Listings 3-15

Sample Execution of Program TEST_CLI 3-18

A Variation of Program TEST_CLI 3-18

The ISYS Function and Multitasking 3-20
IO_CHAN Function 3-20
SructUre 3-20
Example 3-21
Reference 3-21

093-000288 Licensed Material-Property of Data General Corporation vii

Chapter 4 - Multitasking

viii

Whatisa Task? 4-1
Single-task Programs 4-1
Single-tasking: a Nonsoftware Example 4-2

What is Multitasking? — a Nonsoftware Example. 4-3

What is Multitasking? 4-5

Multitasking Program Organization 4-7

Task States, Transitions, and Subroutines 4-7
Task States 4-7
Task Transitions 4-11
Task Subroutines. 4-11
Sample Program 4-14

Re-entrant Code 4-19

Multitasking Subroutines 4-21
Assembly Language Interface 4-22

Assembly Language Calls 4-22
Example 4-23
Routine Names 4-23
Conversion of FORTRAN 5 Multitasking Programs 4-24
Rewrite Each Multitasking CALL or Statement 4-24
Use a Conversion Library 4-24
Recommended Conversion Method 4-25
Multitasking via the ISYS Function? 4-25
Link Switches for F77 Multitasking 4-26
JIOCONFLICT Switch 4-26
JTASKS=nSwitch. 4-26
Task Fatal Errors 4-26
Initial Task 4-27
Documentation of Multitasking Calls 4-27
The Result Code Argument 4-27

TQDQTSK . 4-28

TQDRSCH 4-31

TQERSCH 4-32

TQIDKIL ... 4-33

TQIDPRI .. 4-34

TQIDRDY 4-35

TQIDSTAT . . 4-36

TQIDSUS . 4-37

TQIQTSK . 4-38

TQKILAD . . 4-39

TQKILL . 4-40

TOMYTID .. 4-41

TQPRI . . 4-42

TQPRKIL . 4-43

TQPROT . 4-44

TQPRRDY .. o 4-45

TQPRSUS . 4-46

TQQTASK .. 4-47

TQREC . 4-48

TQRECNW 4-49

TQSTASK 4-50

TQSUS 4-51

TQUNPROT ... 4-52

TOQXMT 4-53

TQXMTW 4-54

Another Sample Multitasking Program 4-55

Licensed Material-Property of Data General Corporation 093-000288

Chapter 5 - Debugging

N Traditional Debugging Methods 5-1
The SWAT ® Debugger 5-2
Sample Program Modules SORT10.F77 and TEST_SORTI10.F77. 5-2
Sample Execution without the SWAT Debugger 5-5
SWAT Debugger Fundamentals 5-5
Sample Execution with the SWAT Debugger 5-6
Corrections to Sample Program Modules 5-12
The SWAT Debugger — a Summary 5-12
Avoid Errors BEFORE Coding 5-13
Data General Bugs? 5-13
Chapter 6 - Subprograms

F77 and Assembly Language Subprograms 6-1
VS/ECS Calling Conventions 6-1
VS/ECS Return Block 6-3
Pointer tO arg i 6-3
Flags 6-3
¢ S U 6-3
OId ACO . .. oo 6-3
Old ACT ... 6-8
Old AC2 .. . 6-8
OId FP . 6-8
ClReturn PC 6-8
Function Subprograms 6-8
Coding Assembly Language Routines for Use with F77 with Macros 6-9
. F77-to-Assembly Interface Examples 6-10
T Incompatibilities Between AOS and AOS/VS F77 Macro F77_FMACSR 6-16
Argument Names. 6-16
Differences in Macros ISZFP, DSZFP, ISZSP, and DSZSP 6-16
Nonsupported Macros 6-17
New Macros ISANORM and ISA.LERR 6-17
Compatibility Between Languages 6-18
Multidimension Array Storage. 6-18
Case Sensitivity 6-20
LANG_RT.LB ... 6-21
A Sample Subprogram and its Caller 6-21
High-Level Languages and F77 Subroutines 6-24
BASIC and F77. ... 6-24
F77 and BASIC Data Types. i 6-24
Sample Program oo 6-24
Cand FT7 . . 6-26
F77 and C Data Types 6-27
Sample Program 6-27
COBOL and F77 6-29
F77 and COBOL Data Types. i 6-30
Sample Program Units 6-30
PASCAL and F77 .. . 6-35
F77 and PASCAL Data Types i 6-35
Sample Program 6-35
PL/Tand F77 6-38
F77 and PL/I Data Types 6-38
Sample Program 6-38

'\\\./

093-000288 Licensed Material-Property of Data General Corporation iX

Chapter 7 - Programming Hints

The F77 Error File 7-1
Improving Program Readability 7-1
Program Enhancements 7-1
Compiler Switches and Program Performance 7-2
Enhancing Computational Speed 7-3
Enhancing I/O Speed 7-3
F77 Output and Printing Special Forms. 7-5
Background for Two Examples 7-6
Example 1 — Printing Labels 7-6
Example 2 — Printing Index Cards 7-9

Chapter 8 - Introduction to DG/DBMS

OVeIVIEW 8-1
DG/DBMS Description 8-1
The FORTRAN 77 Preprocessor Interface| 8-2
How to use the Interface 8-3
Database Records 8-8
Database Navigation 8-11
SYSTEM Sets 8-11
Set Types 8-11
Set OCCUITENCESo 8-13

Numeric Data 9-2

Character Data 9-2

Bit Data 9-2

Supported Subschema Data Types and Conversion Rules. 9-3

FORTRAN 77 Subschema Data Definition 9-5

Default Subschema Data Types. 9-6

Chapter 10 - Data Manipulation Statements for DG/DBMS

FORTRAN 77 Data Manipulation Statements. 10-1
OVEIVIEW 10-1
Using Free Cursors 10-1

The DML Statements 10-1
Subschema Statements 10-2
Transaction Statements 10-2
Connection Statements 10-2
Find Statements 10-3
Record Statements 10-3
Fetch Statements. 10-4
Utility Statements 10-4
Error Handling 10-4

X Licensed Material-Property of Data General Corporation 093-000288

Chapter 11 - Data Manipulation Language Syntax for DBMS

Syntax OVErview
Syntax Meta-Symbols
ASSIGN Statemento
CHECK Transaction Status Statement
COMMIT Statemento
CONNECT Statement e e
CONNECTED Function
DISCONNECT Statement
EMPTY FUunction oo
ERASE Statement
FETCH CURRENT Statement
FETCH OWNER Statement
FETCH Positional Statement
FETCH Keyed (SEARCH KEY) Statement
FETCH Keyed (SORT KEY) Statement
FIND CURRENT Statement
FIND OWNER Statement
FIND Positional Statement
FIND Keyed (SEARCH KEY) Statement
FIND Keyed (SORT KEY) Statement
FINISH Statement.o
FREE CURSOR Declarations
GET Statement oo
DBMS INCLUDE Statement
INITIATE Statement
INVOKE Statement
MEMBER Function
MODIFY Statement
NULL Function
OWNER Function
READY Statement
RECONNECT Statement
ROLLBACK Statement
STORE Statement

Chapter 12 - How to Compile and Link F77/DBMS Programs

Using the Preprocessor Under AOS/VS
SWitches e
Temporary Files

Linking Your FORTRAN 77 Program

Chapter 13 - Sample FORTRAN 77 Application Programs

Program DEMO!L
Program DEMO2.F77

093-000288 Licensed Material-Property of Data General Corporation

Xi

xii

Chapter 14 - DBMS Usage Considerations
Character and Bit Strings

.. 14-1
Separate Compilation of Subroutines 14-1
Accessing Multiple Databases 14-2
Preprocessor-Generated Symbolic Names 14-2
Other Restrictions. 14-3

Chapter 15 - DG/DBMS Error Messages

Appendix A - Runtime Memory Configuration
Heap and Stack Organization

... A-1
Memory Configuration Options. A-2
Default Values...... A-2
Assigning Values A-2
Valid Configuration Combinations A-3

Licensed Material-Property of Data General Corporation 093-000288

093-000288

Tables

F77 and AOS/VS Multitasking Calls and their Functions

Supported FORTRAN 77 Subschema Data Types
Schema to Subschema Data Type Mappings
Default FORTRAN 77 Subschema Data Types

Licensed Material-Property of Data General Corporation

xiii

Figure

) ¥
N —

NNK})NN
DN R W=

1) o111
N =

1
_— \D 00 -3\ L

-0

wwuw&pwwwu

-h-h&-{k-h W W

PEELPL B
NN R W~

—_—— s N L s e
NV AW —~O

-lk-h-{k-h-k-b

Xiv

IHlustrations

Selected Data General Software 1-2
The Compilation, Linking, and Execution of a Typical F77 Program 1-5
Program EXAMPLE_RANDOM.F77 2-13
The Output from Program EXAMPLE_RANDOM 2-13
A Correspondence Between Selected Real Numbers and Integers 2-15
Program ROLL_DICE.F77 2-17
Typical Output from Program ROLL_DICE ' 2-19
The Construction and Use of Parameter File QSYM.F77.IN 3-5
Program NEW_TEST_SACL............~ 3-9
Program LIST_DIRECTORY ~~'° 3-11
Subroutine Subprogram ADD_NULL " 3-13
Subroutine Subprogram CHECK 0 3-14
@CONSOLE Dialog During Execution of LIST_DIRECTORY 3-15
Subroutine Subprogram CLI 7 3-16
Program TEST_CLI~~~ 3-17
@CONSOLE Dialog During Execution of TEST_CLI...... 3-18
Program TESTI_CLI ~'° 3-19
(@CONSOLE Dialog During Execution of TESTI_CLI 3-19
A One-Lane Tunnel with One Approach Lane (Single-Tasking) 4-2
A Two-Lane Tunnel with Four Approach Lanes (Multitasking) 4-4
A Multitasking Program File 4-6
The Organization and Execution of a Single-Task Program 4-8
The Organization and Execution of a Multitask Program 4-9
Task States oo 4-10
Task States and Transitions 7 “4-13
A Listing of Program MAINS.F77.......~~~ 4-15
A Listing of Subroutine TASK1.F77~~~ 4-16
A Listing of Subroutine TASK2.F77~ 4-17
Task Control Blocks and the Use of Re-entrant Code 4-20
Listing of Program TASKO.F77 ~~~'° 4-56
A Listing of Subroutine TASK11.F77 4-58
A Listing of Subroutine TASK12.F77 7 4-59
A Listing of Subroutine TASK13.F77 4-60
A Listing of Subroutine TASK14.F77 4-61
A Listing of Subroutine TASK15.F77........~~~ 4-62

Licensed Material-Property of Data General Corporation 093-000288

1
—t et et et et = \D OO0 -3 O\ U B W N

Wb WN—O

] Voo
Wb =

1
NN R W

O Q0 00 OO OO0 OC OO OO N O\?\O\O’\O\O\O\O\O\O\O\O\O\O\O\

1
—_—

13-1
13-2
13-3

A-1

The VS/ECS Return Block 6-4
A Listing of TEST_TYP_SUB.F77 and Its Generated Code 6-5
A Listing of TYP_SUB.F77 and Its Generated Code 6-7
Main Program TEST_RUNTM.F77. 6-11
Subroutine RUNTM.SR, Version 1 6-12
Subroutine RUNTM.SR, Version 2. 6-14
An Example of Storage of Multidimension Arrays by F77 and Other Languages 6-19
Subroutine Subprogram GENERAL.F77 6-22
Main Program TEST_GENERAL.F77 6-23
Program TEST_GENERAL.BASIC 6-25
Program TEST_GENERAL.C 6-28
Subroutine Subprogram GENERALL.F77 6-31
Program TEST_GENERALLI.CO 6-33
Program TEST_GENERAL.PAS 6-36
Program TEST_GENERAL.PLL - 6-39
File MEMBERS.DATA 7-6
Program PRINT_LABELS 7-7
A Typical Index Card 7-9
Program PRINT_CARDS 7-10
Schema-Subschema-Language Relationships 8-2
Progression from Data Definition Through Executable Code 8-4
Subschema Example 8-5
Structure of Data in the Subschema Example. 8-8
Example Subschema Record Type Description 8-9
Set Types in Subschema Example 8-12
A Set Occurrence 8-13
Sample FORTRAN 77 Data Item Screen 9-5
Program DEMOL 13-2
Temporary F77 Program 7058.DBF77P.OUT.TMP 13-4
Program DEMO2.F77 13-10
Memory Configurations A-4

093-000288 Licensed Material-Property of Data General Corporation XV

Chapter 1
Introductory Concepts

This chapter gives you an overview of the “forest” of FORTRAN 77 and related software. Subsequent
chapters explain the “trees” of Data General extensions to ANSI Standard FORTRAN 77 (F77). The
FORTRAN 77 Reference Manual explains the “trees” of standard-conforming F77 statements and of
compilation/linking procedures.

A Software Summary

As an AOS/VS F77 programmer on Data General (DG) hardware, you are familiar with many F77
program statements, instructions to the compiler and Link programs, and other software. Figure 1-1
shows some of this software.

093-000288 Licensed Material-Property of Data General Corporation 1 - 1

LEFT CIRCLE: RIGHT CIRCLE:

DG FORTRAN-related FORTRAN 77 Program-,

Software Compiler-, Link-, and
Execution-related
Statements

Access FORMAT
Control

Lists

Multitasking

DIMENSION

?OPEN, OPEN

Intrinsic
Functions

Search Lists .
Preconnections

and Generic

Directories Files Compiler
Command
. and
CLI.PR Runtime Switches

Libraries

Assigned
GO TO

SWAT™
Debugger

Arithmetic
IF

Link

PL/i MASM COBOL

ID-00100

Figure I-1. Selected Data General Software

This diagram somewhat arbitrarily classifies much of the Data General software that you are (or may
want to become) familiar with. In the diagram:

e The FORTRAN 77 Reference Manual explains all of the right-hand part of the right circle and
some of the overlapping area.

» This environment manual explains none of the right-hand part of the right circle and most of the
overlapping area. It extends the reference manual’s description of the important Link program.

* Neither manual gives many details about the left-hand part of the left circle. 1t’s sufficient to say
that incorrect access control lists, search lists, directories, and generic file assignments have caused
many programmers much grief over the years. Be sure yours are correct.

* A program written in one language can CALL a subprogram written in another language. For
example, COBOL appears outside both of the diagram’s circles. Chapter 6 contains an example of a
COBOL program that CALLs a FORTRAN 77 subroutine to perform some number crunching.

1 '2 Licensed Material-Property of Data General Corporation 093-000288

The Significance of AOS/VS

Your F77 programs run under AOS/VS. This is a very important statement, because among other
things, AOS/VS:

* Handles all file placement and organization.
« Handles all file access commands from your program.
* Allows multitasked processes.

For example, consider the F77 statement
READ (2) RECORD

When the resulting compiler-generated and Linked machine language instructions execute at runtime,
they request AOS/VS (which is also executing in primary storage) to perform an 1/O operation. More
specifically, these machine language instructions set up and make a 7READ system call. It is the
instructions in this system call that direct the unformatted transfer of data from the file connected to
unit 2 to the variable or array whose name is RECORD. Thus, F77 needs AOS/VS to do any useful
processing.

A programmer once told the writer of this manual that “A user program is merely an exit from the
operating system.” He’s right. A user program executes only temporarily; AOS/VS always executes.
Furthermore, consider the F77 STOP statement. When its resulting instructions in a program file
execute, they tell AOS/VS to terminate the current process and return to the father process. That is, at
runtime STOP results in a 7RETURN system call to transfer control back to the father process. This
process is normally the Command Line Interpreter (CLI).

The Significance of Link and the Runtime Libraries

If you’re familiar with Link and its construction of F77 program files from the runtime libraries, then
skip this section.

Many introduction-to-data-processing textbooks contain statements equivalent to: “The FORTRAN
compiler translates the FORTRAN source program to a machine language object program. The
computer then places this object program in primary storage. Its instructions execute to process data as
specified in the FORTRAN source program.” These statements are not entirely true for Data General’s
(and most other computer manufacturers’) implementation of F77.

The FORTRAN 77 compiler (F77.PR) is a large and complicated program that does create an object
(.OB) file from a source (.F77) file. The object file is incomplete because it does not contain all the
instructions necessary to carry out the directions of the source program. Where do these missing
instructions come from? Program LINK.PR obtains them from other .OB files and from library (.LB)
files. LINK.PR creates an executable program file (.PR) based on the compiler-created .OB file and
these other .OB files.

093-000288 Licensed Material-Property of Data General Corporation 1 -3

As an example, consider the following FORTRAN 77 program SAMPLE.F77. We’ve numbered its
statements for ease of reference.

PROGRAM SAMPLE
REAL*8 VARIABLE-1
INTEGER*4 ITIME(3), MY_SUM, J
CALL TIME (ITIME)
MY_SUM = 5 + 4
J = TAND(8,MY-SUM)
PRINT *, "GIVE ME VARIABLE-1 (XXXX.XX) °
READ (11, 20) VARIABLE-1
20 FORMAT (F7.2)
STOP '~ THAT IS ALLI’
END

- O WO N WY

[Y

The compilation, link, and execution commands you give to the CLI are:

F77 SAMPLE
F77LINK SAMPLE
XEQ SAMPLE

Next is a summary of what these three commands do to selected statements in SAMPLE.F77:

The F77 compiler processes statement 4 by, among other things, creating a note in SAMPLE.OB
to LINK.PR. This note tells LINK.PR to insert instructions from TIME.OB into SAMPLE.PR.
Then:

- LINK.PR follows F77LINK.CLI’s instructions and searches the runtime libraries to find
TIME.OB (in F77ENV.LB).

- When SAMPLE.PR executes and it reaches the instructions from TIME.OB, they make a
?GTOD system call to obtain the time of day.

- The respective contents of ITIME(1), ITIME(2), and ITIME(3) are the current hour, minute,
and second.

The F77 compiler reacts to statement 5 by creating self-contained instructions in SAMPLE.OB.
These instructions make no reference subroutine; they execute at runtime to perform statement 5
by themselves. We can also say that the compiler generates in-line code from statement 5.

Statement 6 results in the compiler’s creation of in-line code for the intrinsic function IAND. The
code includes a WAND instruction. At runtime WAND executes to find the logical AND of the
4-byte integer 8 and of the 4-byte integer in the variable MY_SUM.

Statements 8 and 9 result in several instructions in SAMPLE.OB, and then many more instructions
in SAMPLE.PR. At runtime these SAMPLE.PR instructions:

- Obtain a string of ASCII characters from @INPUT.
- Check for an illegal character string (such as ’027A.38’) and report an error if it occurs.

- Convert the legal character string to a double-precision floating-point number and move it to
the 8 bytes that VARIABLE_1 references.

Figure 1-2 also summarizes the three commands that compile, link, and execute program SAMPLE.

1 '4 Licensed Material-Property of Data General Corporation 093-000288

F77.PR

SAMPLE F77 SAMPLE.OB
(1)
F77DGPCT.OB >
LINK.PR
F77ENV.LB - > SAMPLE.PR
(2) (3)
(4)
SWATI.OB >

LANG_RT.LB —J

Note {1): Macro F77.CLI executes program F77.PR.

Note (2): Object file TIME.OB is part of library file F77ENV.LB.

Note {3): Macro F77LINK.CLI executes program LINK.PR.

Note (4): The CLI command XEQ SAMPLE executes program SAMPLE.PR.

ID-00101

Figure 1-2. The Compilation, Linking, and Execution of a Typical F77 Program

Link doesn’t insert all the .OB files listed in Figure 1-2 into SAMPLE.PR. For example, SWATI.OB
goes into SAMPLE.PR only if the F77LINK command includes the /DEBUG global switch. The
SWAT Debugger requires SWATI.OB. Chapter 5 summarizes the SWAT Debugger. You can print
F77LINK.CLI to see the names of all Data-General-created runtime library files.

093-000288 Licensed Material-Property of Data General Corporation 1 '5

If you’re curious about the .OB files that Link places into a .PR file, use the /B and /L switches to
create a load map file. In our case, we replace the CLI command

F77LINK SAMPLE
with
DELETE/2=IGNORE SAMPLE.MAP

F77LINK/B/L=SAMPLE.MAP SAMPLE
TYPE SAMPLE.MAP

Normally, you don’t have to worry about the details of F77.PR and LINK.PR. You also don’t have to
know which .OB files are in which .LB files. Just be sure that the F77 and F77LINK commands are
correct for each program you write.

One problem arises when you've created a .OB or .LB file whose name matches a Data-General-supplied
.OB or .LB file. Link may find and select your .OB or .LB file instead of the correct file intended for the
current revision of F77.

To obtain the names of the Data-General-supplied .OB and .LB files that F77LINK uses, simply print
F77LINK.CLI. Typically, its pathname is :UTIL:F77:F77LINK.CLI. Then, make sure that none of
your filenames matches those in F77LINK.CLI.

The Significance of the Release and Update Notices

It’s hard to overemphasize the necessity of having the latest Release and Update Notices for FORTRAN
77 and for related software such as Link. This manual assumes throughout that you have the latest
such Notices. Together, they give you the most current information Data General has available on the
software you need to write and maintain FORTRAN 77 programs. An F77 Reference or Environment
manual is incomplete by itself, just like a solitary Release or Update Notice. Read them all!

End of Chapter

1 '6 Licensed Material-Property of Data General Corporation 093-000288

Chapter 2
Utility Runtime Routines

FORTRAN 77 provides many subprograms (both subroutines and external functions) that process
data in a variety of ways. This data processing includes program/system runtime interface, which
Chapter 3 explains, and multitasking, which Chapter 4 explains. The subprograms also perform various
utility functions such as obtaining the date. We document these utility subprograms in this chapter.

NOTE: You don’t have to specify any F77 utility subprogram names to the F77LINK macro.
F77LINK has Link search all the runtime library files that contain the utility subprograms.

Documentation Categories

The rest of this chapter describes the utility subprograms alphabetically. The explanation of each
subprogram includes:

« Its name and function.
e Its format and argument names.
« Descriptions of each argument.

* A sample program that uses the subprogram.

093-000288 Licensed Material-Property of Data General Corporation 2‘ 1

DATE
Obtain the system date.

Format
CALL DATE(date_array)

Argument

date_array is an INTEGER*4 array into whose first three elements DATE will place the current
date from AOS/VS:

First element — AD year since zero
Second element — Month, between 1 and 12 inclusive
Third element — Day, between 1 and 31 inclusive

NOTE: Routine DATE conforms to the ISA S61.1 standard.

Example

c SAMPLE A0S/VS F77 PROGRAM CALL_DATE
DIMENSION IDATE(3)

CALL DATE (IDATE)
c PRINT THE DATE IN MONTH/DAY/YEAR FORMAT.
PRINT *, 'Date is ', IDATE(2), '/’, IDATE(3), '/', IDATE(1)-1900
STOP
END

2'2 Licensed Material-Property of Data General Corporation 093-000288

ERRCODE

Report a runtime error based on an error code and an optional severity
number.

Format
CALL ERRCODE(code /,sev/)

Arguments

code is an INTEGER*4 expression that contains the code you want ERRCODE to report on.
Typically, this might be the value of the IOSTAT= variable from an I/O statement or the
result code from the system interface function ISYS. File ERR.F77.IN contains PARAME-
TER statements for the current values of code that F77 defines for its runtime system. If
code is 0, ERRCODE merely returns and writes no output.

NOTE: Be sure your system error message file (usually :ERMES) contains messages from
F77 and the AOS/VS Common Language Library. See the current F77 and
Language Library Release Notices for instructions to create this file.

sev is an optional INTEGER*4 expression that contains the severity you assign to the error. If
sev is
0: Nonfatal — the task continues execution.
1: Task fatal — the task terminates in an orderly fashion.
not O or 1: Process fatal — the program terminates in an orderly fashion.
not supplied: Process fatal — the program terminates in an orderly fashion.

Relation to Error Logging

A CALL to ERRCODE results in output to all units OPENed with ERRORLOG="YES’ or, if
currently no units are OPEN in this way, to @OUTPUT.

Relation to ERRTEXT

The ERRCODE and ERRTEXT (described next) subroutines have quite similar functions. The most
significant difference is that you supply ERRCODE a numeric code argument, whereas you supply
ERRTEXT a character text argument. ERRTEXT always writes a diagnostic message, while
ERRCODE does so when, and only when, the value of its argument code differs from zero.

093-000288 Licensed Material-Property of Data General Corporation 2'3

ERRCODE (continued)

Example Program

Program TEST_ERRCODE lets us vary the values of the ERRCODE arguments code and sev. Its

listing is below; an example of its execution follows. If you decide to execute this program, we suggest

you select values of code from file ERR.F77.IN at runtime.

¢ TEST PROGRAM TEST-ERRCODE TO TEST SUBROUTINE ERRCODE.
INTEGER*4 ERRORCODE, SEVERITY, Y.ORN

10 WRITE (6, 20)
20 FORMAT (1HO, "GIVE ME A DECIMAL ERROR CODE AND A SEVERITY', /,

1 1X, ' NUMBER SEPARATED BY A COMMA.’, /,

2 1X, ° THE SEVERITY NUMBER SHOULD BE 0 OR 1., /,

3 1X, 'WHAT ARE THESE NUMBERS? ', $)
READ(S5,*) ERROR-CODE, SEVERITY
PRINT *,* ~
PRINT *, ' NOW COMES THE CALL TO ERRCODE(ERROR CODE, SEVERITY NUMBER)'
PRINT *, "-=--- ’
CALL ERRCODE (ERROR-CODE, SEVERITY)
PRINT *, '----- !

30 PRINT *, '~
c THE FOLLOWING STATEMENTS EXECUTE ONLY WHEN SEVERITY IS ZERO.

WRITE (6, 40)
40 FORMAT (71X, DO YOU WANT TO ENTER ANOTHER PAIR OF NUMBERS ',
1 "(Y OR N) ? —<31>", $§) | <31> BACKSPACES THE CURSOR
READ (5, SO) Y_ORN :
50 FORMAT (A1)
IF (YAORN .EQ. 'Y ") THEN
GO TO 10
ELSEIF (Y-ORN .EQ. 'N ') THEN
PRINT *, 'END OF TESTING OF SUBROUTINE ERRCODE’

STOP
ELSE
PRINT *, "<BEL>YOUR RESPONSE MUSTBE Y OR N .’
PRINT *, "<BEL> TRY AGAIN.’
G0 TO 30
ENDIF
END

2"4 Licensed Material-Property of Data General Corporation

093-000288

GIVE ME A DECIMAL ERROR CODE AND A SEVERITY
NUMBER SEPARATED BY A COMMA.
THE SEVERITY NUMBER SHOULD BE 0 OR 1.

WHAT ARE THESE NUMBERS? 11264,0)

NOW COMES THE CALL TO ERRCODE(ERROR CODE, SEVERITY NUMBER)

ERROR 11264.
Invalid unit number
ERROR 11264.

Call Traceback:

Sfrom fp=16000005126, pc=.MAIN+203
Sfrom fp= 0, pc=ILINIT+43

Invalid unit number
DO YOU WANT TO ENTER ANOTHER PAIR OF NUMBERS (YORN)? Y

GIVE ME A DECIMAL ERROR CODE AND A SEVERITY
NUMBER SEPARATED BY A COMMA.
THE SEVERITY NUMBER SHOULD BE 0 OR 1.

WHAT ARE THESE NUMBERS? 10000,0)

NOW COMES THE CALL TO ERRCODE(ERROR CODE, SEVERITY NUMBER)

ERROR 10000.
UNKNOWN MESSAGE CODE 00023420
ERROR 10000.

Call Traceback:

from fp=16000005126, pc=.MAIN+203
Sfrom fp= 0, pc=ILINIT+43

UNKNOWN MESSAGE CODE 00023420

093-000288 Licensed Material-Property of Data General Corporation

ERRCODE (continued)

DO YOU WANT TO ENTER ANOTHER PAIR OF NUMBERS (YORN)? Y
GIVE ME A DECIMAL ERROR CODE AND A SEVERITY

NUMBER SEPARATED BY A COMMA.
THE SEVERITY NUMBER SHOULD BE 0 OR 1.

WHAT ARE THESE NUMBERS? 36,0
NOW COMES THE CALL TO ERRCODE(ERROR CODE, SEVERITY NUMBER)

ERROR 36.
DEVICE ALREADY IN SYSTEM
ERROR 36.

Call Traceback:

Sfrom fp=16000005126, pc=.MAIN+203
from fp= 0, pc=LINIT+43

DEVICE ALREADY IN SYSTEM

DO YOU WANT TO ENTER ANOTHER PAIR OF NUMBERS (Y ORN)? N

END OF TESTING OF SUBROUTINE ERRCODE
STOoP

Please note the following about the execution of TEST_ERRCODE:

Your frame pointer (fp) and program counter (pc) values probably will differ from those shown.

The first example shows the outcome if a program had CALLed ERRCODE after an 1/0 operation
returned 11264 as the value of the IOSTAT variable.

The second example shows what happens if an error code unknown to the system error message file
:ERMES is passed to ERRCODE. The F77 Release Notice explains how to construct ERMES so
that it contains F77 error codes.

The third example shows that ERRCODE may respond to more than just nonzero values in
ERR.F77.IN. Here, 36 (= 44K) is a valid AOS/VS system error code. ERMES must contain
AOS/VS error codes as well as those from F77.

Program TEST_ERRCODE is compiled without the /LINEID and /PROCID switches. Specifying
either or both switches to the compilation macro F77.CLI would have ERRCODE display additional
information about the program.

Related Documentation

You may regard subroutine ERRCODE as a natural extension of the software described in the
“Runtime Errors” section of the FORTRAN 77 Reference Manual.

2'6 Licensed Material-Property of Data General Corporation 093-000288

ERRTEXT

Report a runtime error based on a text string and an optional severity
number.

Format

CALL ERRTEXT(text /,sev/)

Arguments

text

sev

is a CHARACTER expression that contains the text of the error message that you want
ERRTEXT to report.

NOTE: Be sure your system error message file (usually :ERMES) contains messages
from F77 and the AOS/VS Common Language Library. See the current F77
and Language Library Release Notices for instructions to create this file.

is an optional INTEGER*4 expression that contains the severity you assign to the error. If sev
is

0: Nonfatal —the task continues execution.
1: Task fatal —the task terminates in an orderly fashion.
not O or 1: Process fatal — the program terminates in an orderly fashion.

not supplied: Process fatal — the program terminates in an orderly fashion.

Relation to Error Logging
A CALL to ERRTEXT results in output to all units OPENed with ERRORLOG="YES’ or, if

currently

no units are OPEN in this way, to @OUTPUT.

Relation to ERRCODE

The ERRTEXT and ERRCODE (described previously) subroutines have quite similar functions. The
most significant difference is that you supply ERRTEXT a character text argument, whereas you
supply ERRCODE a numeric code argument. ERRCODE writes a diagnostic message when, and only
when, the value of its argument code differs from zero, whereas ERRTEXT always writes a diagnostic

message.

093-000288

Licensed Material-Property of Data General Corporation 2‘7

ERRTEXT (continued)

Example Program

Program TEST_ERRTEXT lets us vary the values of the ERRTEXT arguments text and sev. Its
listing is below; an example of its execution follows.

10
20

30

40

S0

2-8

n

TEST PROGRAM TEST-ERRTEXT TO0 TEST SUBROUTINE ERRTEXT.

INTEGER*4 SEVERITY, Y.ORN
CHARACTER*70 ERROR-TEXT

WRITE (6, 20)
FORMAT (1HO, 'GIVE ME AN ERROR MESSAGE (UP TO 70 CHARS.)’, /,
1X, " AND A SEVERITY NUMBER SEPARATED BY A COMMA.', /,
1%, " THE SEVERITY NUMBER SHOULD BE 0 OR 1., /,
1X, 'WHAT ARE THESE ARGUMENTS? ', $)
READ(S5,*) ERROR-TEXT, SEVERITY
PRINT *, '~
PRINT *,'NOW COMES THE CALL TO ERRTEXT(ERROR TEXT, SEVERITY NUMBER)’
PRINT *, ’----- ’
CALL ERRTEXT (ERROR-TEXT, SEVERITY)
PRINT *, '----- ’
PRINT *, ~

THE FOLLOWING STATEMENTS EXECUTE ONLY WHEN SEVERITY IS ZERO.
WRITE (6, 40)
FORMAT (1X, 'DO YOU WANT TO ENTER ANOTHER MESSAGE AND NUMBER ',
(Y OR N) 2 <31>', $) | <31> BACKSPACES THE CURSOR
READ (5. 50) Y_ORN
FORMAT (A1)
IF (YAORN .EQ. 'Y ') THEN
60 TO 10
ELSEIF (Y-ORN .EQ. 'N ') THEN
PRINT *, 'END OF TESTING OF SUBROUTINE ERRTEXT’

STOP
ELSE
PRINT *, "<BEL>YOUR RESPONSE MUSTBE Y OR N .’
PRINT *, '<BEL> TRY AGAIN.’
GO TO 30
ENDIF
END

Licensed Material-Property of Data General Corporation

093-000288

GIVE ME AN ERROR MESSAGE (UP TO 70 CHARS.)
AND A SEVERITY NUMBER SEPARATED BY A COMMA.
THE SEVERITY NUMBER SHOULD BE 0 OR |.

WHAT ARE THESE ARGUMENTS? “SAMPLE ERROR TEXT",0)

NOW COMES THE CALL TO ERRTEXT(ERROR TEXT, SEVERITY NUMBER)

ERROR 11614.

User defined ERROR text

SAMPLE ERROR TEXT

ERROR 11614.

Call Traceback:

from fp=16000005126, pc=.MAIN+210
from fp= 0, pc=ILINIT+43

User defined ERROR text

DO YOU WANT TO ENTER ANOTHER MESSAGE AND NUMBER (YORN)? Y

GIVE ME AN ERROR MESSAGE (UP TO 70 CHARS.)
AND A SEVERITY NUMBER SEPARATED BY A COMMA.
THE SEVERITY NUMBER SHOULD BE 0 OR I.
WHAT ARE THESE ARGUMENTS? “SOME MORE ERROR TEXT",0!

NOW COMES THE CALL TO ERRTEXT(ERROR TEXT, SEVERITY NUMBER)

ERROR 11614.

User defined ERROR text
SOME MORE ERROR TEXT
ERROR 11614.

Call Traceback:

from fp=16000005126, pc=MAIN+210
from fp= 0, pc=LINIT+43

User defined ERROR text

DO YOU WANT TO ENTER ANOTHER MESSAGE AND NUMBER (YOR N)? N

END OF TESTING OF SUBROUTINE ERRTEXT
STOP

093-000288 Licensed Material-Property of Data General Corporation

2-9

ERRTEXT (continued)

Please note the following about the execution of TEST_ERRTEXT:
* Your frame pointer (fp) and program counter (pc) values probably will differ from those shown.

* Both examples use list-directed editing because of the

READ (5, *) ERROR—TEXT, SEVERITY

statement. Thus, quotation marks surround the text given via the console to CHARACTER variable
ERROR_TEXT at runtime.

» Both examples show the decimal error code 11614 because this is the error code for user-defined
error text.

* Program TEST_ERRTEXT is compiled without the /LINEID and /PROCID switches. Specifying
either or both switches to the compilation macro F77.CLI would have ERRTEXT display additional
information about the program.

Related Documentation

You may regard subroutine ERRTEXT as a natural extension of the software described in the
“Runtime Errors” section of the FORTRAN 77 Reference Manual.

2' 1 O Licensed Material-Property of Data General Corporation 083-000288

EXIT

Terminate the current task.

Subroutine EXIT terminates the calling task. It acts like the F77 STOP statement, but you can’t give
a number or text string to the subroutine. EXIT returns a null string to the parent process. Thus, for
single-task programs, you can use it to halt your program and have it return to the CLI without
displaying STOP on the console. In contrast, the F77 STOP statement terminates the process.
Format

CALL EXIT

Arguments

none¢

Example

¢ SAMPLE A0S/YS F77 PROGRAM CALL_EXIT
PRINT *, "THIS IS THE BEGINNING AND THE END.’
CALL EXIT
END

Execution of CALL_EXIT.PR results in the following.
) X CALL_EXIT)

THIS IS THE BEGINNING AND THE END.
)

093-000288 Licensed Material-Property of Data General Corporation 2' 1 1

RANDOM

Function subprogram to obtain a random number.

Format
RANDOM(ISEED)

Result

The result of a function reference to RANDOM is a REAL*8 number greater than or equal to zero
and less than one.

Argument

ISEED is an INTEGER*4 variable or array element. It may rnot be a constant. If ISEED has an
initial value
< 0: The initial value of RANDOM(ISEED) depends on the system time of day.

Thus, successive references to RANDOM(ISEED) will result in a virtually
nonreproducible sequence of random numbers. Don’t modify ISEED after
assigning it an initial value.

>=0: The initial value of RANDOM(ISEED) depends on the value of ISEED. To
generate a reproducible sequence of random numbers, assign a chosen
nonnegative constant to ISEED and then make success references to
RANDOM(ISEED). Don’t modify ISEED after assigning it an initial value.

RANDOM stores the starting point (seed) for the next number it will generate in the
memory location that ISEED refers to. Therefore, ISEED must be a variable and never a
constant.

Please note the following.

* Successive references to RANDOM generate a sequence of random numbers with a uniform
distribution.

¢ RANDOM uses Knuth’s Linear Congruential Algorithm to create a REAL*8 number based on the
value of ISEED. After this creation, RANDOM replaces ISEED with an integer between 0O and
262,143 inclusive. These integers, formed by successive references to RANDOM, are a sequence
with a period of 262,144. RANDOM creates a temporary value for ISEED that may exceed 262,143,
but the final value of ISEED is MOD(temporary-ISEED,262144).

* Be sure to declare RANDOM as REAL*8 or DOUBLE PRECISION in any program unit that
uses this function.

2' 1 2 Licensed Material-Property of Data General Corporation 093-000288

Example Program 1

Figure 2-1 shows program EXAMPLE_RANDOM that uses RANDOM to generate five numbers.

PROGRAM EXAMPLE_RANDOM

REAL*8 RANDOM, RESULT

INTEGER*4 ISEED

ISEED = 0 | GENERATE A REPRODUCIBLE SEQUENCE OF RANDOM NUMBERS
DO 10 I =15

WRITE (6, 100) I, ISEED

100 FORMAT (1HO, 'BEFORE EXECUTING RANDOM FOR I = ', I1, ', ISEED = ', I7)
RESULT = RANDOM(ISEED)
WRITE (6, 110) I, ISEED, RESULT
110 FORMAT (1H , * AFTER EXECUTING RANDOM FOR I = ', I1,
1 ", ISEED = ', I7, ’ AND RANDOM RETURNS ', F9.6)
10 CONTINUE
WRITE (6, 20)
20 FORMAT (1HO, '*** END OF PROGRAM ***')
CALL EXIT
END
DG-25213
Figure 2-1. Program EXAMPLE_RANDOM F77
Figure 2-2 shows the output from program EXAMPLE_RANDOM.
BEFORE EXECUTING RANDOM FOR I = 1, ISEED = 0
AFTER EXECUTING RANDOM FOR I = 1, ISEED = 55397 AND RANDOM RETURNS .211323
BEFORE EXECUTING RANDOM FOR I = 2, ISEED = 55397
AFTER EXECUTING RANDOM FOR I = 2, ISEED = 192310 AND RANDOM RETURNS .733604
BEFORE EXECUTING RANDOM FOR I = 3, ISEED = 192310
AFTER EXECUTING RANDOM FOR I = 3, ISEED = 182979 AND RANDOM RETURNS .698009
BEFORE EXECUTING RANDOM FOR I = 4, ISEED = 182979
AFTER EXECUTING RANDOM FOR I = 4, ISEED = 55324 AND RANDOM RETURNS .211044
BEFORE EXECUTING RANDOM FOR I = 5, ISEED = 55324
AFTER EXECUTING RANDOM FOR I = 5, ISEED = 118801 AND RANDOM RETURNS .453190

*** END OF PROGRAM ***

DG-25214

Figure 2-2. The Output from Program EXAMPLE_RANDOM

093-000288 Licensed Material-Property of Data General Corporation

RANDOM (continued)

NOTE: The output from EXAMPLE_RANDOM will always be the same because ISEED has an
initial nonnegative value. To generate a virtually nonreproducible sequence of five random
numbers, set ISEED to any valid negative integer.

Compare any two successive pairs of lines of output in Figure 2-2. You'll see that RANDOM
changes ISEED; the changed value of ISEED becomes input to the next reference to
RANDOM. For instance, when 1=2, RANDOM uses the ISEED value 55397 to generate
.733604; RANDOM changes ISEED to 192310 for input to the next reference to itself.

Example Program 2

Let’s look at a program, named ROLL_DICE.F77, that uses RANDOM. This program:

« Simulates the rolling of a pair of fair dice 180 times.

» Counts the number of dots facing up after each roll.

» Computes a number, based on the actual results and the expected results and their differences, after
performing all the rolls.

» Uses a standard statistical test, with the computed number, to decide whether or not the differences
between the actual and expected results are significant.
Expected Results

We use the following information to calculate the expected results.

Number of Probability(N) Expected Value
Dots in Each Roll of
Facing up, N N in 180 Rolls
2 1/36 1/36x180 = 5
3 2/36 2/36x 180 = 10
4 3/36 3/36x 180 = 15
S 4/36 4/36 x 180 = 20
6 5/36 5/36x 180 = 25
7 6/36 6/36 x 180 = 30
8 5/36 5/36 x 180 = 25
9 4/36 4/36 x 180 = 20
10 3/36 3/36x 180 = 15
11 2/36 2/36 x 180 = 10
12 1/36 1/36x 180 = 5

Let’s look at the second row as an example of all the rows. A pair of dice may land in 6x6=236 different
ways on each roll. There are only two ways a total of three dots may appear: the first die shows two dots
and the second die one dot, or the first die shows one dot and the second die two dots. The probability
of a total of three dots showing is 2/36. Thus, we can expect 2/36 of a large number of rolls to have
three dots showing. However, we are not guaranteed that exactly 2/36 of a large number of rolls will
show three dots.

2' 1 4 Licensed Material-Property of Data General Corporation 093-000288

Converting RANDOM(ISEED) to an Integer

Each execution of a statement such as
ROLL_RESULT = RANDOM(ISEED)

results in a number between 0.0 and 1.0 (including 0.0, excluding 1.0). To simulate the rolling of a die,
we must convert each such result to one of the six integers between 1 and 6, inclusive. Let’s name this
INTEGER*2 variable DOTS. Figure 2-3 shows the necessary conversion between the values of
ROLL_RESULT and the corresponding ones of DOTS.

0.0 LE
ROLL_RESULT
o/6 1/6 2/6 3/6 4/6 5/6 6/6 0
I L1 - _ g LT. 1.0
H/'—’\—‘\/—J\—v_’\“\/—"*q S~ s }
DOTS

1 2 3 4 5 6

ID-00102

Figure 2-3. A Correspondence Between Selected Real Numbers and Integers

We have divided the real number line between 0.0 and 1.0 into six equal segments, with each segment
corresponding to one of the six integers 1, 2, 3, 4, 5, and 6. Now we look for a formula that will take a
number between 0.0 and 1.0 — which lies on one of the segments — and compute the proper integer.
The formula, as an F77 assignment statement with the variables specified in the previous paragraph, is

DOTS = INT(6.0 * ROLL_RESULT) + 1

For example, suppose that ROLL_RESULT is 0.42. 0.42 is between 2/6 and 3/6. Replacing

ROLL_RESULT by 0.42 and evaluating this expression should, according to Figure 2-3, assign 3 to
DOTS. Does it?

?
3=INT(6.0*0.42) + 1
?
3 = INT(2.52) I
?
3= 2 + 1
?
3=3

Yes.

093-000288 Licensed Material-Property of Data General Corporation 2' 1 5

RANDOM (continued)

Of course, the program will have to execute two such assignment statements to simulate each roll of the
pair of dice.

The Decision Rule

Finally, we use the chi-square test from statistics to see if the actual results differ “too much” from the
expected results. The formula is

12
(dots, — expected,)?
chi-square = Z
expected,
n=2

where the Greek letter Sigma represents “the sum of.” Another way of expressing the formula for
calculating chi-square is

(actual result — expected result)?

chi-square = sum of
expected result

If this sum is less than 18.3, we can conclude that RANDOM has generated an acceptable sequence of
random numbers between 0.0 and 1.0. Otherwise, we might cast some suspicion on RANDOM and
investigate further or else assume the large difference has occurred by chance alone.

A note about statistics:
For those of you with knowledge about statistics:
P(X? > = 18.3, 10 degrees of freedom) = 0.05

And, the expected number of dots showing is five or more for all possible outcomes.

Program ROLL_DICE
Program ROLL_DICE.F77 is shown in Figure 2-4.

2- 1 6 Licensed Materiai-Property of Data General Corporation 093-000288

DG-26215

20

30

40

50
60

70

AOS/VS PROGRAM ROLL_.DICE TO SIMULATE THE ROLLING OF A
PAIR OF FAIR DICE AND TO TEST THE VALIDITY OF THE RESULTS.

REAL*8 RANDOM | RANDOM NUMBER GENERATOR FUNCTION SUBPROGRAM
REAL*8 ROLL—RESULT I RECEIVE OUTPUT FROM RANDOM ON

EACH ROLL OF THE DICE
REAL*4 CHI_.SQUARE /0.0/ | TO BE COMPUTED

REAL*4 MAXIMUM—CHI_SQUARE
INTEGER*2 NUM—ROLLS | NUMBER OF ROLLS OF THE DICE
PARAMETER (MAXIMUM—CHI_SQUARE = 18.3,

NUM_—ROLLS = 180)

INTEGER*2 DOTS._UP_.1 | DOTS SHOWING ON THE FIRST DIE
INTEGER*2 DOTS—UP_2 | DOTS SHOWING ON THE SECOND DIE
INTEGER*2 DOTS—UP I DOTS SHOWING ON BOTH DICE AFTER EACH ROLL
INTEGER*4 ISEED / -1 / | START A NEW SEQUENCE OF RANDOM NUMBERS
INTEGER*2 ACTUAL-RESULTS(2:12) / 11%0 /
INTEGER*2 EXPECTED—RESULTS(2:12) / 5, 10, 15, 20, 25, 30,

25, 20, 15, 10, 5 /

WRITE (6, 20) NUM—ROLLS
FORMAT (1H , '<TAB>RESULTS OF ROLLING A PAIR OF DICE ',I3,’ TIMES', /)

DO 30 I = 1, NUM__ROLLS

ROLL A PAIR OF DICE ...

ROLL—RESULT = RANDOM(ISEED)

DOTS_UP_1 = 6*ROLL._RESULT + 1 | 1ST DIE

ROLL._RESULT = RANDOM(ISEED)

DOTS_—UP..2 = 6*ROLLRESULT + 1 | 2ND DIE

DOTS_UP = DOTS—UP_—1 + DOTS__UP__2 | BOTH DICE

. AND TALLY THE RESULT. FOR EXAMPLE, IF DOTS—UP IS 5,
THEN ACTUAL_RESULTS(5) IS INCREASED BY 1.
ACTUAL_RESULTS(DOTS.UP) = ACTUAL_RESULTS(DOTS—UP) + 1
CONTINUE
DISPLAY THE RESULTS
WRITE (6, 40)
FORMAT (1H , '<TAB>DOTS ACTUAL EXPECTED’, /,
1H , '<TAB>SHONWING COUNT COUNT ., /)
D060 I =2, 12
WRITE (6, S0) I, ACTUAL—RESULTS(I), EXPECTED_.RESULTS(I)
FORMAT (1H , '<TAB>', 2X, I2, 9X, I3, 9X, I3)
CONTINUE

CALCULATE CHI-SQUARE
DO 70 I =2, 12
CHI_SQUARE = CHI.SQUARE +
FLOAT((ACTUAL-RESULTS(I) - EXPECTED-RESULTS(I))**2) /7
FLOAT(EXPECTED_RESULTS(I))
CONTINUE

093-000288

Figure 2-4. Program ROLL_DICE.F77 (continues)

Licensed Material-Property of Data General Corporation 2' 1 7

RANDOM (continued)

WRITE (6, 80) MAXIMUM_—_CHI_SQUARE, CHI_SQUARE

80 FORMAT (1HO, '<TAB>MAXIMUM ALLOWABLE VALUE OF CHI-SQUARE: F5.2, /,
1H , '<TAB>ACTUAL VALUE OF CHI-SQUARE: ', F5.2, /)
IF (CHI_SQUARE .LE. MAXIMUM_CHI_SQUARE) THEN
PRINT *, '<TAB>CONCLUSION: RANDOM PASSES THIS TEST’
ELSE
PRINT *, "<TAB>CONCLUSION: RANDOM FAILS THIS TEST’
ENDIF
PRINT *, '<NL><TAB>END OF SIMULATION’
CALL EXIT
END
DG-25215
Figure 2-4. Program ROLL_DICE.F77 (concluded)
2' 1 8 Licensed Material-Property of Data General Corporation 093-000288

p—

N
.

e’

ROLL_DICE Output
Figure 2-5 shows typical output from program ROLL_DICE.

RESULTS OF ROLLING A PAIR OF DICE 180 TIMES

DoTS ACTUAL EXPECTED

SHOWING COUNT COUNT
2 S 5
3 10 10
4 15 15
5 27 20
6 26 25
7 27 30
8 25 25
9 24 20
10 9 15
11 8 10
12 4 5

MAXIMUM ALLOWABLE VALUE OF CHI-SQUARE: 18.30
ACTUAL VALUE OF CHI-SQUARE: 6.59

CONCLUSION: RANDOM PASSES THIS TEST

END OF SIMULATION

DG-26216

Figure 2-5. Typical Output from Program ROLL_DICE

093-000288 Licensed Material-Property of Data General Corporation

TIME

Obtain the system time of day. -
Format
CALL TIME(time_array)
Argument
time_array isan INTEGER*4 array into whose first three elements TIME will place the absolute
time (based on a 24-hour clock) from AOS/VS:
First element — Hours, between 0 and 23 inclusive
Second element — Minutes, between 0 and 59 inclusive
Third element — Seconds, between 0 and 59 inclusive
NOTE: Routine TIME conforms to the ISA S61.1 standard.
Example
C SAMPLE A0S/VS F77 PROGRAM CALL_TIME
DIMENSION ITIME(3)
C -
CALL TIME (ITIME)
C PRINT THE TIME IN HOUR:MINUTE:SECONDS FORMAT.
PRINT 100, ITIME
100 FORMAT (' Time is ', I2, ':, I2.2, ':’, I2.2)
¢ -
sToOP —_
END
End of Chapter
N

2'20 Licensed Material-Property of Data General Corporation 093-000288

O -

e -

Chapter 3
System Call Interface

This chapter almost exclusively explains the system call interface subprogram ISYS. ISYS is an
external function that lets your F77 programs have full access to AOS/VS. This chapter also explains
the external function subprogram IO_CHAN that returns an AOS/VS channel number.

Basically, you supply arguments to ISYS that represent a system call’s name and accumulator values.
You obtain these names and values from the A0S/VS Programmer’s Manual and from your program’s
requirements. At runtime, F77 attempts an AOS/VS system call in response to each occurrence of
ISYS. It returns a value of O if the call executed successfully, or else a nonzero value, if it did not. The
nonzero value identifies the exceptional condition that occurred.

Structure
The structure of function ISYS is
ISYS (call_name, ACO, AC1, AC2)

where:

call_name is an INTEGER*4 expression that contains the value of an AOS/VS system call code.
This code comes from a statement in SYSID.32.SR that assigns the value to a system
call symbol. SYSID.32.SR is normally in :UTIL.

ACO are INTEGER™*4 variables or array elements that contain the values you want the

AC1 corresponding accumulators to have when the system call occurs. After the system call

AC2 completes, these variables or array elements are defined with the corresponding

accumulator values.

Frequently, your program will implement ISYS by means of statements whose general structure is

IER = ISYS (CALLCODE, ACO, AC1, AC2)
IF (TER .NE. 0) THEN

c PLACE ERROR HANDLING ROUTINE HERE
ENDIF

or

IF (ISYS (CALL.CODE, ACO, AC1, AC2) .NE. 0) THEN
c PLACE ERROR HANDLING ROUTINE HERE
ENDIF

NOTE: In a few cases, the “system calls” that the AOS/VS Programmer’s Manual documents are
actually calls to the User Runtime Library (URT). The ISYS function cannot work in these
cases. 7TRCON is an example; to obtain a complete list, give the CLI command

X LFE/L=@CONSOLE T :UTIL:URT.LB

093-000288 Licensed Material-Property of Data General Corporation 3' 1

Implementing ISYS: an Initial Approach

Be sure you’re familiar with the BY TEADDR and WORDADDR intrinsic functions. They can supply
arguments for ISYS. The explanation of BYTEADDR and WORDADDR first appeared as the table
System Intrinsic Functions in file F77_DOCUMENTATION that accompanied the Release Notice
for Revision 1.30 of AOS/VS FORTRAN 77. If the explanation of BY TEADDR and WORDADDR
isn’t in your FORTRAN 77 Reference Manual, then find it in your current file

F77_DOCUMENTATION

Let’s look at an example of the application of the ISYS function. Suppose our username on an
AOS/VS system is TOM and we want our F77 program to change the Access Control List (ACL) of
a file NEW_STUDENTS from

TOM,OWARE
to
TOM,OWARE JERRY ,RE

We begin by reading the explanation of the 2SACL (set a new ACL) system call in the AO0S/VS
Programmer’s Manual to learn that we must construct the new ACL as a special text string. From
there, we go to the appendixes to obtain the following information from the listings of PARU.32.SR
and SYSID.32.SR. We should inspect these files in our system (usually in :UTIL) to get the latest
information.

Symbol Decimal Meaning
Value
7FACO 16 Owner Access
7FACW 8 Write Access
7FACA 4 Append Access
7FACR 2 Read Access
7FACE 1 Execute Access
?7.SACL 76 ?SACL System Call (114K = 76)

The decimal equivalent of ACL “OWARE” is 16+8+4+2+1 = 31 and the decimal equivalent of
ACL “RE” is 2+1 = 3. The respective octal equivalents are 37K and 3K.

The new ACL as an assembly language text string is

"TOM<0><?FACO+?FACW+?FACA+7FACR+?FACE> —
~— JERRY <<0><?FACR+?7FACE> <0>’

We know, from our previous table and arithmetic, that the respective values of
<?FACO+?FACW+?7FACA+?FACR+?FACE> and <?FACR+?FACE>

are 37K and 3K. Now, we can easily create the string to which AC1 must contain a byte pointer. The
string is

"TOM<0><37>JERRY <0> <3><0>"

3'2 Licensed Material-Property of Data General Corporation 093-000288

Sample Program
The F77 statements resulting from our exploration of 2SACL appear in program TEST_SACL.

PROGRAM TEST_SACL

INTEGER*4 ISYS

INTEGER*4 BPTR.ACO, BPTR.AC1 | BYTE POINTERS TO ACO, ACA1
BPTR-ACO = BYTEADDR(' NEW-STUDENTS<0>")

BPTR-AC1 = BYTEADDR(’ TOM<0><37>JERRY<0><3><0>")

IER = ISYS (114K, BPTR-ACO, BPTR-AC1, IAC2) ! DO IT!
PRINT *, 'RESULT CODE FROM ISYS TO ?SACL IS ', IER

STOP

END

NOTE: We appended a null to 'NEW_STUDENTS’ because ?SACL requires a null delimiter for a
string whose byte pointer is in AC0. The second string has a trailing null because of this
system call’s requirement for AC1, and thus we don’t add another one.

This program does the same thing as the CLI command
ACL NEW_STUDENTS TOM,OWARE JERRY ,RE

Program Testing

We may test this program after we have compiled and linked it. Again, our username is TOM and the
program name is TEST_SACL. The following console dialog shows the results of the test.

) DELETE/2=IGNORE NEW_STUDENTS)

) CREATE NEW_STUDENTS)

) ACL/V NEW_STUDENTS)

NEW_STUDENTS TOM,OWARE

) X TEST_SACL)

RESULT CODE FROM ISYS TO ?SACL IS 0
STOP

) ACL/V NEW_STUDENTS)

NEW_STUDENTS TOM,OWARE JERRY,RE
)

Summary

The sample program TEST_SACL shows how we can bring together the

¢ Documentation of operating system calls.

e Operating system’s definition files (SYSID.32.SR and PARU.32.SR).

e BYTEADDR and WORDADDR intrinsic functions.

¢ ISYS external function.

to create a FORTRAN 77 program that hooks into AOS/VS via system calls at runtime.

However, this nonparametric method has its drawbacks! Program TEST_SACL is hard-wired. That
is, it contains the current numerical values of symbols such as 2FACO. These values can change with
future revisions of the operating system, and the unchanged program (with its constant values such as
37K = <37>) might then give incorrect results. Furthermore, there is no guarantee that symbols
such as 7FACO will always have the same value in the AOS/VS and AOS parameter files (PARU.32.SR
and PARU.SR, respectively).

How can we overcome the limitations of hard-wiring the values of system parameters in our F77
programs? For the answer, read the next section.

093-000288 Licensed Material-Property of Data General Corporation 3'3

Implementing ISYS: a Final Approach

Data General has developed a program (F77BUILD_SY M) that builds a symbol file (QSYM.F77.IN)
from your system’s PARU.32 and SYSID.32 files. The command to execute the program is

X F77BUILD__SYM [filename]

where filename is the name of an optional file whose contents are symbols from the PARU.32 and
SYSID.32 files. Then, your program can %INCLUDE QSYM.F77.IN and access operating system
values as symbols instead of as hard-wired constants.

Files Related to Program F77BUILD_SYM

Symbol file QSYM.F77.IN contains FORTRAN 77 PARAMETER statements and values for, by
default, each symbol defined in the parameter and system call definition files. For example, the
statements

.DUSR ?FAOB
.DUSR ?FACO

1. ; ONNER ACCESS
1B(?FA0B) ; ONNER ACCESS

are in PARU.32.SR. Program F77BUILD_SYM by default transforms the second statement from its
equivalent in listing file PARU.32.LS into

INTEGER*2 ISYS-FACO
PARAMETER (ISYS_FACO = 16) I 2FACO = 20K

in QSYM.F77.IN. You can place the statement
%INCLUDE “QSYM.F77.IN"

in your F77 source program, and then work with symbols such as ISYS_FACO instead of with
hard-wired constants such as 16 or 20K.

NOTE: The words “by default” appear twice in the previous paragraph. If, when executing
F77BUILD_SYM, the CLI command does not include a filename, then the default case
occurs and F77BUILD_SYM transforms a// PARU.32 and SYSID.32 .DUSR symbols into
INTEGER and PARAMETER statements in QSYM.F77.IN. If this CLI command includes
a filename, then F77BUILD_SYM transforms only specific PARU.32 and SYSID.32 .DUSR
symbols.

Figure 3-1 expands this explanation of program F77BUILD_SYM and its input files. The figure also
contains a partial listing of a program (SHOW_SYMBOLS) that uses the system symbol ?FACO.

3‘4 Licensed Material-Property of Data General Corporation 093-000288

e

O O O O O O

ID-00103

c

PRINT 10, ISYS..FACO
10 FORMAT (1X, OCTAL VALUE OF ')

o O O O O O

MASM
SYSID.32 SYSID.32.LS |
| F77BUILD_SYM
)y T »{ QSYM.F77.IN
MASM)
PARU.32.SR » PARU.32.LS | Optional
Specific
Symbols
PROGRAM SHOW_SYMBOLS
C INCLUDE SYMBOLS FROM SYSTEM CALL
C AND PARAMETER FILES
. %INCLUDE “QSYM.F77.IN“
c Program
Listing

Figure 3-1. The Construction and Use of Parameter File QSYM.F77.IN

093-000288

Licensed Material-Property of Data General Corporation

3-5

Symbol Construction Rules

F77BUILD__SYM follows these rules in sequence as it converts each PARU.32 and SYSID.32 .DUSR
statement to a pair of INTEGER/PARAMETER statements in QSYM.F77.IN.

1. If the .DUSR statement defines a symbol of the form ?.<<root>>, then construct a symbol of the
form ISYS_<root>.
Example: 7.RETURN — ISYS_RETURN

2. If the .DUSR statement defines a symbol of the form ?<Croot>, then construct a symbol of the
form ISYS_<Croot>.
Example: 7RTDS — ISYS_RTDS

3. If the .DUSR statement defines a symbol of the form <Croot>, then construct a symbol of the
form ISYS_ <root>.

Example: ERFTL — ISYS_ERFTL

4. If, after the ISYS_<(root> symbol is formed according to one of these previous rules, <root>
contains any periods, then change them to underscores.
Example: ISYS_SYM.BOL — ISYS_SYM_BOL

Sometimes F77BUILD_SYM creates ISYS_<<root> slightly differently from what you expect. For
example, “?TRUNCATE” in SYSID.SR results in “ISYS_TRC” in QSYM.F77.IN.
F77BUILD_SYM places ISYS_<root> symbols in QSYM.F77.IN in the same order as it reads
SYSID.32.L.S — sequentially.

Once it derives the ISYS_<root> symbol, F77BUILD_SYM constructs either an
INTEGER*4 ISYS<root>

or else an
INTEGER*2 ISYS—<root>

statement. It follows three rules to select INTEGER *4 or INTEGER *2:

» If the symbol comes from SYSID.32, then the data type is INTEGER*4.

* If the symbol comes from PARU.32 and fits into 16 bits, then the data type is INTEGER*2.
+ If the symbol comes from PARU.32 and requires 32 bits, then the data type is INTEGER*4,

NOTE: We explain the optional input file to F77BUILD_SYM (labeled “Optional Specific Symbols”
in Figure 3-1) later in this chapter in the “Reducing QSYM.F77.IN” section. This is the same
file whose name appears in a CLI command of the form

X F77BUILD_SYM [filename]

3'6 Licensed Material-Property of Data General Corporation 093-000288

Operating Instructions for F77BUILD_SYM

Be sure you have access to SYSID.32.SR, PARU.32.SR, and F77BUILD_SYM.PR. The first two are
usually in :UTIL and the third comes with the FORTRAN 77 software. Ask your system manager for
their location.

The primary output file is QSYM.F77.IN. Most likely, you'll want to make it available to all F77
programmers on your system. You can do this by constructing it in :UTIL or in a directory devoted to
F77 and accessible to all F77 programmers. Or, you may create QSYM.F77.IN in any directory, and
then move it to a publicly available directory (after setting its ACL).

The CLI commands to execute F77BUILD__SYM and create QSYM.F77.IN are:

DELETE/2=IGNORE SYSID.32.LS
DELETE/2=IGNORE PARU.32.L.S

X MASM/NOPS/L=SYSID.32.LS SYSID.32.SR
X MASM/NOPS/L=PARU.32.LS PARU.32.SR
DELETE/2=IGNORE QSYM.F77.IN

X F77BUILD_SYM

You should now place the statement
%INCLUDE “QSYM.F77.IN"

in an AOS/VS F77 program that references function subprogram ISYS. Then, all the .DUSR symbols
and their values in files SYSID.32.SR and PARU.32.SR are available to the program.

Reducing QSYM.F77.IN

File QSYM.F77.IN, although comprehensive and usable by any F77 program that needs to interface
with the operating system, is quite large. The following shows the approximate number of symbols and
statements in various files.

SYSID PARU QSYM.F77.IN
Symbols Symbols Statements
AOS/VS 390 1700 4180
AOS 220 1610 3660

You can shorten the length of your programs’ listing files considerably by including the statements

%LIST (OFF)
%INCLUDE “GSYM.F77.IN"
%LIST (ON)

Even so, this inclusion increases compilation time and usage of symbol table space during your
program’s compilation. Your program probably needs only a small fraction of these 2000+ symbols.

One way to reduce the size of QSYM.F77.IN is to select only the SYSID and PARU symbols that you
need in your F77 programs. Place the selected symbols in a file, and then give the file’s name to
F77BUILD_SYM.PR. This file appears in Figure 3-1 with the label “Optional Specific Symbols.”

093-000288 Licensed Material-Property of Data General Corporation 3" 7

Example

Recall program TEST_SACL that contains hard-wired PARU.32 and SYSID.32 values. We now
work strictly with symbols instead of their values as we create program NEW_TEST_SACL. It

performs the same function of setting the ACL of file NEW_STUDENTS to TOM,OWARE
JERRY RE.

The following CLI dialog creates a new file QSYM.F77.IN with only the six symbols necessary for
?’SACL. We assume that SYSID.32.LS and PARU.32.LS remain from a prior assembly of
SYSID.32.SR and of PARU.32.SR. This assembly must have occurred according to the description in
the “Operating Instructions for F77BUILD_SYM?” section.

) DELETE/2=IGNORE SACL_SYMBOLS QSYM.F77.IN SACL_SYMBOLS.F77.IN }
) CREATE/I SACL_SYMBOLS)

)?FACO)

NIFACW)

)?FACA)

))?FACR)

D?FACE)

))?.8ACL)

N

) XF77BUILD_SYM SACL_SYMBOLS)

) RENAME QSYM.F77.IN SACL_SYMBOLS.F77.IN)
)

We renamed QSYM.F77.IN to more accurately summarize its limited contents.
NOTE: In the “Operating Instructions for F77BUILD_SYM” section, we gave the CLI command

X F77BUILD_SYM

for program F77BUILD_SYM. This command results in F77BUILD_SYM’s not reading
the optional file (shown in Figure 3-1) and in a large output file QSYM.F77.IN.

Here, we give the following CLI command instead.
X F77BUILD_SYM SACL_SYMBOLS

This command results in F77BUILD_SYM'’s reading of file SACL_SYMBOLS and in a
small output file QSYM.F77.IN.

Now, let’s look at part of the listing (.LS) file from the compilation of program
NEW_TEST_SACL.F77. See Figure 3-2.

3"8 Licensed Material-Property of Data General Corporation 093-000288

;-4

Source file: NEN._TEST_SACL.F77
Compiled on 15-Jun-82 at 14:14:06 by A0S/VS F77 Rev 02.00.00.00
Options: F77/L=NEW_TEST._SACL.LS

1 C A0S/VS PROGRAM NEW_TESTSACL
2 INTEGER*4 ISYS, VALUE—OWARE, VALUE_RE
3 CHARACTER*20 AC1 | FOR THE NEW ACL
4 INTEGER*4 BPTR_ACO, BPTR—AC1 | BYTE POINTERS TO ACO, ACA
S %INCLUDE “SACL.—SYMBOLS.F77.IN"
6 **** F77 INCLUDE file for system parameters ****
7
8 bl INTEGER*4 parameters for SYSID ***x*
9
10
" INTEGER*4 ISYS_SACL
12 PARAMETER (ISYS—SACL = 76) I 2.SACL = 114K
13
14 ¥ Parameters for PARU ****
15
16
17 INTEGER*2 ISYS—FACA
18 PARAMETER (ISYS—FACA = 4) | 2FACA = 4K
19
20 INTEGER*2 ISYS—FACE
21 PARAMETER (ISYS—FACE = 1) ! ?FACE = 1K
22
23 INTEGER*2 ISYS._FACO
24 PARAMETER (ISYS—FACO = 16) | ?FACO = 20K
25
26 INTEGER*2 ISYS—FACR
27 PARAMETER (ISYS—FACR = 2) | ?FACR = 2K
28
29 INTEGER*2 ISYS—FACW
30 PARAMETER (ISYS—FACW = 8) I ?FACN = 10K
31
32
33 *x*x END of F77 INCLUDE file for system parameters ****
34 ¢ CONSTRUCT THE VALUE OF ?FACO+?FACW+?FACA+?FACRH?FACE .
35 VALUE_OWARE = ISYS_FACO + ISYS_FACW + ISYS__FACA +
36 1 ISYS_FACR + ISYS_FACE
37 ¢ CONSTRUCT THE VALUE OF ?FACRT?FACE .
38 VALUE—RE = ISYS_FACR + ISYS_FACE
39 ¢C CONSTRUCT THE NEW ACL IN CHARACTER VARIABLE AC1. NOTE THE
40 C USE OF THE CHAR INTRINSIC FUNCTION TO CONVERT AN INTEGER
41 C NUMBER TO ITS ASCII CHARACTER EQUIVALENT. FOR EXAMPLE,
42 c VALUE_RE IS CURRENTLY (A0S/VS REVISION 1.50) 3 AND
43 C CHAR(VALUE—RE) IS '<3>'.
44 AC1 = "TOM<O>" // CHAR(VALUE__OWARE) // 'JERRY<0>' //
45 1 CHAR(VALUE.—RE) /7 7<0>’
46 BPTR—ACO = BYTEADDR(“NEW—STUDENTS<0>")
47 BPTR—AC1 = BYTEADDR(AC1)
48 IER = ISYS (ISYS—SACL, BPTR—ACO, BPTR—AC1, IAC2) ! DO IT!
49 PRINT *, "RESULT CODE FROM ISYS TO ?SACL IS °, IER
50 END

DG-25217

Figure 3-2. Program NEW_TEST_SACL

093-000288 Licensed Material-Property of Data General Corporation

Error Messages

e

The following error messages from F77BUILD_SYM may appear on @OUTPUT: ~—
e Can’t open <filename>>

This refers to one of the input files. Either you haven’t created the necessary .LS files or the optional

special symbols file, or for some reason the file isn’t accessible.
o Unreferenced symbol: <symbol>

You've supplied an optional special symbols file. However, <<symbol> in that file wasn’t found in

either .LS file. BIG_MAC is an example of an unreferenced symbol.
» [Invalid symbol: <symbol>

You’ve supplied an optional special symbols file. However, <<symbol>> in that file does not have one

of the following formats:

- ?7.<name>

- .<<name>

- <name>

where <<name>> begins with a letter. $LPT is an example of an invalid symbol.

Updating your Operating System
We suggest that you do the following for each revision or update of your operating system:
* Reassemble the new SYSID.32 and PARU.32 .SR files.
e Rerun F77BUILD_SYM.
* Recompile and relink all programs that %2INCLUDE statements from QSYM.F77.IN. _/)

It isn’t always necessary to do these things, but doing them may prevent some strange F77 program
behavior because of changes to the operating system.

ISYS and Sample Program LIST_DIRECTORY

Program NEW_TEST_SACL is an elaborate way of invoking the 2SACL system call. It is, of course,
easier to give the CLI command ACL, to invoke ?SACL. However, sometimes we want to invoke a
system call that has no direct counterpart as a CLI command. 2GNFN (Get the Next FileName) is an
example.

Program Unit Listings

Program LIST_DIRECTORY is an instance of a program that uses ISYS to invoke ?GNFN. At
runtime, LIST_DIRECTORY accepts a directory name and a template. It attempts to list the
filenames of all the files that are in the directory and that match the template. LIST_DIRECTORY

appears in Figure 3-3. Figures 3-4 and 3-5 contain listings of its respective subroutine subprograms
ADD_NULL and CHECK.

NOTE: We have executed program F77BUILD_SYM to create an all-inclusive AOS/VS symbol file
SYM.F77.IN. Both LIST_DIRECTORY and CHECK %INCLUDE this file, even though
the statement

%INCLUDE "QSYM.F77.IN’

does not appear in Figures 3-3 and 3-5. This statement is, of course, part of source program
files LIST_DIRECTORY.F77 (at line 31) and CHECK.F77 (at line 10).

3' 1 O Licensed Material-Property of Data General Corporation 093-000288

Source file: LIST.DIRECTORY.F77
Compiled on 14-Jun-82 at 14:15:31 by A0S/VS F77 Rev 02.00.00.00
Options: F77/L=LIST.DIRECTORY.LS
1 PROGRAM LIST.DIRECTORY
2
3 INTEGER*4 ACO,AC1,AC2 | Accumulators
4 INTEGER*4 ISYS ! System interface function subprogram
5 INTEGER*4 RESULT_CODE | Result of calling ISYS
6
7 CHARACTER*132 FILENAME | Received by GNFN
8 CHARACTER*132 DIRECTORY | Supplied to OPEN
9 CHARACTER*132 TEMPLATE | Supplied to GNFN
10
11 INTEGER*2 OPEN.PACKET(0:23) / 24*0 / | Parameter packet for ?20PEN
12 INTEGER*2 CHANNEL | 0ffset ?ICH
13 INTEGER*2 ISTI I 0ffset ?ISTI
14 INTEGER*2 ISTO | 0ffset ?ISTO
15 INTEGER*2 IMRS | 0ffset ?IMRS
16 INTEGER*4 IBAD | 0ffset 2IBAD/?IBAL
17 INTEGER*4 IFNP | 0ffset ?2IFNP/?IFNL
18 INTEGER*4 IDEL | 0ffset ?IDEL/?IDLL
19
20 EQUIVALENCE (OPENPACKET(O0), CHANNEL)
21 EQUIVALENCE (OPEN_PACKET(1), ISTI)
22 EQUIVALENCE (OPENPACKET(2), ISTO)
23 EQUIVALENCE (OPEN_PACKET(3), IMRS)
24 EQUIVALENCE (OPENPACKET(4), IBAD)
25 EQUIVALENCE (OPEN-PACKET(12),IFNP)
26 EQUIVALENCE (OPENPACKET(14),IDEL)
27
28 INTEGER*4 GNFN.PACKET(0:2) | Parameter Packet for ?GNFN
29
30 %LIST(OFF)
%LIST(ON)
6052
6053 100 PRINT *, “Directory? ~
6054 READ (*,10,END=1000) DIRECTORY | Accept a directory name.
6055 10 FORMAT(A)
6056 C @INPUT end-of-file is CTRL-D.
6057
6058 CALL ADD_NULL(DIRECTORY) I Change the first (if any)
6059 C space ('<040>') in the
6060 C directory name to a null.
6061
6062 C Prepare the parameter packet for ?0PEN.
6063 ISTI =0 | Default ?0PEN options
6064 ISTO = 0 | Default file type
6065 IMRS = -1 | Default block size
6066 IBAD = -1 | Default byte pointer to buffer
6067 IFNP = BYTEADDR(DIRECTORY) | Byte pointer to directory name
6068 IDEL = -1 | Default delimiters
DG-25218
Figure 3-3. Program LIST_DIRECTORY (continues)
093-000288 3-11

Licensed Material-Property of Data General Corporation

6069

6070 AC2 = WORDADDR(OPEN_PACKET)

6071

6072 C Execute the ?0PEN system call to the accepted directory.

6073

6074 RESULT.CODE = ISYS(ISYS_OPEN, ACO, AC1, AC2)

6075

6076 C If ?0PEN has executed successfully, then report nothing and
6077 C continue. Otherwise, report the error on @OUTPUT and STOP
6078 C the program.

6079 CALL CHECK(RESULT_CODE,“On OPEN of directory " // DIRECTORY)
6080 ’

6082

6083 PRINT *,“Template? ~

6084 READ (*,20,END=1000) TEMPLATE ! Typical response is + .
6085 20 FORMAT(A)

6086

6087 CALL ADD_NULL(TEMPLATE) I Change the first (if any)
6088 C space in TEMPLATE to
6089 C a null.

6090

6091 GNFNLPACKET(0) = 0 I Offset ?NFKY/?NFRS

6092 GNFN_PACKET(1) = BYTEADDR(FILENAME) | Offset ?NFNM/?NFNL

6093 GNFN_PACKET(2) = BYTEADDR(TEMPLATE) | Offset ?NFTP/?NFTL

6094 AC1 = CHANNEL I Channel number from ?0PEN
6095 AC2 = WORDADDR(GNFN_PACKET)

6096

6097 ¢ Call ?GNFN to get the next filename from the current directory.
6098 200 RESULTCODE = ISYS(ISYS_GNFN, ACO, AC1, AC2)

6099

6100 IF (RESULT_CODE .EQ. 0) THEN | Ignore the first (if any) null
6101 C in FILENAME and then print
6102 ¢C the filename.

6103 NULL_POS = INDEX(FILENAME,“<NUL>")

6104 IF { NULLPOS .EQ. O) NULLPOS = LEN(FILENAME)-1
6105 PRINT *, FILENAME(1:NULLP0S-1)

6106 G070 200 I Get the next filename.

6107

6108 ELSE IF (ACO .EQ. ISYS_EREOF) THEN

6109 PRINT *

6110 PRINT * “-- End of Directory --~

6111 PRINT *

6112 AC2 = WORDADDR(OPEN_PACKET)

6113

6114 Close the current directory and move to its superior.
6115 RESULT_CODE = ISYS(ISYS_CLOSE, ACO, AC1, AC2)

6116 CALL CHECK(RESULT_CODE, 'While closing the directory’)
6117

6118 GOTO 100 I Get the next directory name

DG-25218

Figure 3-3. Program LIST_DIRECTORY (continued)

3" 1 2 Licensed Material-Property of Data General Corporation 093-000288

6119

6120 ELSE 1 A ?6NFN error, different from end-of-file, has occurred.
6121 CALL CHECK(ACO, 'During a ?GNFN Call’)
6122
6123 ENDIF
6124
6125 1000 PRINT *
6126 PRINT *,'<7>*** End of program LIST.DIRECTORY ***<NL>’
6127 END
DG-25218

Figure 3-3. Program LIST_DIRECTORY (concluded)

Source file: ADDLNULL.F77
Compiled on 14-Jun-82 at 14:17:17 by A0S/VS F77 Rev 02.00.00.00
Options: F77/L=ADDNULL.LS

DG-25218

1 SUBROUTINE ADDNULL(TEXT)

2 ¢

3 ¢ Change the first space in TEXT to a null.
4 C

5

6 CHARACTER*(*) TEXT

7 INTEGER SPACE-POS

8

9 SPACE-POS = INDEX(TEXT, <040>')

10 IF (SPACE-POS .NE. 0) TEXT(SPACE_P0S:SPACE-P0S) = '<NUL>’
11 RETURN

12 END

Figure 3-4. Subroutine Subprogram ADD_NULL

093-000288 Licensed Material-Property of Data General Corporation

Source file: CHECK.F77
Compiled on 14-Jun-82 at 14:17.29 by A0OS/VS F77 Rev 02.00.00.00
Options: F77/L=CHECK.LS
1 SUBROUTINE CHECK(ECODE,TEXT)
2
3 INTEGER*4 ECODE I Error code returned from ISYS
4 CHARACTER*(*) TEXT | Error text from main program to
5 C accompany ECODE
6
7 INTEGER*4 AC?2
8
9 XLIST(OFF)
%LIST(ON)
6031
6032 IF (ECODE.EQ.0) RETURN | ISYS executed without an error.
6033
6034 ISYS executed with an error, so report it.
6035 AC2 = ISYS_RFCF + ISYS_RFEC + ISYS_RFER
6036 AC2 = AC2 + MIN(LEN(TEXT),255)
6037
6038 C Execute ?RETURN and report the error from I1SYS.
6039 IER = ISYS(ISYS_RETURN, ECODE, BYTEADDR(TEXT), AC2)
6040 STOP '~ Impossible-to-occur error occurred during ?RETURN’
6041 END
DG-25220

Figure 3-5. Subroutine Subprogram CHECK

Sample Execution of Program LIST_DIRECTORY

Figure 3-6 shows the dialog that occurred during an execution of LIST_DIRECTORY. In the working
directory, subdirectory FOO_DIR existed with at least one file: nondirectory file FOO also existed.
Note the resulting error message when 7GNFN attempted to read file FOO.

3' 1 4 Licensed Material-Property of Data General Corporation 093-000288

) XEQ LIST_DIRECTORY)
Directory? FOO_DIR |}
Template? + 1

FOOI_FILE
FOO2_FILE
FOO3_FILE

—End of Directory—
Directory? FOO |
Template? +)

ERROR

NOT A DIRECTORY
During a ?GNFN Call
ERROR: FROM PROGRAM
X,LIST_DIRECTORY

)

DG-26187

Figure 3-6. @CONSOLE Dialog During Execution of LIST_DIRECTORY

ISYS and Subroutine CLI

You may be one of many programmers using the SED text editor to create source files. If so, you're
probably familiar with the convenient DO command that lets you create a short-lived CLI process to
execute one or more CLI commands. One such application of the DO command is

DO DELETE/V/2=IGNORE LINES_3_15 ; DUPLICATE LINES 3 TO 15 ONTO LINES_3_15

A natural question to ask now, regardless of whether or not you’re familiar with SED, is: “If ISYS lets
me execute any AOS/VS system call, thus including 7PROC, can I create a subroutine that does the
following:

» Receives a string of CLI commands.

* Creates a son process (via 7PROC) that executes :CLI.PR.
* Gives the string to :CLI.PR for processing.

* Reports on the success or failure of the process’ creation.”

Happily, the answer is “yes.” Continue reading for details about the subroutine.

Program Unit Listings

Figure 3-7 contains a listing of a subroutine subprogram, CLI, that performs these four consecutive
functions. Figure 3-8 contains a listing of a program, TEST_CLI, to test the subroutine.

NOTE: We have executed program F77BUILD_SYM to create an all-inclusive AOS/VS symbol file
QSYM.F77.IN. Subprogram CLI %INCLUDE:s this file, even though the statement

%INCLUDE 'QSYM.F77.IN’

does not appear in Figure 3-7. This statement is, of course, part of source program file
CLLF77 (at line 31).

093-000288 Licensed Material-Property of Data General Corporation 3' 1 5

Source file: CLI.F77
Compiled on 14-Jun-82 at 10:39:02 by AOS/VS F77 Rev 02.00.00.00

Options: F77/L=CLI.LS

1 SUBROUTINE CLI{TEXT, RESULTLODE)
2
3 ¢ This subroutine receives a string of CLI commands from the main
4 C program. The subroutine then creates a CLI son process and
5 ¢ gives it the string of commands to execute.
6
7 INTEGER*4 ADDRESS_OF_PROGRAMNAME ! Program name of the son
8 ¢ process is CLI.PR.
9 INTEGER*4 ADDRESS_OF_STRING I The string is the string
10 ¢ of CLI commands.
11 INTEGER*4 ADDRESS_OF_MESSAGE_HEADER | Packet for ?ISEND header
12 INTEGER*4 ACO, AC1, AC2 I Accumulators
13 INTEGER*4 ISYS I System interface function
14 INTEGER*4 RESULT_CODE ! Number it returns to
15 C this subroutine and
6 C then to the main program.
17
18 INTEGER*2 PROC—PACKET(0:31) / 32*-1/ | Packet for ?PROC call
19 EQUIVALENCE (ADDRESS_—_OF._PROGRAM__NAME, PROC—PACKET(2))
20 EQUIVALENCE (ADDRESS._OF _MESSAGE._HEADER, PROC—PACKET(4))
21
22 INTEGER*2 ISEND-HEADER(0:7) / 8*0 / | Packet for ?ISEND header
23 € for interprocess
24 C communication (IPC).
25 EQUIVALENCE (ADDRESS-OF-STRING, ISEND_HEADER(6))
26
27 CHARACTER*(*) TEXT I String of CLI commands
28 CHARACTER*(256) TEMPORARY.TEXT
29
30 %LIST(OFF)
%LIST(ON)
6052
6053 TEMPORARY_TEXT = TEXT I Move the CLI commands to
6054 ¢ a fixed-length buffer.
6055
6056 C Prepare ?ISEND header packet.
6057 ISEND.HEADER(5) = 128 | Maximum length of the IPC
6058 ¢ message in words
6059 ADDRESS_OF_STRING = WORDADDR(TEMPORARY_TEXT)
6060
6061 C Prepare ?PROC packet.
6062 PROC_PACKET(0) = ISYS-PFEX | Set ?PFEX bit so that CLI.PR will
6063 C execute with its father blocked.
6064 ADDRESS_OF_PROGRAM_NAME = BYTEADDR(:CLI.PR<0>")
6065 ADDRESS_OF_MESSAGE_HEADER = WORDADDR(ISEND_HEADER)
6066 AC2 = WORDADDR(PROC.PACKET)
6067

DG-25221

Figure 3-7. Subroutine Subprogram CLI (continues)

3' 1 6 Licensed Material-Property of Data General Corporation 093-000288

6068
6069
€070
6071
6072
6073

DG-25221

Do it!
RESULT_CODE = ISYS(ISYS_PROC, ACO, AC1, AC2)
The main program receives the value of RESULT_CODE.

RETURN
END

Figure 3-7. Subroutine Subprogram CLI (concluded)

0 NG W

AN A BTN AU G I o U LSRN U R U i i N U QO W G U G G Y
WO N WU LWN OO0 WO NDDWLELWNANO W

DG-25222

Source file:
Compiled on 14-Jun-82 at 10:44:52 by A0S/VS F77 Rev 02.00.00.00
Options: F77/L=TEST_CLI.LS

20

30

40

50

60
70

TESTCLI.F77

PROGRAM TESTCLI I to test subroutine CLI
CHARACTER*80 CLI_STRING ! string of CLI commands
INTEGER*4 IER | error variable returned from

subroutine CLI and from its
reference to function ISYS

WRITE (6, 20)

FORMAT (1HO, 'GIVE ME A CLI COMMAND STRING: ', $)
READ (S, 30, END=60) CLI_STRING

FORMAT (A)

BINPUT end-of-file is CTRL-D.

WRITE (6, 40)
FORMAT (1H , 'HERE WE GO ...', /, /)
CALL CLI (CLI.STRING, IER)
WRITE (6, 50)
FORMAT (1H , *JUST RETURNED FROM SUBROUTINE CLI’)
IF (IER .NE. 0) THEN
PRINT *
PRINT *, 'ERROR ', IER, ' OCCURRED DURING ’,
"REFERENCE TO ISYS’
PRINT *, * WHEN SUBROUTINE CLI EXECUTED.’
ENDIF

WRITE (6, 70)
FORMAT (1HO, '*** END OF PROGRAM ***' /)

sToP
END

093-000288

Figure 3-8. Program TEST_CLI

Licensed Material-Property of Data General Corporation

3-17

Sample Execution of Program TEST_CLI

Figure 3-9 shows the dialog that occurred during an execution of TEST_CLI. In the working directory,
subdirectory FOO_DIR existed with at least one file; nondirectory file FOO also existed. Note the
resulting error message

ERROR: NON-DIRECTORY ARGUMENT IN PATHNAME, FILE FOO
DIR,FOO

when user Marll tried to make FOO the working directory. The son process CLI.PR reported this
two-line error message. The ?PROC call from subroutine CLI.OB that created this son process
executed without error. So, TEST_CLI received 0 in argument [ER and did not execute its statements
in lines 19-22.

) XEQ TEST_CLI)
GIVE ME A CLI COMMAND STRING: TIME; DATE; DIRECTORY; WHO)
HERE WE GO ...

15:30:49

14-JUN-82

:UDD:F77:MARLL

PID: 38 F77 038 :CLLPR

JUST RETURNED FROM SUBROUTINE CLI
***¥ END OF PROGRAM ***

STOP
) XEQ TEST_CLI

GIVE ME A CLI COMMAND STRING: DIR FOO; FILESTATUS +)
HERE WE GO ...

ERROR: NON-DIRECTORY ARGUMENT IN PATHNAME, FILE FOO
DIR,FOO

JUST RETURNED FROM SUBROUTINE CLI
¥ END OF PROGRAM ***

STOP
)

DG-26165

Figure 3-9. @CONSOLE Dialog During Execution of TEST_CLI

A Variation of Program TEST_CLI

Program TEST_CLI accepts a CLI command string at runtime from @INPUT. You may also write
programs that contain a “hard-wired” CLI command string ina CHARACTER variable. For example,
let’s modify lines 6 through 11, inclusive, of program TEST_CLI (in Figure 3-8) to create program
TESTI1_CLI. Figure 3-10 contains TEST1_CLI, and Figure 3-11 shows the results of its execution.

3' 1 8 Licensed Material-Property of Data General Corporation 093-000288

Source fille: TEST1CLI.F77
Compiled on 15-Jun-82 at 10:30:02 by A0S/VS F77 Rev 02.00.00.00
Options: F77/L=TESTLCLLI.LS

DG-26223

1 PROGRAM TEST1.CLI | to test subroutine CLI

2 CHARACTER*80 CLISTRING ! string of CLI commands

3 INTEGER*4 IER | error variable returned from
4 C subroutine CLI and from its
s C reference to function ISYS
6

7

8

9 CLI_STRING = 'TIME; DATE; WHO; RUNTIME’

10

11

12

13 WRITE (6, 40)

14 40 FORMAT (1H , 'HERE WE GO ...', /, /)

15 CALL CLI (CLI_STRING, IER)

16 WRITE (6, 50)

17 50 FORMAT (1H , ’'JUST RETURNED FROM SUBROUTINE CLI’)

18 IF (IER .NE. 0) THEN

19 PRINT *
20 PRINT *, "ERROR ', IER, ' OCCURRED DURING °’
21 1 "REFERENCE T0 ISYS’
22 PRINT *, ° WHEN SUBROUTINE CLI EXECUTED.’
23 ENDIF
24
25 60 WRITE (6, 70)
26 70 FORMAT (1HO, "*** END OF PROGRAM ***' /)
27
28 STOP
29 END

Figure 3-10. Program TESTI_CLI

DG-25168

) XEQ TEST1_CLI)
HERE WE GO ...

10:31:22

15-JUN-82

PID: 35 F77 035 :CLI.PR

ELAPSED 0:00:01, CPU 0:00:00.046, 1/O BLOCKS 0, PAGE SECS 2

JUST RETURNED FROM SUBROUTINE CLI
*** END OF PROGRAM ***

STOP
)

Figure 3-11. @CONSOLE Dialog During Execution of TESTI_CLI

093-000288 Licensed Material-Property of Data General Corporation

3-19

You could modify program TEST1_CLI to pass a character constant to subroutine CLI by making
lines 2 and 9 blank and by changing line 15 to

CALL CLI ('TIME; DATE; WHO; RUNTIME', IER)
The runtime results would be identical to those of the original TEST1_CLI (in Figure 3-10).

The ISYS Function and Multitasking

Very briefly — Don’t use the ISYS function to do multitasking!

Chapter 4 documents the subroutines that your F77 programs should CALL when they issue
multitasking instructions. These subroutines interact correctly with the FORTRAN 77 runtime routines
and databases.

IO_CHAN Function

This external function returns the channel number that the operating system assigned to the F77 1/0O
unit number supplied as the function’s argument. If this unit number is invalid IO_CHAN returns a
value of -1.

Structure
The structure of function subprogram IO_CHAN is
10__CHANC(unit)

where:
IO_CHAN is a symbol whose data type you specify via an INTEGER*4 statement.
unit is an INTEGER*4 expression that specifies an F77 /O unit number.

3‘20 Licensed Material-Property of Data General Corporation 093-000288

Example

c A0S/VS PROGRAM DEMO_IO_CHAN
C .
INTEGER*4 IQCHAN
c .
OPEN (3, FILE="TIME_CARDS’, RECFM='DS’,
+ STATUS="0LD")
IOCHANS3 = IO_CHAN(3)
IF (IOCHAN-3 .EQ. -1) THEN
PRINT *, 'IO_CHAN RECEIVED AN
+ "INVALID UNIT NUMBER’
ELSE
PRINT 10, IOCHAN.3
10 FORMAT (1X, 'OPERATING SYSTEM CHANNEL NUMBER',
+ ' ASSIGNED TO UNIT 3 IS', 06, 'K’)
ENDIF
c .
STOP
END
Reference

The number that the IO_CHAN function returns is the 7ICH offset of a parameter packet for the
?0PEN system call. In the previous example, the F77 runtime routines prepared a parameter packet
and used it to make the 7OPEN call in response to the

OPEN (3, ...)

F77 source program statement. This 7OPEN call set 7ICH; the subsequent reference to IO_CHAN(3)
then retrieved the value of 7ICH.

End of Chapter

093-000288 Licensed Material-Property of Data General Corporation 3'2 1

Chapter 4
Multitasking

AOS/VS supports multitasking — a useful programming technique. Just as timesharing allows several
concurrent processes to exist within one computer, multitasking allows several concurrent instruction
paths to exist within one process.

This chapter gradually introduces multitasking in the following sections:
* What is a Task?

* What is Multitasking? — A Nonsoftware Example

e What is Multitasking?

e Task States, Transitions, and Subroutines

¢ Re-entrant Code

» Multitasking Subroutines

¢ Sample Programs

If you're familiar with multitasking (such as implemented in Data General’'s FORTRAN IV or
FORTRAN 5) and only want to know the details of FORTRAN 77’s subroutines that “hock into”
AOS/VS multitasking routines, then skip to Figure 4-7, and then to the section entitled “Multitasking
Subroutines.”

What is a Task?

A task is an asynchronous path of execution through a program.
Let’s examine the key words in this definition:

¢ “Path” implies a beginning and an end. Thus, each task has an initial instruction and a final
instruction during its existence.

= “Path” means the sequence of instructions that execute at runtime. An instruction may execute mdre

than once during the task’s existence. For example, such an instruction may originate from the bolly
of a DO loop. 3

* “Asynchronous” means each instruction executes by itself during a specific time period. Instructions
vary in the amount of time they require. For example, a binary addition requires much less time than
the division of two REAL*8 numbers. And, the instructions from one program unit may execute
interleaved with those from other program units. “Asynchronous” comes from three Greek words
that mean “not in the same time [as something else].”

Single-task Programs

Any FORTRAN 77 program you’ve written according to the rules in the FORTRAN 77 Refererce
Manual is a single-task program. That is, at runtime the CPU executes exactly one flow of instructions
from your program. An instruction usually has to wait only for its predecessor’s completion before CPU
execution. (An exception occurs when there is overlap in floating-point instruction execution.)

083-000288 Licensed Material-Property of Data General Corporation 4‘ 1

Single-tasking: a Nonsoftware Example

Consider the physical situation of a one-way, one-lane road that leads to a narrow and short tunnel.
Assume that drivers have cooperated so their cars form one line of traffic. Thus, each driver merely has
to wait until the cars ahead go through the one-lane tunnel. That is, once a car is in line, there is no
competition from parallel lines of cars for the one available lane. Thus, the tunnel only handles traffic
arriving from one lane. Furthermore, the vehicles go through the tunnel one at a time — not in a
continuous flow. Figure 4-1 portrays this situation.

Lane 1 (of 1)

|

D) D

Tunnel
Entrance

ID-00104

Figure 4-1. A One-Lane Tunnel with One Approach Lane (Single-Tasking)

4-2 Licensed Material-Property of Data General Corporation 083-000288

In the figure, the third vehicle awaiting passage through the tunnel is a semitrailer truck. Note that the
truck cannot pass through the tunnel as quickly as the cars. This also means that the cars behind the
truck have a longer wait than the cars in front of the truck.

Below we list certain correspondences between a single-tasked program and the lane/tunnel situation in

Figure 4-1:

« Each instruction executes asynchronously, awaiting the completion of its predecessor. (Each vehicle
goes through the tunnel after its predecessor completes the trip.)

o The program has a beginning and an end, even though the sequence of instructions may change
(depending on the data read) from one execution to the next. (In a given time period, there is an
initial vehicle and a final vehicle.)

« Some instructions, particularly those resulting in commands to AOS/VS to perform an 1 /O operation,
require much more time to complete than others. (Some vehicles, particularly loaded trucks, require
much more time to go through the tunnel than others.)

» If certain instructions — particularly I/O commands — could execute without tying up the CPU,
then many other instructions could execute along with the certain instructions. (If a separate and
parallel truck lane existed in the tunnel, then many autos and motorcycles could pass through along
with one truck.)

The last point raises an important question: is there some way to construct a program file so that many
fast instructions may execute in the same time period that one slow instruction executes? In other
words: adding a truck lane to the tunnel greatly increases the traffic flow; is there a parallel software
construction? Happily, the answer is “yes”; it’s called multitasking.

What is Multitasking? — a Nonsoftware Example

To lead up to the software construction, let’s create a hardware system that greatly increases the
number of vehicles that can go through the tunnel in a given time period. To do this, we:

e Widen the tunnel so that a car and a truck (but only one of each) can be passing through the tunnel
simultaneously.

e Assume that there are four competing lanes of traffic leading into the tunnel.

» Set up a controller who regulates the gates at the end of each lane to control the overall throughput.
« Assume that many cars can go through the tunnel while one truck is passing through.

See Figure 4-2.

093-000288 Licensed Material-Property of Data General Corporation 4'3

Lane 1 (of 4)

Lane 2 (of 4)

Lane 3 (of 4)

Lane 4 (of 4)

]

LD

-

i

6
o

o

o
&

D COD e CODD

1D-00105

Gate 1

Gate 2

Wide and Slow
Lane

Narrow and Fast
Lane

Gate
Controller

4-4

Figure 4-2. A Two-Lane Tunnel with Four Approach Lanes (Multitasking)

Licensed Material-Property of Data General Corporation 093-000288

Note that setting up the controller to regulate the gates is most important. We assume that:
* Each traffic lane has a unique number to identify it.

* Each lane has a priority number. For example, one lane might be reserved for emergency vehicles. If
the lead vehicles in two or more lanes are both ready to go, then the vehicle in the lane with the higher
priority will go first.

* Each lane can communicate with any other lane and with the controller.
* Each lane can attempt to control itself and other lanes by:

- Closing gates permanently.

- Closing gates temporarily.

- Changing priorities of lanes.

- Making lanes ready if their gates are closed.

* The controller can overrule any command by any lane.

In summary, a set of multiple tasks (lanes of vehicles) competes for limited resources (two routes
through the tunnel) according to certain rules (the lanes’ requests and the controller’s decisions).

These assumptions may not entirely represent real-life situations, especially in terms of communication
and control amongst the lanes and the controller. However, this traffic situation and the assumptions
listed above provide a convenient bridge to understanding software multitasking.

For another real-life example of a multitasking situation, consider an expert chess player who plays
several games simultaneously. He concentrates on one board at a time, yet is aware of the other boards
and must service them periodically.

At this point, we mostly leave behind our lane/tunnel situation and explain multitasking in terms of
software.

What is Multitasking?

In software multitasking, we create a source program and subroutines, which we compile and link into
a program file. At runtime the program file has several paths of instructions awaiting CPU execution,
Just as the tunnel has several lanes of traffic to accept. In either case a very important part is, of course,
the rules for lane selection (i.e., which gate is open) and path selection (i.e., which instruction executes
next). Figure 4-3 shows the structure of a program file with a main program and three tasks.

Figure 4-3 shows that multitasking consists of multiple, concurrent flows through a program, where the
various flows (tasks) compete for CPU control. In multitasking, a single program deals easily and
efficiently with two or more tasks at one time. Although there is only one CPU, and in reality only one
instruction executes at a time, it appears as though several instructions from different tasks are
executing simultaneously. This is because tasks take turns exécuting. For example, when one suspends
execution (because of awaiting completion of an I/O instruction or some other reason), another task
gains control of the CPU. All of this happens automatically within the operating system. Thus, you
have no need to keep track of the various tasks and to appropriately switch control among them. F77
runtime routines and AOS/VS take care of such bookkeeping activities. As many as 32 tasks may be
active simultaneously.

Even though you have no need to switch control among tasks, you can exercise a fine control over the
tasks that the system selects for execution and the time at which it selects them. When you define a task
and specify the instructions it will execute at the source program level, you also assign the task a
priority number relative to other tasks. However, you can change these task priorities at runtime. This
change allows you to control which tasks receive CPU control, and when. A task scheduler, which is
part of AOS/VS, allocates CPU control to the highest priority task that is ready either to perform or
to continue to perform its function.

093-000288 Licensed Material-Property of Data General Corporation 4'5

Multitasked Program

N

Main Program

Task 1 Task 2 Task 3

R
20b

In a decision box, <> control might take either
path, based on the state of some variable.

ID-00106

Figure 4-3. A Multitasking Program File

4'6 Licensed Material-Property of Data General Corporation

093-000288

Although each task in a multitask environment can execute independently, a certain amount of
interaction between the tasks is often required. F77’s multitasking subroutines allow convenient
intertask communication, providing for synchronization. For example, a task may suspend its own
execution at a certain point, awaiting a signal from another task.

Remember, you do not create tasks; you, the computer, and Link create instructions in the program
file. The one or more runtime execution paths through these instructions create a multitasking
environment.

Multitasking Program Organization

We construct a multitasked program based on a main program unit and one or more subroutines. As.an
example, Figure 4-4 shows both the organization of a single-task program with two subroutines and:its
execution. Then, for comparison, Figure 4-5 shows both the organization of a multitask program with
two tasks and its execution.

Figures 4-4 and 4-5 illustrate the following general principles of multitasking:

* The instructions in MAINS5.PR, after the CALL TQSTASK statements, execute among the
MAIN.OB, TASK1.0B, and TASK2.0OB sections according to whatever task has won the
competition for the CPU. In contrast, the instructions in MAIN4.PR execute in predictable sections
according to CALL and RETURN statements.

* Program MAINS does not, and cannot, contain a STOP statement. [ts execution stops the entire
process — including the execution of TASK1 and TASK2. Program MAINS could kill itself via a
CALL KILL statement with no effect on TASK1 and TASK2.

¢ TASK1 and TASK2 will finish when they execute a RETURN statement, regardless of whether
MAINS has executed its CALL EXIT statement. (Execution of CALL EXIT and END statements,
along with the RETURN statement, result in a task’s finishing.) Furthermore, TASK 1 and TASK?2
could be killed by themselves, by the other tasks, or by MAINS; thus, the rectangles in Figure 4-5
representing their execution are open-ended.

e The main program unit is a task. Thus, the Link command in Figure 4-5 is
F77LINK/TASKS=3
instead of

F77LINK/TASKS =2
e Some tasks may execute for the life of a program.

We explain subroutine TQSTASK, which MAINS calls, later. It’s enough to say here that TQSTASK
initiates the execution of a task.

Task States, Transitions, and Subroutines
This section explains the states a task has, the transitions from one state to another, and the F77-callable
subroutines that cause the transitions.
Task States

It’s obvious by now that competing tasks gain control and lose control of the CPU during their
lifetimes. We can be more specific about the states of a task during its lifetime. Figure 4-6 shows these
states.

093-000288 Licensed Material-Property of Data General Corporation 4'7

Program

Organization
A

PROGRAM
MAIN4

Program
Execution

A

CALL SuB1
CALL sus2
STOP

END

®3~=

SUBROUTINE
5uB1

RETURN

END

SUBROUTINE
SuB2

RETURN

END

F77 (MAIN4 SUB1 SUB2)
F77LINK MAIN4 SUB1 SUB2

ID-00107

MAIN4

CALL SuUB 1

SUB1

RETURN

CALL sus2

STOP

NOTE: The compilation and Link commands are:

suB2

RETURN

Figure 4-4. The Organization and Execution of a Single-Task Program

4'8 Licensed Material-Property of Data General Corporation

093-000288

Program
Organization
A
~ N
PROGRAM MAINS Program
Execution
EXTERNAL e N N
+ TASK1, TASK2
CALL TQSTASK
+ (TASK1, ...)
CALL TQSTASL CALL
+ (K2, ... T TOSTAK
+ (TASK,
T)
CALL EXIT m CALL
END e + TOSTASK
+ (TASK2,
+ ..
SUBROUTINE CALL EXIT
+ TASK1
RETURN . .
END . .
® []
SUBROUTINE * ¢
[] L] []
+ TASK2 . ° .
L J
RETURN ¢
END
NOTE: The compilation and Link commands are:
F77 (MAINS TASK1 TASK2)
F77 LINK/TASKS = 3 MAINS TASK1 TASK2
ID-00108
Figure 4-5. The Organization and Execution of a Multitask Program
093-000288 Licensed Material-Property of Data General Corporation 4'9

Active,

Executing

1

Task Scheduler

Active,
Ready-to-Run
System System
TQSTASK Call Call
Subroutine Completion Issuance
Y
, Active,
Inactive Suspended
ID-00109
Figure 4-6. Task States

4‘ 1 O Licensed Material-Property of Data General Corporation 093-000288

S

The runtime states a task can have (in increasing ability to gain control of the CPU) are:

« Inactive — Dormant. The task does not have control of the CPU. The task is dead and never even
attempts to gain control of the CPU. (This is similar to a stopped lane of traffic in Figure 4-2 whose
gate is locked.)

¢ Active — Suspended. The task does not have control of the CPU. It is unable to gain control for one
or more reasons. A common reason is that a time-consuming system call must complete before the
task is again eligible to execute. (This is similar to a stopped lane of traffic in Figure 4-2 whose gate
is closed while the lane awaits the passage through the tunnel of its currently moving vehicle — a
slow-moving truck.)

» Active — Ready-to-run. The task does not have control of the CPU. However, it is willing and able
to gain control; it is merely waiting its turn. (This is similar to a stopped lane of traffic in Figure 4-2
whose gate is open, but whose vehicles are blocked by those moving from another lane.)

o Active — Executing. The task has control of the CPU. (This is similar to a moving lane of traffic in
Figure 4-2 whose gate is, of course, open.)

The task scheduler is the piece of system software that selects a task for execution from among those
that are ready. Naturally, you can affect the task scheduler’s selection rules. One way to do this is to
assign a priority to each task.

Task Transitions
A task could change its runtime state because of one of the following situations:

» The task scheduler’s actions, such as suspending a task because it had been executing for a certain
amount of time.

« An event, such as a planned /O transfer or an unplanned interrupt from a device (e.g., an alarm
unit).

o Instructions and requests tasks issue to the scheduler, to each other, and to themselves. For example,
a task may kill itself.

The rest of this chapter deals almost exclusively with the last situation. Thus, next we’ll learn how to
issue these instructions and requests.

Task Subroutines

This chapter later documents 25 subroutines. But first, in this section we introduce a subset of 13
subroutines that affect task transitions. We will also modify Figure 4-6 to contain these 13 subroutines.

The subroutines may seem to have strange names. However, the core of each subroutine is one or more
system calls or calls to routines in the user runtime library, URT.LB. Each F77 multitasking subroutine
takes its name from a system call name or a URT.LB routine name. For example, an assembly
language programmer might terminate a task via a ?KILL system call. If we remove the “?”, replace
it by the letter “Q” (for “question mark”), and add the letter “T” (for “task”), we obtain TQKILL. An
examination of assembly language module TQKILL.SR would reveal at least one ?KILL statement.

093-000288 Licensed Material-Property of Data General Corporation 4' 1 1

Recall Figure 4-2 and the five-item bulleted list of standards for controller regulation. We rewrite the
list to describe a multitasking program.

Each task should have a unique positive number to identify it. When you initiate one or more tasks
via a call to subroutine TQSTASK or to subroutine TQQTASK, you also specify their ID numbers.
Other multitasking subroutines use the ID number to specify a particular task. If you assign no ID
number (i.e., 0) to one or more tasks, or the same ID number to two or more tasks, a runtime error
occurs. By default, the main program has a task ID of 1.

Each task has a number to specify its priority. When you initiate one or more tasks via a call to
subroutine TQSTASK or to subroutine TQQTASK, you also specify their priority numbers. The
highest priority task has priority number 0; the lowest priority task has priority number 255. You
may assign the same priority number to two or more tasks. By default, the main program has a
priority of 0. Furthermore:

- If two or more tasks are ready to run, then the task scheduler selects the one with the highest
priority (i.e., lowest priority number).

- If two or more tasks with the same priority number are ready to run, then the task scheduler
selects the next one in round-robin fashion. That is, the task that executed the longest time ago
among two or more tasks with equal priority executes next (first in, first out).

Each task can communicate with any other task, including the main program. The two intertask
communication calls affecting the task scheduler are TQREC (wait to receive a message) and
TQXMTW (transmit a message and await its reception). Calls to TQRECNW (receive a message
without waiting) and to TQXMT ({transmit a message without waiting for its reception) also affect
scheduling; they may cause a suspended task to become active.

Each task controls itself and others by:

- Killing. Subroutine TQIDKIL kills (makes inactive) a task with a specified 1D number. Subroutine
TQKILL kills the calling task.

- Suspension. Subroutine TQPRSUS suspends all tasks with a specified priority. Subroutine
TQIDSUS suspends a task with a specified ID number. Subroutine TQSUS suspends the calling
task. TQXMTW and TQREC might also suspend the calling task.

- Changing priorities. Subroutine TQIDPRI changes the priority of a task with a specified ID
number. Subroutine TQPRI changes the priority of the calling task.

- Making tasks ready. Subroutine TQPRRDY makes ready (changes the state from suspended to
ready-to-run) all tasks with a specified priority. Subroutine TQIDRDY makes ready a task with
a specified ID number.

Any task can control and communicate with any other task. (This is in contrast to the controller /gate
relationship shown in Figure 4-2). Recall that the main program is itself a task whose default ID is
1 and whose default priority is 0. However, any task may use the above subroutines to control and
communicate with the main program.

We change Figure 4-6 to contain the information in this modified list. The result is in Figure 4-7.

4' 1 2 Licensed Material-Property of Data General Corporation 093-000288

Active,
Executing
RETURN, Task Scheduler
TQKILL,
TQIDKIL)
Active,
Ready-to-Run
TQIDSUS,
TQPRSUS,
TQREC,
TQIDRDY, TQIDSUS, TQsUs,
TQPRRRDY, TQPRSUS, TOXMTW,
System TQSUS, System
TQSTASK, Call Real-Time Call
TQQTASK Completion Event Issuance
\
) Active,
Inactive Suspended
ID-00110

Figure 4-7. Task States and Transitions

NOTE: TQIDPRI and TQPRI do not appear in Figure 4-7. They do not immediately change the state
of a task, but will affect the task scheduler’s future actions with the task.

093-000288 Licensed Material-Property of Data General Corporation 4' 1 3

Sample Program

Figure 4-5 contains the outline of a multitasking program with its program units named MAINS,
TASKI1, and TASK2. We now add to the outline and create the three program units. At runtime:

* MAINS initiates TASKI.

¢« MAINS initiates TASK2.

» MAINS kills itself.

» TASKI opens a fresh output file TASK1.OUT.

* TASKI sends the message 377K to TASK?2 and awaits its reception.
¢ TASK?2 opens a fresh output file TASK2.0UT.

* TASK2 awaits a message.

» After the receipt of the message has synchronized the two tasks, they remain active for about 1-1 /2
seconds. At the end of this time, TASK1 KILLs TASK?2 and the process terminates upon execution
of TASK1’s RETURN statement.

We have already summarized the multitasking subroutines appearing in the program units. The
subroutines are (in chronological order of execution): TQSTASK, TQXMTW, TQREC, and TQIDKIL.
Comments appear in the programs to explain the subroutines’ arguments. Figure 4-8 contains
MAINS.F77. Figure 4-9 contains TASK1.F77. Figure 4-10 contains TASK2.F77.

NOTE: We assign 11 as the ID number of TASK1 instead of 1. Why? By default, MAINS is itself a
task whose ID number is 1 (and whose priority is 0).

4' 1 4 Licensed Material-Property of Data General Corporation 093-000288

DG-25224

97

98

PROGRAM MAINS | TO CONTROL TASKS TASK1 AND TASK2

COMMON /COLD/ MAILBOX ! FOR TASK1 --> TASK2 COMMUNICATION
EXTERNAL TASK1, TASK2 | NECESSARY !

PRINT *

PRINT *, 'PRIORITY OF TASK1? °

READ *, IPR1

PRINT *, 'PRIORITY OF TASK2? ~’

READ *, IPR2

PRINT *, 'MAIN PROGRAM MAINS EXECUTES NOW’

PRINT *

MAILBOX = 0 | SHARED MAILBOX MUST CONTAIN INITIAL O
FOR TASK1 --> TASK2 COMMUNICATION

INITIATE TASK1 WITH AN ID NUMBER OF 11, PRIORITY <IPR1>, AND
DEFAULT (SYSTEM-SELECTED) STACK SIZE OF 0.
CALL TQSTASK (TASK1, 11, IPR1, 0, IER)
IF (IER .NE. 0)
WRITE (*, *, ERR = 97, IOSTAT=I0S)
"ERROR *, IER, ' OCCURRED INITIATING TASK?’

INITIATE TASK2 WITH AN ID NUMBER OF 12, PRIORITY <IPR2>, AND
DEFAULT (SYSTEM-SELECTED) STACK SIZE OF .
CALL TQSTASK (TASK2, 12, IPR2, 0, IER)
IF (IER .NE. 0)
WRITE (*, *, ERR = 98, IOSTAT=IOS)
"ERROR ', IER, ' OCCURRED INITIATING TASK2’

CALL EXIT | I'M DONE!

PRINT *, "AT 97, I0S IS ', IOS
STOP 97

PRINT *, 'AT 98, I0S IS ', I0S
STOP 98

END

093-000288

Figure 4-8. A Listing of Program MAIN5.F77

Licensed Material-Property of Data General Corporation

DG-25225

00 N D W AWM

S BB b B hWWWWWWWWWWMN NN NN NVNNLN A
h B W AOWOoNNDWL AWMN OO WO NDU E WNLQOWOGNDNDOG AWML AOW

46
47
48
49
50

Source file: TASK1.F77
Compiled on 6-Dec-82 at 12:08:54 by A0S/VS F77 Rev 02.10.00.00
Options: F77/L=TASK1.LS

SUBROUTINE TASKA
COMMON /COLD/ MAILBOX

%INCLUDE 'TASK1_SYMBOLS.F77.IN’ | FOR ?DELAY SYSTEM CALL
*+++ F77 INCLUDE file for system parameters ****

*x++ INTEGER*4 Parameters for SYSID ****
INTEGER*4 ISYS__WDELAY
PARAMETER (ISYS—MWDELAY = 179) I ?.WDELAY = 263K

bl Parameters for PARU e

x END of F77 INCLUDE file for system parameters *

OPEN (1, FILE="TASK1.0UT’, STATUS='FRESH’,
1 RECFM="DATASENSITIVE', CARRIAGECOGNTROL="LIST’)

WRITE (1, 100)
100 FORMAT (’IN FILE TASK1.0UT: TASK1 HAS BEGUN<NL>')

c SEND THE “MESSAGE” 377K TO ALL TASKS WHO ARE WAITING FOR ONE TO
c ARRIVE IN A SHARED MEMORY LOCATION (“COMMON MAILBOX"), AND
c WAIT UNTIL THE MESSAGE ARRIVES.

CALL TQXMTW(MAILBOX, 377K, -1, IER)
IF (IER .NE. 0)

1 WRITE (1, 110) IER
110 FORMAT ("ERROR ', 012, ' OCCURRED DURING TQXMTW<NL>")
¢ DELAY (SUSPEND) THIS TASK FOR 1.5 SECONDS.
IACO = 1500 | SPECIFY A DELAY OF 1500 MILLISECONDS
IAC1 =0
IAC2 =0

IER = ISYS(ISYS_WDELAY, IACO, IAC1, IAC2)
IF (IER .NE. 0) THEN
PRINT *, "ERROR ', IER, * OCCURRED IN TASK1 DURING ’,
1 "A ?WDELAY SYSTEM CALL’
STOP '-- PROGRAM ENDS NOW’
ENDIF

c 1 1/2 SECONDS HAVE ELAPSED; NOW KILL TASK2.
WRITE (1. 120)

120 FORMAT ('PAST TQXMTW; NOW I KILL TASK2<NL>')

4-16

Figure 4-9. A Listing of Subroutine TASKI1.F77 (continues)

Licensed Material-Property of Data General Corporation 093-000288

51 CALL TQIDKIL (12, IER)
52 IF (IER .NE. 0)
§3 1 WRITE (1, 130) IER
54 130 FORMAT ('ERROR ', 08, ° OCCURRED TQIDKILing TASK2<NL>’)
§5
56 WRITE (1, 140)
57 140 FORMAT ('NOW I RETURN TO MAIN PROGRAM MAIN5’)
58
59 RETURN
60 END
DG-25225
Figure 4-9. A Listing of Subroutine TASKI.F77 (concluded)
SUBROUTINE TASK2
COMMON /COLD/ MAILBOX
INTEGER*4 ITIME(3)
OPEN (2, FILE="TASK2.0UT', STATUS='FRESH’,
1 RECFM="DATASENSITIVE’, CARRIAGECONTROL="LIST’)
WRITE (2, 100)
100 FORMAT ("IN FILE TASK2.0UT: TASK2 HAS BEGUN<NL>')
c AWAIT A COMMUNICATION BY MONITORING VARIABLE <MAILBOX>.
c WHEN <MAILBOX> IS NONZERO, ITS CONTENTS MOVE INTO <MESSAGE>.
CALL TQREC(MAILBOX, MESSAGE, IER)
IF (IER .NE. 0)
1 WRITE (2, 110) IER
110 FORMAT ('ERROR °, 08, ° OCCURRED ON TQREC<NL>')
WRITE (2, 120) MESSAGE
120 FORMAT ('CONTENTS OF MESSAGE ARE ', 08, '<NL>')
WRITE (2, 130)
130 FORMAT (°NOW FOR UP TO 10000 LINES OF TEXT<NL><NL>')
DO 150 I = 1, 10000
WRITE (2, 140) I
140 FORMAT ('IN DO 150 LOOP, I = ', I5)
150 CONTINUE
RETURN
END
DG-25226
Figure 4-10. A Listing of Subroutine TASK2.F77
093-000288 Licensed Material-Property of Data General Corporation 4‘ 1 7

After the commands

F77 (MAIN5 TASK1 TASK2)
F77LINK/TASKS=3 MAIN5 TASK1 TASK2

have created MAINS.PR, we execute it three times while varying the priority numbers. The results
appear next; note how the amount of output from TASK?2 varies according to its priority number.

Remember: A lower priority number for a task means it is more likely to execute.

) X MAINS; F/AS TASK1.0UT TASK2.0UT)
PRIORITY OF TASKI? 4)

PRIORITY OF TASK2? 5)

MAIN PROGRAM MAINS EXECUTES NOW
DIRECTORY :UDD2:F77:MARLL

TASKI.OoUT TXT 29-JUN-82 13:51:48 143
TASK2.0UT TXT 29-JUN-82 13:51:50 36
) X MAINS; F/AS TASK1.0UT TASK2.0UT)

PRIORITY OF TASKI? 5)

PRIORITY OF TASK2? 5)

MAIN PROGRAM MAIN5 EXECUTES NOW
DIRECTORY :UDD2:F77:MARLL

TASK1.OoUT TXT 29-JUN-82 13:54:42 143
TASK2.0UT TXT 29-JUN-82 13:54:42 1696
) X MAIN5; F/AS TASK1.0UT TASK2.0UT)

PRIORITY OF TASKI? 5]

PRIORITY OF TASK2? 4

MAIN PROGRAM MAIN5 EXECUTES NOW
DIRECTORY :UDD2:F77-MARLL

TASKI1.OUT TXT 29-JUN-82 13:55:28 143
TASK2.0UT TXT 29-JUN-82 13:55:28 6144
)

If you create MAINS.PR and execute it your results probably won’t be exactly the same as these.
TASKI1 delays execution for a variable time period (about 1.5 seconds) and thus TASK?2 writes varying
numbers of lines into TASK2.OUT. The overall load on the system also affects the amount of output

TASK2 creates.

4' 1 8 Licensed Material-Property of Data General Corporation

093-000288

Re-entrant Code

In certain situations, it is appropriate for two or more tasks to execute exactly the same sequence(s) of
instructions yet still remain independent of one another and use their own sets of data. In such cases, it
is more efficient for all of these tasks to share a single set of instructions than to duplicate the code
several times. This sharing is possible provided that the code does not modify itself, and that F77 sets
aside a separate data space for each task.

To provide this runtime space for each task, F77 allocates a part of the memory area known as its
runtime stack for variables that the task uses. Thus, it separates the unmodified, shared code from the
multiple modified data areas. We call the shared code re-entrant code since various tasks are entering
and using the code at the same time.

NOTE: By default, F77 allocates variables on the runtime stack unless:
* DATA statements assign them initial values.
* A SAVE statement specifies or implies them.
 The program units they reside in are compiled with the /SAVEVARS switch.
¢ They exist in COMMON.

The actual sequence of events in the use of re-entrant code is as follows. Each time you initiate a task
in a multitasking program, F77 assigns the task a task control block and a section of the runtime stack.
This task control block keeps track of which instruction the task is executing and the data space
allocated to the task. Two or more tasks can execute a single subroutine (the re-entrant code) at one
time although the tasks cannot execute the same statement at a given instant. Figure 4-11 illustrates
the status of the program at one point in time. It is not a dynamic picture of these operations.

For example, suppose you want two tasks to move concurrently through subroutine SUBRA, three
tasks to move concurrently through subroutine SUBRB, and one task to move through subroutine
SUBRC. Assume also that the main program is named MAIN12. The structure of MAIN12.F77 is as
follows.

PROGRAM MAIN12

EXTERNAL SUBRA, SUBRB, SUBRC

¢ CALL TQSTASK(SUBRA, 11, ...) ! ID IS 11
¢ CALL TQSTASK(SUBRA, 12, ...) 1 ID IS 12
C START 3 TASKS THROUGH SUBROUTINE <SUBRB>. ASSUME THEY
c REMAIN ACTIVE UNTIL WE EXPLICITLY KILL THEM.
CALL TQSTASK(SUBRB, 21, ...) ' ID IS 21
CALL TQSTASK(SUBRB, 22, ...) 1 ID IS 22
CALL TQSTASK(SUBRB, 23, ...) ! ID IS 23
CALL TQSTASK(SUBRC, 31, ...) ¢ ID IS 31
CALL TQIDKIL (22, IER) ! SUBRB IS STILL ACTIVE
CALL TQIDKIL (23, IER) | SUBRB IS STILL ACTIVE
CALL TQIDKIL (21, IER) | SUBRB IS FINALLY INACTIVE
C ALL TASKS IN SUBROUTINE <SUBRB> ARE NOW INACTIVE.
END

093-000288 Licensed Material-Property of Data General Corporation 4' 1 9

ID-00111

Task Control
Blocks

TCB for Task 1

Re-entrant Code

Location
Counter 50
Data
Address 70

TCB for Task 2

Location
Counter

Data
Address

Process’'s Stack

°
.
°
Part of Stack
Reserved for
Task 1
Part of Stack
Reserved for
Task 2
° °
. °
. .

4-20

Figure 4-11. Task Control Blocks and the Use of Re-entrant Code

Licensed Material-Property of Data General Corporation

093-000288

The compilation and Link instructions would have the following general outline.

F77 (MAIN12 SUBRA SUBRB SUBRC)
F77LINK/TASKS =7 MAIN12 SUBRA SUBRB SUBRC

Multitasking Subroutines

Table 4-1 shows the correspondence between called-by-F77 subroutines and the operating system calls
(AOS/VS) that ultimately perform a subroutine’s multitasking request. The “F77” column determines
the alphabetical order of the three columns.

Table 4-1. F77 and AOS/VS Multitasking Calls and their Functions

F77 AOS/VS Function
TQDQTSK ?DQTSK Dequeue a previously queued tasks.
TQDRSCH ?DFRSCH, | Disable a scheduling and optionally return a flag.
?DRSCH
TQERSCH ?ERSCH Enable scheduling.
TQIDKIL ?IDKIL Kill a task specified by its 1D.
TQIDPRI ?IDPRI Change the priority of a task specified by its ID.
TQIDRDY ?IDRDY Ready a task specified by its ID.
TQIDSTAT ?TIDSTAT Get a task’s status.
TQIDSUS ?IDSUS Suspend a task specified by its ID.
TQIQTSK ?1QTSK Create a queued task manager.
TQKILAD ?KILAD Define a kill processing routine.
TQKILL ?KILL Kill the calling task.
TQMYTID ?MYTID Get the priority and ID of the calling task.
TQPRI ?PRI Change the priority of the calling task.
TQPRKIL ?PRKIL Kill all tasks of a specified priority.
TQPROT none Start a protected area.
TQPRRDY ?PRRDY Ready all tasks of a specified priority.
TQPRSUS ?PRSUS Suspend all tasks of a specified priority.
TQQTASK ?TASK Create a queued task.
TQREC ?REC Receive an intertask message.
TQRECNW ?RECNW Receive an intertask message without waiting.
TQSTASK ?TASK Initiate one task.
TQsus ?SUS Suspend the calling task.
TQUNPROT none Exit a protected area.
TQXMT 2XMT Transmit an intertask message.
TQXMTW PXMTW Transmit an intertask message and wait for its reception.
none ?IDGOTO Redirect a task.
none ?IFPU Initialize the floating-point unit.
none ?TRCON Read a task message from the process console.

093-000288 Licensed Material-Property of Data General Corporation 4'2 1

For example, suppose that your AOS/VS F77 program unit contains a
CALL TQIDPRI (arguments)

statement. When Link processes the program unit’s .OB file, it places code from LANG_RT.LB and
F7710_MT.LB into the main program’s program (.PR) file. At runtime this code makes a ?IDPRI
operating system call. However, not all F77 multitasking subroutines result in LANG_RT.LB code,
F7710_MT.LB code, and exactly one runtime operating system call.

Note in Table 4-1 that:

« 7IDGOTO, ?1FPU, and 7TRCON have no corresponding F77-callable subroutines. However, some
of these subroutines make a ?IFPU system call; none of them makes a 2IDGOTO or 7TRCON call.

« TQPROT and TQUNPROT have no direct correspondence with any system calls.

+ TQQTASK has no direct correspondence with any system calls. However, it uses ?TASK to carry
out its function of queued task creation.

Assembly Language Interface

FORTRAN 77 also provides a set of routines to replace multitasking system calls. These routines are
in F7710__MT.LLB and LANG_RT.LB. They:

» Take accumulator values and parameter packets identical to those of the corresponding system calls.
» Make a system call.
e Take the conventional error or normal return.
The difference is that the replacement routines provide the same protection of the runtime database
integrity for the multitasking routines as do the F77-callable routines.

Assembly Language Calls

You can invoke these subroutines from assembly language programs, as well as from FORTRAN 77
programs. To do this, remove any multitasking statements of the form

?<{call> ; make a system call
The correct replacement is a statement of the form
LCALL T?<Ccall>> ; make a system call via a routine in LANG_RT.LB

In each of these two cases, AC2 must contain the packet address if required. All other statements and
declarations related to the system call remain the same. You must also add .EXTL statements. For
example, you would replace

?1IDKIL with .EXTL T?IDKIL
LCALL T?IDKIL

Such replacement results in protection of runtime database integrity.

4'22 Licensed Material-Property of Data General Corporation 093-000288

Example

L Suppose you want to change the priority of task number 7 to 5 by using subroutine T?IDPRI instead
: of by making a call to 7IDPRI. The skeleton assembly language code resembles the following.

.EXTL T?IDPRI ; DECLARE ROUTINES AS LONG EXTERNALS.

NLDAI 7,0 ; TASK NUMBER 7 WILL HAVE A ...
NLDAI 5.1 ; ... PRIORITY OF 5.
LCALL T?IDPRI ; DO IT! (FORMERLY: ?IDPRI ; DO IT!)
WBR ERIDPRI ; ERROR RETURN
; NORMAL RETURN: CONTINUE

ERIDPRI: ; RESPOND TO ERROR FROM T?IDPRI.

Routine Names
The complete list of multitasking routines accessible via the
LCALL <routine name>

mechanism is as follows.

T?DQTSK T?KILAD T?QTASK
T?DRSCH T?KILL T?REC
T?ERSCH T?MYTID T?’RECNW
T?IDKIL T?PRI T?STASK

. T?IDPRI T?7PRKIL T?SUS

N T?IDRDY T?PRRDY T?TIDSTAT
T?IDSUS T?7PRSUS T?XMT
T?IQTSK TIXMTW

There is no F77-callable subroutine named TQDFRSCH. However, your AOS/VS assembly language
program can contain a

LCALL T?DFRSCH

statement to call ’DFRSCH. This way, your program both disables scheduling and knows (via a flag
— the “F” of DFRSCH) whether or not scheduling already was disabled at the time ?DFRSCH
executed. If it was, then 7DFRSCH places the value of 2DSCH in ACO.

LANG_RT.LB and F7710_MT.LB provide you with entry points for the protected-against-KILLing-
and-SUSPension code paths that TQPROT and TQUNPROT create. The names of these entry points
are T?PROT and T?UNPROT.

Finally, after assembly, use macro F77LINK to create your program file. This macro has Link search
LANG_RT.LB and F77I0_MT.LB (along with other FORTRAN 77 library files) according to the
multitasking statements of your program.

093-000288 Licensed Material-Property of Data General Corporation 4'23

Conversion of FORTRAN 5 Multitasking Programs

You might have AOS FORTRAN 5 or RDOS FORTRAN 5 multitasking programs and want to
convert them to FORTRAN 77 programs. These FORTRAN 77 programs will use the multitasking
routines from libraries LANG_RT.LB and F7710_MT.LB.

You have two ways to convert FORTRAN 5 multitasking CALLs such as
CALL XMT (arguments)

and statements such as
ANTICIPATE 4

to FORTRAN 77 multitasking CALLs.

Rewrite Each Multitasking CALL or Statement

Rewrite each FORTRAN 5 multitasking CALL or statement according to the rules of its equivalent
FORTRAN 77 CALLs. The names of these subroutines are in Table 4-1 at the beginning of this
chapter; their explanations appear later in this chapter. For example, you might replace

CALL SUS ; SUSPEND THIS TASK
with

CALL TQSUS (IER) ! SUSPEND THIS TASK
You.should include an error-processing routine for errors arising from the execution of the multitasking
routines.

Use a Conversion Library

Use the set of F77 subroutines supplied with F77. These subroutines have the same names as FORTRAN
5 subroutines, and they convert a FORTRAN 5 name/arguments CALL to a FORTRAN 77
name/arguments CALL. Their location is directory F77_F5MT.

For example, the outline of ARDY.F77 is similar to the following:

c SUBROUTINE ARDY.F77 TO PERFORM THE FUNCTION
c OF READYING ALL TASKS OF A GIVEN PRIORITY
C IN AN AOS/VS RUNTIME ENVIRONMENT.

SUBROUTINE ARDY (PRIORITY-2)

INTEGER*2 PRIORITY.2

INTEGER*4 PRIORITY, IER

PRIORITY = PRIORITY_2 | DUPLICATE 2-BYTE PRIORITY

c NUMBER AS 4 BYTES.
c F77/TQPRRDY IS EQUIVALENT TO F5/ARDY

CALL TQPRRDY (PRIORITY, IER)

RETURN

END

You might have to change some of the arguments in the FORTRAN 5 CALLs. For example,
CALL XMT {MAILBOX, MESSAGE, $100)

is correct in FORTRAN 5, but the “$” of the third argument makes the entire statement incorrect in
FORTRAN 77. You must change this line to

CALL TOXMT (MAILBOX, MESSAGE, *100)

And, you might want to create a .LB file for the F77 source subroutines. This library file would become
part of your F77LINK macro.

4'24 Licensed Material-Property of Data General Corporation 093-000288

For example, suppose you decide to leave all FORTRAN 5 CALLSs to subroutines AKILL, ARDY,
and SUSP alone. This means that you must manually convert the other multitasking CALLs to
FORTRAN 77 names and arguments. Suppose also that program TYPICAL.F5 has a maximum of
five tasks and that you have edited it into program TYPICAL.F77 without making any changes to the
AKILL, ARDY, and SUSP CALLs. Then, give the following CLI commands:

« F77 (AKILL.F77 ARDY.F77 SUSP.F77)

* X LFE N F5_MT/O AKILL ARDY SUSP
 F77 TYPICAL.F77

¢ F77LINK/TASKS=5 TYPICAL F5_MT.LB

The /TASKS=5 F77LINK switch directs Link to search LANG_RT.LB and F7710_MT.LB.
Program file TYPICAL.PR is now ready for execution.

Recommended Conversion Method

We recommend the first method of conversion — rewriting each FORTRAN 5 multitasking CALL or
statement to its FORTRAN 77 equivalent statements. Your program will execute slightly faster than
if you use a conversion library. More significantly, some FORTRAN 5 multitasking CALLs and
statements are not in the conversion subroutines because they have no FORTRAN 77 equivalents.
CALL GETEV, with its reference to an event number, is an example. You can print the Release 2.0
conversion subroutines from directory F77_FSMT and read the FORTRAN 5 Programmer’s Guide to
see what FORTRAN 5 multitasking CALLs and statements are missing in the conversion subroutines.

Multitasking via the I1SYS Function?

So far we have mentioned the following three ways of hooking into the multitasking capabilities of
AOS/VS:

¢ Using traditional system calls from assembly language programs, such as 2IDPRIL.

» Using FORTRAN 77 CALLs such as CALL TQIDPRI (arguments) to multitasking routines in
LANG_RT.LB and F7710_MT.LB.

» Using assembly language interface routines for system calls resulting in statements such as LCALL
T?IDPRI.

A fourth method is theoretically possible: the generalized system call mechanism, explained in Chapter
3. For example, you might be tempted to write FORTRAN 77 statements such as these:

¢ SET THE PRIORITY OF TASK NUMBER 7 TO 5.
INTEGER*4 ACO, AC1, AC2, IER, ISYS
¢
ACO = 7
AC1 =5
IER = ISYS (ISYS_IDPRI, ACO, AC1, AC2) ! DO IT!
c

However, we do not recommend this fourth method. It may interfere with certain F77 runtime routines
and internal databases.

093-000288 Licensed Material-Property of Data General Corporation 4'25

Link Switches for F77 Multitasking
The addition of the multitasking routines could affect your commands to Link. The new F77LINK
switches are /IOCONFLICT and /TASKS.

/1OCONEFLICT Switch

This F77LINK switch has three values: ERROR, IGNORE, and QUEUE. QUEUE is the default.
That is,

F77LINK MY_PROG
and

F77LINK/IOCONFLICT=QUEUE MY_PROG
give identical results.

As the name implies, programs Linked with this switch could report a runtime error when an I/0
conflict occurs. Such a conflict happens when one task “A” attempts to access a unit that another task
“B” is using. Then:

+ If /IOCONFLICT=ERROR, task “A” receives an error value from its I/O statement that
unsuccessfully attempted to access the unit. The success or failure of task “B” is unaffected by “A’s”
attempted simultaneous access of the unit.

+ If /IOCONFLICT=IGNORE, the F77 runtime routines don’t check for simultaneous access of a
unit by more than one task. The results are unpredictable and the runtime I/0 databases could be
compromised. You would use this switch setting if speed is important and you can guarantee that
only one rask will access a given unit at any time.

¢ If /IOCONFLICT=QUEUE or is not specified, task “A” does not receive an error value from its
1/O statement that attempted to access the unit. It waits until “B” is finished with the unit before
continuing with its 1/O operation.

/TASKS=n Switch

F7TLINK.CLI passes this switch down to Link. For multitasking programs you must specify it to
either F77LINK.CLI or to the Link command. For example, suppose your program file (.PR file) will
have at most five tasks, and it uses F77 multitasking routines. Then

For an Specify

F77 program: F77LINK/TASKS=5 MY_PROG ...

Assembly language F77LINK/TASKS=5 MY_PROG ...
program:
Task Fatal Errors

Several types of runtime errors that were previously fatal to a process are now fatal to a task. These
errors are:

¢ 1/0 runtime.

» Arithmetic exceptions (such as overflow).
* Subscript/substring addressing.

» Stack overflow/underflow.

Previously, these errors resulted in the process’ termination. In general, only internal consistency errors
will now terminate a process.

4'26 Licensed Material-Property of Data General Corporation 093-000288

Initial Task

The initial task — the main program — has an ID of 1 and a priority of O when it begins execution.
Keep this in mind as you code CALLs to TQQTASK and to TQSTASK which, in turn, initiate tasks.

Documentation of Multitasking Calls

The rest of this chapter describes the individual F77-callable multitasking routines alphabetically. The
explanation of each routine includes:

e Its name and function.
e Its format and argument names for CALLing by F77.
» Descriptions of each argument.

» If possible, a sample CALL and related statements.

The Result Code Argument

All the multitasking subroutines have an argument that receives a code to indicate the result of the
subroutine’s execution. This argument appears in this chapter as ier. [t is always the last argument in
the argument list. If no exceptional condition occurs during the subroutine’s execution, ier contains
zero. Otherwise, ier contains one of the following:

» An operating system error code. (See the beginning of PARU.32.SR; or, give the CLI command
MESSAGE/D ier.) You can also use subroutine ERRCODE, explained in Chapter 2, to report the
error.

¢ An error code from ERR.F77.IN, which contains the same codes as F77TERMES.SR.
e An error code from PARLANG_RT.SR.
e An error code from LANG_RTERMES.SR.

For example, suppose a F77 program contains the statements

INTEGER*4 TASK-ID
TASK.ID = 8
CALL TQIDKIL (TASK-ID, IER)

If IER is zero after your program returns control from TQIDKIL, then no exceptional condition has
occurred. Otherwise, IER contains an error code from one of the above files.

093-000288 Licensed Material-Property of Data General Corporation 4'2 7

TQDQTSK

Dequeue a previously queued task. ~

Format
CALL TQDQTSK(task _definition_packet, ier)

Arguments

task_definition_packet is an INTEGER*2 (not INTEGER*4) array that contains the task
definition packet. Read the restrictions on certain words of the packet in
the “Arguments” section of the explanation of TQQTASK.

ier is an INTEGER*4 variable or array element that receives the result code.

Example

A program unit must execute CALL TQIQTSK and CALL TQQTASK statements in this order
before it can execute a CALL TQDQTSK statement. The following program creates a queued task
manager to initiate six tasks whose IDs are 14, 15, 16, 17, 18, and 19. Then, it dequeues all six tasks.
Program CALL_TQDQTSK follows.

¢ SAMPLE A0S/VS F77 PROGRAM CALL_TQDQTSK

EXTERNAL SUBQDTASK | SUBROUTINE WHOSE NAME IS AN ARGUMENT
¢ T0 TQQTASK

INTEGER*2 ETDP(0:21) | EXTENDED TASK DEFINITION PACKET
c MUST BE INTEGER*2

INTEGER*4 TASK-ID, PRIORITY, IER

¢ CREATE A TASK WHICH IS THE QUEUED TASK MANAGER.
TASK.ID = 4

PRIORITY = 2

CALL TQIQTSK(TASK-ID, PRIORITY, IER)

IF (IER .NE. 0) GO TO 9000

4'28 Licensed Material-Property of Data General Corporation 093-000288

¢ SET UP THE 22-WORD EXTENDED TASK DEFINITION PACKET.

C WILL USE THIS
ETDP(0C) = 0
ETOP(01) = 0
ETDP(02) = 0
ETDP(03) = 0
ETDP(04) = 7
ETDP(05) = 14
ETDP(06) = 0
ETOP(07) = 0
ETDP(08) = 0
ETOP(09) = 0
ETOP(10) = 0
ETDP(11) = 0
ETDP(12) = 0
ETDP(13) = 0
ETDP(14) = 6*0
ETDP(15) = 0
ETDP(16) = 0
ETDP(17) = 6
ETDP(18) = 14
ETDP(19) = 906
ETDP(20) = 3
ETDP(21) = 10

093-000288

?DLNK: 0 FOR THE EXTENDED PACKET

?DLNL - 0 FOR THIS RESERVED WORD
?DLNKB: 0 FOR THIS RESERVED WORD
?DLNKBL: 0 FOR THIS RESERVED WORD

?DPRI : THE PRIORITY NUMBER FOR
EACH TASK
?DID: TASK IDS ARE THE NONZERO

NUMBERS 14, 15, 16,

?DPC: TASK STARTING ADDRESS ...
?DPCL: ... 1S SUPPLIED BY F77.
?DAC2: TASK MESSAGE ...

?DCL2: ... IS SUPPLIED BY F77.

?0STB: ACCEPT F77°S ...
?DSTL: ... STACK BASE.

?DSFLT: ACCEPT F77°S STACK FAULT HANDLER.

| ?DSSZ: EACH (OF THE SIX) TASK HAS ...
I 2DSSL: ... BY DEFAULT A S000-WORD STACK.

I ?DFLGS: THE TASK FLAG WORD ...
! ... IS SUPPLIED BY F77.

| ?DRES: 0 FOR THIS RESERVED WORD

I ?DNUM: THERE ARE SIX TASKS.

| ?DSH: INITITATE THE TASKS AT THE

I ?DSMS: NEXT OCCURRENCE OF 2:15:06 PM.
I ?DCC: THREE INITIALIZATION ATTEMPTS

! ARE ENOUGH,

I ?DCI: ... SPACED 10 SECONDS APART.

Licensed Material-Property of Data General Corporation

TQQTASK
PACKET AND TQDQTSK WILL ALSO USE 1IT.

4-29

TQDQTSK (continued)

¢ ...
c CREATE THE QUEUED TASK.
CALL TQQTASK(SUB.ODTASK, ETDP, IER)
IF (IER .NE. 0) GO TO 9010
c
¢
c
¢
c
c NOWN REMOVE ALL SIX TASKS (IDS 14-19) PREVIOUSLY QUEUED
c FOR INITIATION BY A CALL TO TQQTASK . WE DON'T
c ALTER THE PACKET GIVEN TO TQQTASK
CALL TQDQTSK(ETDP, IER)
IF (IER. NE. 0) GO TO 9020
¢ ..
C ERROR ROUTINES ARE NEXT.

9000 CONTINUE | HANDLE AN ERROR FROM TQIQTSK.
9010 CONTINUE | HANDLE AN ERROR FROM TQOQTASK.

9020 CONTINUE | HANDLE AN ERROR FROM TQDQTSK.

STOP
END

4'30 Licensed Material-Property of Data General Corporation

093-000288

TQDRSCH

Disable scheduling and optionally return a previous status.

Format
CALL TQDRSCH(/previously_disabled,] ier)

Arguments
previously_disabled is an optional LOGICAL*4 variable or array element, which if supplied:
* Receives a value of .TRUE.,, if scheduling was disabled before the call.
* Receives a value of .FALSE., if scheduling was not disabled before the call.

ier is an INTEGER®*4 variable or array element that receives the result code.
Example
c SAMPLE F77 PROGRAM CALL_TQDRSCH

LOGICAL*4 PREVDIS
INTEGER*4 IER

¢ .

CALL TQDRSCH(PREV.DIS, IER)
c
¢ . DO THINGS WITH SCHEDULING DISABLED ...
c

IF (.NOT. PREVDIS)

1 CALL TQERSCH(IER) ! IF SCHEDULING WAS NOT PREVIOUSLY

c DISABLED, THEN RE-ENABLE IT
c SINCE I'VE DONE MY THINGS WITH
c SCHEDULING DISABLED.
¢

END

093-000288 Licensed Material-Property of Data General Corporation 4‘3 1

TQERSCH
Enable scheduling.

Format
CALL TQERSCH(ier)

Argument
ier is an INTEGER*4 variable or array element that receives the result code.
Example
c SAMPLE F77 PROGRAM CALL_TQERSCH
INTEGER*4 IER
c
CALL TQERSCH(IER)
PRINT 10, IER
10 FORMAT (' ERROR CODE RETURNED FROM TQERSCH IS ', 06, 'K’)
c

END

4'32 Licensed Material-Property of Data General Corporation

093-000288

TQIDKIL
Kill a task specified by its ID.

Format
CALL TQIDKIL(taskid, ier)

Arguments
taskid is an INTEGER*4 expression that contains the ID of the task you want to kill.
ier is an INTEGER*4 variable or array element that receives the result code.
Example
c SAMPLE F77 PROGRAM CALL-TQIDKIL
INTEGER*4 TASK_ID, IER
c e
c NOW KILL TASK NUMBER 9.

TASKID = 9
CALL TQIDKIL(TASK-ID, IER)
PRINT 10, IER
10 FORMAT (° ERROR CODE RETURNED FROM TQIDKIL IS *, 06, 'K’)

END

093-000288 l.icensed Material-Property of Data General Corporation 4'33

TQIDPRI
Change the priority of a task specified by its ID.

Format
CALL TQIDPRI(taskid, priority, ier)

Arguments

taskid is an INTEGER*4 expression that contains the ID of the task whose priority you want to
change.

priority is an INTEGER™*4 expression that contains the new priority of the task.

ier is an INTEGER*4 variable or array element that receives the result code.

Example

c SAMPLE F77 PROGRAM CALL_TQIDPRI
INTEGER*4 IER

¢ CHANGE THE PRIORITY OF TASK NUMBER 7 TO 5
CALL TQIDPRI(7, S, IER)
PRINT 10, IER
10 FORMAT (' ERROR CODE RETURNED FROM TQIDPRI IS ', 06, 'K’)

END

4'34 Licensed Material-Property of Data General Corporation 093-000288

TQIDRDY
Ready a task specified by its ID.

Format
CALL TQIDRDY (taskid, ier)

Arguments
taskid is an INTEGER*4 expression that contains the ID of the task you want to make ready.
ier is an INTEGER*4 variable or array element that receives the result code.
Example
c SAMPLE A0S/VS PROGRAM CALL-TQIDRDY
INTEGER*4 TASK.ID, IER
c A
c MAKE READY TASK NUMBER 19.
TASK.ID = 19
CALL TQIDRDY (TASK_.ID, IER)
PRINT 10, IER
10 FORMAT (° ERROR CODE RETURNED FROM TQIDRDY IS ', 06, 'K')
c

END

093-000288 Licensed Material-Property of Data General Corporation 4 = 35

TQIDSTAT
Get a specified task’s status.

Format
CALL TQIDSTAT(taskid, status, ier)

Arguments
taskid is an INTEGER*4 expression that contains the task’s ID.
status is an INTEGER *4 variable or array element that receives the task’s status word. This word
is offset 7TSTAT of the task’s task control block (TCB).
ier is an INTEGER*4 variable or array element that receives the result code.
Example
c SAMPLE F77 PROGRAM CALL_TQIDSTAT
INTEGER*4 TASK_ID, STATUS, IER
c ca.
c GET AND PRINT TASK 16°S STATUS WORD.
TASK_ID = 16
CALL TQIDSTAT{TASK.ID, STATUS, IER)
PRINT 10, STATUS
10 FORMAT (“ TASK 16°S STATUS WORD IS ", 012, “K”)
¢

END

4'36 Licensed Material-Property of Data General Corporation 093-000288

TQIDSUS
Suspend a task specified by its ID.

Format
CALL TQIDSUS(taskid, ier)

Arguments
taskid is an INTEGER*4 expression that contains the 1D of the task you want to suspend.
ier is an INTEGER*4 variable or array element that receives the result code.
Example
¢ SAMPLE A0S/YS PROGRAM CALL_TQIDSUS
INTEGER*4 IER
¢ ce
c SUSPEND TASK NUMBER 18.
CALL TQIDSUS (18, IER)
PRINT 10, IER
10 FORMAT (' ERROR CODE RETURNED FROM TQIDSUS IS ', 06, 'K’)
c

END

093-000288 Licensed Material-Property of Data General Corporation 4'37

TQIQTSK

Create a queued task manager.

Format
CALL TQIQTSK(taskid, priority, ier)

Arguments

taskid

is an INTEGER*4 expression that specifies the 1D of the queued task manager; the task
manager is itself a task. Count this task as you calculate # for the /TASKS=n F77LINK

switch.
priority is an INTEGER*4 variable or array element that specifies the priority of the task.
ier is an INTEGER*4 variable or array element that receives the result code.
Example
c SAMPLE F77 PROGRAM CALL.TQIQTSK
INTEGER*4 TASK_ID, PRIORITY, IER
c ce
c CREATE A TASK TO SERVE AS THE QUEUED TASK MANAGER FOR
c THIS PROGRAM WITH AN ID OF 5 AND A PRIORITY OF 3.
TASK-ID = 5
PRIORITY = 3
CALL TQIQTSK(TASK_ID, PRIORITY, IER)
PRINT 10, IER
10 FORMAT (’ ERROR CODE RETURNED FROM TQIQTSK IS ', 06, 'K')
c
END
4'38 Licensed Material-Property of Data General Corporation

083-000288

TQKILAD

Define a kill processing routine.

Format
CALL TQKILAD(subroutine-name, ier)

Arguments

subroutine-name is the name of a subroutine that will receive control the first time that another
task (“A”) attempts to KILL the task (“B”) containing a CALL TQKILAD
statement. However, this latter task (“B”) is terminated by its own CALL
TQKILL, STOP, or RETURN statements without its CALLing subroutine-
name. Declare subroutine-name EXTERNAL in any task containing a CALL
to TQKILAD.

ier is an INTEGER*4 variable or array element that receives the result code.

Example

¢ ASSUME THAT THIS IS AQGS/VS TASK “UNIT.B.F77”. ASSUME ALSO

c THAT WE WANT IT TO CALL SUBROUTINE “C_SUB” WHENEVER SOME

c OTHER TASK (CALL IT “UNIT_A.F77") ATTEMPTS TO TERMINATE

c TASK “UNIT.B.F77". HOWEVER, SUBROUTINE TQKILL OR THE

c RETURN AND STOP STATEMENTS IN “UNIT.B.F77" WILL TERMINATE

c “UNITB.F77" WITHOUT RESULTING IN A CALL TO “C_SUB”

C

INTEGER*4 IER
EXTERNAL C-SUB
CALL TQKILAD (C-SUB, IER)
PRINT 10, IER
10 FORMAT (° ERROR CODE RETURNED FROM TQKILAD IS ', 06, 'K’)

END

083-000288 Licensed Material-Property of Data General Corporation 4'39

TQKILL
Kill the calling (current) task.

Format
CALL TQKILL(ier)

Argument
ier is an INTEGER *4 variable or array element that receives the result code.
Example
c SAMPLE A0S/VS PROGRAM CALL_TQKILL
INTEGER*4 IER
c ..
c KILL THE CALLING (I.E., THE CURRENT = THIS) TASK
CALL TQKILL(IER)
PRINT 10, IER
10 FORMAT (° ERROR CODE RETURNED FROM TOKILL IS ', 06, 'K’)
c

END

4'40 Licensed Material-Property of Data General Corporation 093-000288

TQMYTID
Get the priority and ID of the calling (current) task.

Format
CALL TQMYTID(taskid, priority, ier)

Arguments
taskid is an INTEGER*4 variable or array element that receives the 1D of the calling (i.e., the
current) task.
priority is an INTEGER*4 variable or array clement that receives the priority of the calling (i.e.,
the current) task.
ier is an INTEGER*4 variable or array element that receives the result code.
Example
C SAMPLE F77 PROGRAM CALL_TQMYTID
INTEGER*4 TASK_ID, PRIORITY, IER
c -
c OBTAIN AND PRINT THE ID AND PRIORITY OF THE CURRENT TASK.
CALL TQMYTID(TASK_ID, PRIORITY, IER)
PRINT 10, TASK-ID, PRIORITY, IER
10 FORMAT (° ID OF CURRENT TASK IS: ', 18, 7/,
1 " PRIORITY OF CURRENT TASK IS: ', I6, /,
" ERROR CODE FROM TQMYTID IS: ', 06, 'K’')
c -
END

093-000288 Licensed Material-Property of Data General Corporation 4'4 1

TQPRI ‘
Change the priority of the calling (current) task. -/

Format
CALL TQPRI(priority, ier)

Arguments

priority is an INTEGER*4 expression that specifies the new priority of the calling (i.e., the
current) task.

ier is an INTEGER*4 variable or array element that receives the result code.
Example
C SAMPLE PROGRAM CALL_TQPRI TO CHANGE THE PRIORITY OF
C THE CURRENT TASK
INTEGER*4 NEW_PRIORITY, IER
C
NEW_PRIORITY = 5
CALL TQPRI(NEW_PRIORITY, IER)
PRINT 10, IER
10 FORMAT (' ERROR CODE RETURNED FROM TQPRI IS ', 06, 'K')
C
END
-

4'42 Licensed Material-Property of Data General Corporation 093-000288

TQPRKIL
Kill all tasks of a specified priority.

Format
CALL TQPRKIL(priority, ier)

Arguments
priority is an INTEGER*4 expression that specifies the priority of the tasks to be killed.
ier is an INTEGER*4 variable or array element that receives the result code.
Example
c SAMPLE A0S/VS PROGRAM CALL_.TQPRKIL
INTEGER*4 PRIORITY-? /7/, IER
c
c KILL ALL TASKS WHOSE PRIORITY IS THE VALUE OF PRIORITY_7.
CALL TQPRKIL(PRIORITY.7, IER)
PRINT 10, IER
10 FORMAT (' ERROR CODE RETURNED FROM TQPRKIL IS ', 06, 'K’)
c

END

093-000288 Licensed Material-Property of Data General Corporation 4'43

TQPROT

Start a protected area.

Format
CALL TQPROT(ier)

Argument

ier is an INTEGER*4 variable or array element that receives the result code.

Explanation
This routine has no direct counterpart in AOS/VS.

When a task (we’ll label it A) successfully returns from this routine, no other task (labeled B) can
suspend (TQIDSUS, TQPRSUS) or kill (TQIDKIL, TQPRKIL) task A until two events occur:

* Task A successfully returns from a matching TQUNPROT (exit a protected path) routine.
* Task A has no other levels of protection because of previous calls to TQPROT.

Any such task B becomes suspended until A successfully executes all necessary calls to TQUNPROT;
then B’s request is processed, and A becomes suspended or killed. If two or more tasks try to suspend
or kill A while it is protected, the one that eventually kills or suspends A is undefined.

F77 assigns each task a protect count field whose value at initiation is zero. CALLing TQPROT
increments a task’s protect count by one. CALLing TQUNPROT decrements a task’s protect count by
one (unless it’s already zero). Thus, a task is protected if, and only if, its protect count is greater than
zero.

Example
c SAMPLE F77 PROGRAM CALL_TQPROT
INTEGER*4 IER1, IER2
c .
CALL TQPROT(IER1)
c AS LONG AS IER1=0, I CAN'T BE SUSPENDED OR KILLED BY ANY
c OTHER TASK; IF ONE TRIES, IT BECOMES SUSPENDED UNTIL
c AT LEAST I'M FINISHED AND CALL TQUNPROT.
PRINT 10, IER1
10 FORMAT (' ERROR CODE RETURNED FROM TQPROT IS ',
1 06, 'K')
c ..
c I'VE COMPLETED MY PROTECTED PATH.
CALL TQUNPROT(IER2)
PRINT 20, IER2
20 FORMAT (' ERROR CODE RETURNED FROM TQUNPROT IS ', 06, 'K')
c

END

4'44 Licensed Material-Property of Data General Corporation 093-000288

TQPRRDY
Ready all tasks of a specified priority.

Format
CALL TQPRRDY/((priority, ier)

Arguments
priority is an INTEGER*4 expression that specifies the priority of the tasks to be made ready.
ier is an INTEGER*4 variable or array element that receives the result code.
Example
c SAMPLE A0S/VS PROGRAM CALL_TQPRRDY
INTEGER*4 IER
c e
c MAKE READY ANY TASK WHOSE PRIORITY NUMBER IS 8.
CALL TQPRRDY(8, IER)
PRINT 10, IER
10 FORMAT (’ ERROR CODE RETURNED FROM TQPRRDY IS ’, 06, 'K’')
C

END

093-000288 Licensed Material-Property of Data General Corporation 4'45

TQPRSUS

Suspend all tasks of a specified priority.

Format
CALL TQPRSUS(priority, ier)

Arguments
priority is an INTEGER*4 expression that specifies the priority of the tasks to be suspended.
ier is an INTEGER*4 variable or array element that receives the result code.
Example
c SAMPLE F77 PROGRAM CALL_TQPRSUS
INTEGER*4 PRIORITY.S, IER
c -
¢ SUSPEND ANY TASK WHOSE PRIORITY NUMBER IS 5.
PRIORITYS =5
CALL TQPRSUS(PRIORITY-S, IER)
PRINT 10, IER
10 FORMAT (' ERROR CODE RETURNED FROM TQPRSUS IS ', 06, ’'K')
c -
END
4'46 Licensed Material-Property of Data General Corporation 093-000288

TQQTASK

Create a queued task.

Format
CALL TQQTASK(subroutine, task_definition_packet, ier)

Arguments

subroutine is the name of the subroutine you are placing on a queue for execution.

Declare it EXTERNAL.

task_definition_packet is an INTEGER*2 (nor INTEGER*4) array that contains the task

definition packet. Don’t alter this array while it is in the task queue. You
can alter it after a corresponding execution of TQDQTSK.

ier is an INTEGER*4 variable or array element that receives the result code.
Explanation
This routine assumes you have built task_definition_packet according to the operating system

programmer’s manual. However, this routine (and its complement, TQDQTSK) will restrict or overwrite
the following words in the parameter packet:

?DID (task ID) cannot be zero. And, every task must have a unique ID number.
?DAC2/?DCL2 is replaced by F77’s own value.

?’DSTB/?DSTL (stack base), if zero or negative, is replaced by F77’s own value. Otherwise, F77
uses any positive number as the address of the stack base. Then, you must declare an array of length
’DNUM*?DSSZ/?DSSL and use the WORDADDR function to place the address of this array in
?DSTB/?DSTL.

?DSFLT (stack fault handler) is replaced by F77’s own value.

If you set ’DSSZ/?DSSL (stack size) to zero, F77 provides a default size. Any number you specify
should be at least 1200 words. This number may change; see your Release Notice.

?DFLGS is replaced by F77’s own value.

Example

Read the sample program CALL_TQDQTSK that is part of the explanation of the TQDQTSK
subroutine. This program shows one way to set up a task definition packet for the TQQTASK
subroutine.

093-000288 Licensed Material-Property of Data General Corporation 4"47

TQREC

Receive an intertask message.

Format
'CALL TQREC(mailbox, message, ier)

Arguments

mailbox is an INTEGER*4 variable or array element that specifies the word from which you will
receive a message from another task. mailbox must be in a named COMMON area
shared by both this and the other task.

message is an INTEGER*4 variable or array element that contains a nonzero message; this
message arrives from the previous argument, mailbox.

ier is an INTEGER*4 variable or array element that receives the result code.
Example
c SAMPLE F77 PROGRAM CALL.TQREC

INTEGER*4 MAILBOX, MESSAGE, IER
COMMON /COLD/ MAILBOX

c .
c WAIT FOR AOS/VS TO PLACE A TWO-WORD MESSAGE IN VARIABLE
¢ MAILBOX, TO MOVE THE CONTENTS OF MAILBOX TO VARIABLE
c MESSAGE, AND TO PLACE A ZERO IN VARIABLE MAILBOX.
CALL TQREC (MAILBOX, MESSAGE, IER)
PRINT 10, MESSAGE, IER
10 FORMAT (° MESSAGE RECEIVED IS: ', 012, 'K, /,
1 " ERROR CODE VALUE IS: ’, 06 , 'K')
c S
END

4'48 Licensed Material-Property of Data General Corporation 093-000288

TQRECNW

Receive an intertask message without waiting.

Format
CALL TQRECNW({mailbox, message, ier)

Argum

mailbox

ents

is an INTEGER*4 variable or array element that specifies the word from which you will
receive a message from another task. mailbox must be in a named COMMON area
shared by both this and the other task.

message is an INTEGER®*4 variable or array element that contains a nonzero message; this

message arrives from the previous argument, mailbox.

ier is an INTEGER*4 variable or array element that receives the result code.
Example
c SAMPLE F77 PROGRAM CALL_TQRECNW
INTEGER*4 MAILBOX, MESSAGE, IER
COMMON /COLD/ MAILBOX
c e
C SEE IF A0S/VS HAS PLACED A TWO-WORD MESSAGE IN VARIABLE
c MAILBOX, MOVED THE CONTENTS OF MAILBOX TO VARIABLE
c MESSAGE, AND PLACED A ZERO IN VARIABLE MAILBOX; THEN
c DISPLAY THE FINDING.
MESSAGE = 0 | INITIAL ASSUMPTION: NO MAIL FOR ME
CALL TORECNW (MAILBOX, MESSAGE, IER)
IF (MESSAGE .EQ. 0) THEN
PRINT *, "NO MESSAGE RECEIVED’
ELSE
PRINT 10, MESSAGE
10 FORMAT (' MESSAGE RECEIVED IS: ', 012, 'K’)
ENDIF
c e
END
093-000288 Licensed Material-Property of Data General Corporation 4'49

TQSTASK

Initiate one task.

Format
CALL TQSTASK(subroutine, taskid, priority, stacksize, ier)

Arguments

subroutine is the name of the subroutine you want to initiate. Declare it EXTERNAL.

taskid is an INTEGER*4 expression that contains the task’s [D number.
priority is an INTEGER*4 expression between 0 and 255, inclusive, which specifies the task’s
priority.
stacksize is an INTEGER*4 expression that specifies the size of your stack in words. You can
specify zero, and F77 will handle the stack size for you. If you specify stacksize, it
should be at least 1200. This number may change; see your Release Notice.
ier is an INTEGER*4 variable or array element that receives the result code.
Example
C SAMPLE AO0S/VS PROGRAM CALL_TQSTASK
INTEGER*4 IER
EXTERNAL SUB.14
c e
C START THE TASK IN SUBROUTINE “SUB_14" WHOSE ID IS 14, WHOSE
C PRIORITY NUMBER IS 18, AND WHOSE STACK SIZE IS SELECTED BY F77.
CALL TQSTASK (SuB-14, 14, 18, 0, IER)
PRINT 10, IER
10 FORMAT (' ERROR CODE RETURNED FROM TQSTASK IS ', 06, 'K’)
c -
END
4‘50 Licensed Material-Property of Data General Corporation 093-000288

TQSUS

Suspend the calling (current) task.

Format
CALL TQSUS(ier)

Argument
ier is an INTEGER*4 variable or array element that receives the result code.
Example
c SAMPLE A0S/VS PROGRAM CALL_TQSUS
INTEGER*4 IER
c
c SUSPEND THE CALLING (I.E., THE CURRENT = THIS) TASK
CALL TQSUS (IER)
PRINT 10, IER
10 FORMAT (' ERROR CODE RETURNED FROM TQSUS IS ', 06, 'K’)
¢

END

093-000288 Licensed Material-Property of Data General Corporation

4-51

TQUNPROT

Exit a protected area.

Format
CALL TQUNPROT(ier)

Argument
ier is an INTEGER*4 variable or array element that receives the result code.

Explanation
This routine has no direct counterpart in AOS/VS.

Any protected path in a task begins with a call to the TQPROT routine and ends with a call to the
TQUNPROT routine. See the explanation of TQPROT for more information about TQUNPROT and
how these two calls affect a task’s protect count field.

Example
See the sample program CALL_TQPROT under the explanation of subroutine TQPROT.

4'52 Licensed Material-Property of Data General Corporation 093-000288

TQXMT

Transmit an intertask message.

Format

CALL TQXMT(mailbox, message, flag, ier)

Arguments

mailbox

is an INTEGER*4 variable or array element that specifies the word into which you will
place a message for transmission to another task or tasks. You must place mailbox in a
named COMMON area shared by the receiving task or tasks, and mailbox must contain
zero before the call.

is an INTEGER*4 expression that contains a nonzero message; this message goes to the
previous argument, mailbox.

is an INTEGER*4 expression whose values and corresponding directions are

-1 Transmit the message to all waiting receiving tasks.
Not -1 Transmit the message to only the waiting receiving task with the highest
priority.

is an INTEGER*4 variable or array element that receives the result code.

PLE F77 PROGRAM CALL_TQXMT
EGER*4 MAILBOX, IER

COMMON /COLD/ MAILBOX

message
flag
ier
Example
C SAM
INT
C ..
C SEN
c
MAI
CAL
PRI
10 FOR
c ...
END
093-000288

D THE “MESSAGE” 377K TO VARIABLE MAILBOX AND THEN FROM
THERE TO ALL AWAITING TASKS REGARDLESS OF THEIR PRIORITIES.
LBOX = 0

L TQXMT (MAILBOX, 377K, -1, IER)

NT 10, IER

MAT (' ERROR CODE RETURNED FROM TQXMT IS ’, 06, 'K')

Licensed Material-Property of Data General Corporation 4'53

TQXMT

Transm

W

it an intertask message and wait for its reception.

Format

CALL TQXMTW(mailbox, message, flag, ier)

Argumen

mailbox

message
flag
ier
Example
C SAM
INT
COM
c -
C SEN
o
MAI
CAL
PRI
10 FOR
c -
END
4-54

ts

is an INTEGER *4 variable or array element that specifies the word into which you will
place a message for transmission to another task or tasks. You must place mailbox in a
named COMMON area shared by the receiving task or tasks, and mailbox must contain
zero before the call.

is an INTEGER *4 expression that contains a nonzero message; this message goes to the
previous argument, mailbox.

is an INTEGER*4 expression whose values and corresponding directions are

-1 Transmit the message to all waiting receiving tasks.
Not -1 Transmit the message to only the waiting receiving task with the highest
priority.

is an INTEGER*4 variable or array element that receives the result code.

PLE F77 PROGRAM CALL.TQXMTW
EGER*4 MAILBOX, IER
MON /COLD/ MAILBOX

D THE “MESSAGE” 377K TO VARIABLE MAILBOX AND THEN FROM
THERE TO ONLY THE TASK WITH THE HIGHEST POSSIBLE PRIORITY.
LBOX =0

L TQXMTW (MAILBOX, 377K, 1, IER)

NT 10, IER

MAT (° ERROR CODE RETURNED FROM TQXMTW IS ', 06, 'K’)

Licensed Material-Property of Data General Corporation 093-000288

Another Sample Multitasking Program

We have created a sample multitasking program with its program units TASKO, TASK11, TASKI2,
TASK13, TASK14, and TASK15. At runtime:

* TASKO initiates TASK11, TASK12, TASK 13, TASK14, and TASK15: it also opens a fresh file,
TASKO.OUT, to receive some of the tasks’ output.

* TASKI1 writes a message into TASKO0.OUT every 5 seconds.

e TASKI2 repeatedly creates, writes into, and deletes file TASK12.0UT.

* TASKI3 accepts 10 integers into array IARRAY from the console.

* TASKI14 sorts the elements of IARRAY into ascending order.

* TASKIS displays IARRAY and kills TASK 11, TASK12, TASK 13, TASK 14, and itself.

Listings of TASKO, TASKI11, TASK]12, TASK13, TASK14, and TASK15 appear in respective
Figures 4-12, 4-13, 4-14, 4-15, 4-16, and 4-17.

093-000288 Licensed Material-Property of Data General Corporation 4'55

Source file: TASKO0.F77
Compiled on 1-Dec-82 at 16:40:13 by A0S/VS F77 Rev 02.10.00.00
Options: F77/L=TASKO.LS

1 PRGGRAM TASKO ! MAIN PROGRAM TO INITIALIZE TASKS
2 TASK11, TASK12, TASK13, TASK14,
3 ¢ AND TASKA1S.

4

5 EXTERNAL TASK11, TASK12, TASK13, TASK14, TASK1S

6

7 DIMENSION ITIME(3)

8

9 COMMON /COLD/ MAIL34, MAIL45, IARRAY(10) ! FOR TASK13 -> TASK14
0 C COMMUNICATION, TASK14 -> TASK 15 COMMUNICATION,
1M1 C AND THE ARRAY TO BE OBTAINED, SORTED, AND PRINTED.
12 MAIL34 = 0

13 MAIL45 =0

14

1% C ALL OUTPUT GOES TO FRESH FILE <TASKO0.OUT>.

16 OPEN (1, FILE="TASKO.OUT', STATUS = "FRESH’,

17 1 RECFM="DATASENSITIVE', CARRIAGECONTROL='LIST’)

18 CALL TIME(ITIME)

19 WRITE (1, 10) ITIME
20 10 FORMAT (’IN FILE TASKO.OUT: TASKO HAS BEGUN AT °,
21 1 12, ., 12, ':7, I2, '<NL>’)
22
23 C INITIATE THE TASKS VIA SUBROUTINE <TQSTASK> BY GIVING AS
24 C ARGUMENTS EACH TASKS'S NAME, ID NUMBER, PRIORITY,

25 C AND SYSTEM-SELECTED STACK SIZE.
26
27 CALL TQSTASK (TASK11, 11, 7, 0, IER)
28 IF (IER .NE. 0) THEN

29 PRINT *, 'ERROR ', IER, ' OCCURRED IN TASKO WHILE ',
30 1 "INITIATING TASK11’

31 STOP '-- PROGRAM ENDS NOK’

32 ENDIF
33

34 CALL TQSTASK (TASK12, 12, 7, 0, IER)

35 IF { IER .NE. 0) THEN
36 PRINT *, 'ERROR ', IER, ' OCCURRED IN TASKO WHILE ',
37 1 "INITIATING TASK12'

38 STOP '-~- PROGRAM ENDS NOW’

39 ENDIF
40

41 CALL TQSTASK (TASK13, 13, 7, 0, IER)

42 IF (IER .NE. 0) THEN
43 PRINT *, 'ERROR ', IER, ' OCCURRED IN TASKO WHILE ’,
44 1 "INITIATING TASK13’

45 STOP " -- PROGRAM ENDS NOW’
46 ENDIF

47

DG-25227

Figure 4-12. Listing of Program TASKO0.F77 (continues)

4"56 Licensed Material-Property of Data General Corporation 093-000288

48 CALL TQSTASK (TASK14, 14, 7, 0, IER)
49 IF (IER .NE. 0) THEN
50 PRINT *, "ERROR ', IER, ' OCCURRED IN TASKO WHILE °,
51 "INITIATING TASK14’
52 STOP "-- PROGRAM ENDS NOW’
S3 ENDIF
54
§5 CALL TQSTASK (TASK15, 15, 7, 0, IER)
56 IF (IER .NE. 0O) THEN
57 PRINT *, "ERROR ', IER, ’ OCCURRED IN TASKO WHILE °,
58 "INITIATING TASKAS'
59 STOP '-- PROGRAM ENDS NOW’
60 ENDIF
61
62 I'M DONE.
63 PRINT *, 'TASKO IS DYING’
64 CALL TOKILL (IER}
65 IF (IER .NE. O) THEN
66 PRINT *, 'ERROR ', IER, ' OCCURRED IN TASKO WHILE ',
67 "KILLING (TQKILL) TASKO’
68 STOP '-- PROGRAM ENDS NOK’
69 ENDIF
70
71 END
DG-25227
Figure 4-12. Listing of Program TASKO.F77 (concluded)
093-000288 Licensed Material-Property of Data General Corporation 4"57

DG-25228

Source file: TASK11.F77
Compiled on 1-Dec-82 at 16:40:45 by A0S/VS F77 Rev 02.10.00.00
Options: F77/L=TASK11.LS

1 SUBROUTINE TASK11

2

3 ¢ THIS TASK WRITES A MESSAGE INTO FILE <TASKO.OUT> EVERY 5

4 C SECONDS. <TASKO0.GUT> IS OPENED BY MAIN PROGRAM <TASKO0>.
5

6 COMMON /COLD/ MAIL34, MAIL45, IARRAY(10)

7 DIMENSION ITIME(3)

8

9 %INCLUDE 'TASK11._SYMBOLS.F77.IN’ I FOR ?WDELAY SYSTEM CALL

10 **** F77 INCLUDE file for system parameters ****

11

12 ek INTEGER*4 parameters for SYSID **xx

13

14

15 INTEGER*4 ISYS__WDELAY

16 PARAMETER (ISYS—WDELAY = 179) I ?.WDELAY = 263K
17

18 Parameters for PARU **x*

19

20

21

22 **»* END of F77 INCLUDE file for system parameters ****
23

24 CALL TIME(ITIME)

25 WRITE (1, 10) ITIME

26 10 FORMAT ("IN FILE TASKO.OUT: TASK11 HAS BEGUN AT ',

27 1 12, .7, 12, 77, 12, '<NL>T)

28

29 20 IACO = 5000 I SPECIFY A DELAY OF 5000 MILLISECONDS
30 IAC1 =0

31 IxC2 =0

32 ¢C DELAY (SUSPEND) THIS TASK FOR 5 SECONDS.

33 IER = ISYS(ISYS_WDELAY, IACO, IAC1, IAC2)

34 IF (TER .NE. 0)} THEN

35 PRINT *, "ERROR *, IER, ' OCCURRED IN TASK11 DURING ',
36 1 "A PWDELAY SYSTEM CALL’

37 STOP "-- PROGRAM ENDS NOW’

38 ENDIF

39

40 CALL TIME (ITIME)

41 WRITE (1, 30) ITIME

42 30 FORMAT (’TASK11 REPORTS AFTER A 5-SECOND DELAY AT °,
43 1 2, "7, 12, 7.7, I2)

44 GO TO 20

45

46 END

4-58

Figure 4-13. A Listing of Subroutine TASKI11.F77

Licensed Material-Property of Data General Corporation

093-000288

[.

DG-25229

CO N OO D bV

OO OO

Source file:
Compiled on 1-Dec-82 at 16:41:06 by A0S/VS F77 Rev 02.10.00.00
Options: F77/L=TASK12.LS

10

20
30

40

TASK12.F77

SUBROUTINE TASK12

THIS TASK REPEATEDLY CREATES AND DELETES A FILE, THUS

PERFORMING MANY SYSTEM CALLS.

THE FILE, NAMED

“TASK12.0UT”, CONTAINS A TABLE OF SINES AND COSINES.

COMMON /COLD/ MAIL34, MAIL45, IARRAY(10)

DO 40 I = 1, 32000

OPEN (2, FILE='TASK12.0UT’,

STATUS="FRESH",

RECFM="DATASENSITIVE', CARRIAGECONTROL='LIST’)

WRITE (2, 10) I
FORMAT ('X’, 10X, 'SINE’,
(1 IS NOW ', 15,

DO 30 J =1, 40
XJ = FLOAT(J)/10
WRITE (2, 20) XJ,
FORMAT (F3.1, 7X,

10X, "COSINE’,
)

1 XJ =1, .2, ...
SIN(XJ), COS(XJ}
F7.4, 7X, F7.4)

CONTINUE
CLOSE(2)
CONTINUE
RETURN | KILL THIS TASK (BUT -- IT’S UNLIKELY THAT
THIS STATEMENT WILL EXECUTE.)
END

10X,

4.0

093-000288

Figure 4-14. A Listing of Subroutine TASKI12.F77

Licensed Material-Property of Data General Corporation

4-59

DG-25230

00 N G AW N

W MNPV NONNMNDN A DA
O WO NOWLVBEWNDOOWOWOOONDNDUM E WM O W

Source file:
Compiled on 1-Dec-82 at 16:41:24 by A0S/VS F77 Rev 02.10.00.00
Options: F77/L=TASK13.LS

10

TASK13.F77

SUBROUTINE TASK13

THIS TASK ACCEPTS INTO <IARRAY> 10 INTEGERS FROM THE CONSOLE
AND THEN SENDS A MESSAGE TO <TASK14>.

COMMON /COLD/ MAIL34, MAIL45, TARRAY(10)

PRINT *
PRINT *, "GIVE ME 10 INTEGERS’
PRINT *

DO 10 I =1, 10

PRINT *, 'INTEGER NUMBER ', I, ' ?
READ *, TARRAY(I)

CONTINUE

PRINT *

NOTIFY <TASK14> THAT I'M DONE SO IT CAN SORT <IARRAY>.
I'LL SEND IT THE NUMBER 3 AS THE MESSAGE.

CALL TQXMT (MAIL34, 3, -1, IER)

IF (IER .NE. 0) THEN
PRINT *, "ERROR ', IER, ' OCCURRED IN TASK13 DURING ',
1 "A CALL TO TQXmMT .’
STOP '-- PROGRAM ENDS NOW'
ENDIF

END

4-60

Figure 4-15. A Listing of Subroutine TASKI13.F77

Licensed Material-Property of Data General Corporation 093-000288

DG-25231

00 N LD AW

B B B B B WWWWWWWWWWMNMNMNRRMNOMNIVDNNN O D QD D A D o
BWMN L OWOo NODWAEWRN LAOWWOWNDNDUMEWN QOO WOOONODUVEWNDNLDOW

[2 B o BN 1

Source file:
Compiled on 1-Dec-82 at 16:42:01 by A0S/VS F77 Rev 02.10.00.00
Options: F77/L=TASK14.LS

10

20
30

40

TASK14.F77

SUBROUTINE TASK14

THIS TASK AWAITS THE RECEIPT OF THE MESSAGE WHOSE VALUE IS 3
FROM <TASK13>. THEN, IT SORTS THE ELEMENTS OF <IARRAY>
INTO ASCENDING ORDER AND FINISHES BY SENDING A MESSAGE TO
<TASK14>.

COMMON /COLD/ MAIL34, MAIL45, IARRAY(10)

CALL TQREC (MAIL34, MESSAGE, IER)
IF (IER .NE. 0) THEN
PRINT *, "ERROR ', IER, ' OCCURRED IN TASK14 DURING ',
1 "A CALL TO TQREC
STOP ’-- PROGRAM ENDS NOW’
ENDIF

<MESSAGE> MUST BE 3; WAIT SOME MORE IF IT ISN'T
IF (MESSAGE .EQ. 3) GO TO 20
GO TO 10 I <MESSAGE> DOES NOT CONTAIN 3.

CONTINUE ! <MESSAGE> DOES CONTAIN 3.

KSWAP = 0 I COUNT OF SWAPS FOR THE NEXT PASS THROUGH <IARRAY>

DO 40 I =1, 9

IF (TARRAY(I) .LE. IARRAY(I+1)) GO TO 40

SWAP THE CONTENTS OF THE CURRENT TWO <IARRAY> ELEMENTS.

ITEMP = IARRAY(I)

TARRAY(I) = IARRAY(I+1)

IARRAY(I+1) = ITEMP

KSWAP = KSWAP + 1 | COUNT THIS SWAP

CONTINUE

IF (KSWAP .GE. 1) GO TO 30 ! <IARRAY> MIGHT NOT BE SORTED VET

<IARRAY> IS SORTED NOW, SO SEND A MESSAGE WHOSE VALUE IS 4
TO <TASK15>.

CALL TOXMT (MAIL4S5, 4, -1, IER)
IF (IER .NE. 0) THEN
PRINT *, "ERROR ', IER, ' OCCURRED IN TASK14 DURING ',
1 "A CALL TO TOQXMT ’
STOP ’-- PROGRAM ENDS NOW’
ENDIF

END

093-000288

Figure 4-16. A Listing of Subroutine TASKI14.F77

Licensed Material-Property of Data General Corporation

4-61

Source file: TASK15.F77
Compiled on 1-Dec-82 at 16:42:33 by A0S/VS F77 Rev 02.10.00.00
Options: F77/L=TASK15.LS
1 SUBROUTINE TASK15
2
3 C THIS TASK AWAITS THE RECEIPT OF THE MESSAGE WHOSE VALUE IS 4
4 C FROM <TASK14>. THEN, IT DISPLAYS THE SORTED ELEMENTS OF
5 € <TARRAY> AND SEQUENTIALLY KILLS ALL ACTIVE TASKS, INCLUDING
6 C ITSELF.
7
8 COMMON /COLD/ MAIL34, MAIL45, IARRAY(10)
9
10 10 CALL TQREC (MAIL45, MESSAGE, IER)
11 IF (IER .NE. 0) THEN
12 PRINT *, 'ERROR ', IER, ' OCCURRED IN TASK15 DURING ',
13 1 A CALL TO TQREC ’
14 STOP '~-- PROGRAM ENDS NOW’
15 ENDIF
16
17 C <MESSAGE> MUST BE 4; WAIT SOME MORE IF IT ISN'T
18 IF (MESSAGE .EQ. 4) 60 TO 20
19 GO TO 10 I <MESSAGE> DOES NOT CONTAIN 4.
20
21 20 CONTINUE | <MESSAGE> DOES CONTAIN 4.
22
23 DO 30 I =1, 10
24 PRINT *, I, '<TAB>', IARRAY(I)
25 30 CONTINUE
26
27 WRITE {1, 40) | CLEAN-UP MESSAGE
28 40 FORMAT ('<NL>*** TASK 15 REPORTS: THIS IS THE LAST RECORD ***<NL>')
29
30 C KILL THE OTHER TASKS AND THEN MYSELF.
31 PRINT *
32 PRINT *, "TASK15 IS ABOUT T0 KILL ALL OTHER TASKS AND THEN ITSELF’
33 PRINT *
34
35 DO 50 I = 11, 14
36 CALL TQIDKIL(I, IER)
37 IF (IER .NE. 0) THEN
38 PRINT *
39 PRINT *, "ERROR ', IER, ' OCCURRED IN TASK15 DURING °,
40 1 "A CALL TO TQIDKIL
41 PRINT *, "THE ID OF THE TASK TQIDKIL FAILED ON IS ', I
42 PRINT *
43 ENDIF
44 50 CONTINUE
45
46 CALL EXIT I THIS TASK (THE LAST ACTIVE ONE) NOW KILLS ITSELF,
47 C AND THE ENTIRE PROCESS TERMINATES.
48
49 END
DG-25232

Figure 4-17. A Listing of Subroutine TASKI5.F77

4'62 Licensed Material-Property of Data General Corporation 093-000288

The commands

F77 (TASKO TASK11 TASK12 TASK13 TASK14 TASK15)
F77LINK/TASKS=6 TASKO TASK11 TASK12 TASK13 TASK14 TASK15

create TASKO.PR. F77LINK.CLI by default includes its /IOCONFLICT=QUEUE switch and
value, so there is no possibility of an 1/O conflict problem with file TASK0.OUT at runtime.

The results of a typical execution of TASKOQ.PR are next.
) X TASKO) '
TASKO IS DYING

GIVE ME 10 INTEGERS

INTEGER NUMBER1? 85)

INTEGER NUMBER 2? 941

INTEGER NUMBER 3? -17))

INTEGER NUMBER 4? 40)

INTEGER NUMBER 5? 129

INTEGER NUMBER 6? -3)

INTEGER NUMBER7? 178

INTEGER NUMBER 8? 58)

INTEGER NUMBER 9? 0

INTEGER NUMBER 10? 9]

-17
-3
0

9
40
58
85
129
178
941

TASKIS5 IS ABOUT TO KILL ALL OTHER TASKS AND THEN ITSELF

ERROR 12 OCCURRED IN TASKI5 DURING A CALL TO TQIDKIL
THE ID OF THE TASK TQIDKIL FAILED ON IS 13

ERROR 12 OCCURRED IN TASKI15 DURING A CALL TO TQIDKIL
THE ID OF THE TASK TQIDKIL FAILED ON IS 14

) TYPE TASKO.OUT)
IN FILE TASKO.OUT: TASKO HAS BEGUN AT 16:51:44
IN FILE TASKO.OUT: TASKI1 HAS BEGUN AT 16:51:46

TASKI] REPORTS AFTER A 5-SECOND DELAY AT 16:51:51
TASKI! REPORTS AFTER A 5-SECOND DELAY AT 16:51:56
TASK!l REPORTS AFTER A 5-SECOND DELAY AT 16:52: 1

*** TASK 15 REPORTS: THIS IS THE LAST RECORD ***

N0 00 N QY AW~

[

093-000288 Licensed Material-Property of Data General Corporation 4'63

You may ask about the display of the two error 12’s, “TASK I.D. ERROR” (from the symbol ERTID
in PARU.SR), when TASKI15 issues a TQIDKIL call to tasks with ID numbers 13 and 14. Why?

TASK13 and TASK14 are inactive at this time. They have executed all their statements, and thus the
task scheduler has already killed them. An attempt by TQIDKIL to kill a task that is inactive results
in an ERTID error.

Furthermore, I varies from 11 to 14 (instead of from 11 to 15) in the DO 50 loop of TASK15. In other
words, the CALL EXIT statement kills TASK15 instead of the TQIDKIL subroutine in the DO 50
loop. Why?

When I = 15, the IDKIL call results in a fatal error message. If we changed the terminal value of I in
the DO 50 loop of TASK15.F77 from 14 to 15 and deleted the CALL EXIT statement, then execution
of the resulting TASKO.PR program would display the following:

ERROR [2 OCCURRED IN TASKI15 DURING A CALL TO TQIDKIL
THE ID OF THE TASK TQIDKIL FAILED ON IS 14

ABORT

LAST TASK WAS KILLED
ERROR: FROM PROGRAM
X, TASKO

End of Chapter

4‘64 Licensed Material-Property of Data Generai Corporation 093-000288

Chapter 5
Debugging

Programmers commonly use the word debug to describe the process of locating and eliminating errors
from their programs. A bug is simply an error.

This chapter explains possible errors in terms of their symptoms, their causes, and finding those causes.
The resulting changes to your programs, F77 commands, F77LINK commands, and program execution
commands are then largely your responsibility. This chapter now proceeds with the following sections:

* Traditional Debugging Methods
¢ The SWAT Debugger
» Avoid Errors BEFORE Coding

* Data General Bugs?

Traditional Debugging Methods
Typically, you begin the process of eliminating bugs when you first see a symptom. Symptoms include:
¢ Compiler error messages (i.c., from F77.CLI).
e Link error messages (i.¢., from F77LINK.CLI).
* Abnormal program termination at runtime.
¢ Incorrect output at runtime.

It’s natural to ask “What about doing something to eliminate errors before beginning to write F77
statements?” We address this later in the “Avoid Errors BEFORE Coding” section of this chapter. But
first, we’ll discuss how to detect errors after they occur.

The F77 compiler, Link, and the runtime routines report errors they find in your instructions and in
data the instructions process. The error messages summarize the problem. You correct it based on the
error messages, your knowledge of F77, and F77 documentation.

Data General F77 does not have a TRACE option to print the values of variables that the program
assigns as it proceeds. Instead, you can follow these traditional steps:

* Insert extra PRINT (or WRITE) statements for key variables at important places.
* Recompile and relink.

* Execute the program and examine the values of the key variables.

093-000288 Licensed Material-Property of Data General Corporation 5' 1

e If the examination reveals the cause, then:
- Make corrections to the source program.
- Recompile and relink.
- Execute the program to ensure the elimination of the error.
- Eliminate the extra PRINT (or WRITE) statements from the source program.
- Recompile and relink.
« If the examination doesn’t reveal the cause, then begin again at the first item in this list.

You can case this process somewhat by declaring a logical named constant and making the extra output
statements depend on that constant. Then, redefinition of that constant will switch modes. For example,

LOGICAL DEBUG
PARAMETER (DEBUG = .TRUE.)

c
IF (DEBUG) THEN

¢ PRINT THE VALUE OF KEY VARIABLES.
ENDIF

C
END

These steps, while fairly effective, can be quite time consuming. The mechanics of editing the source
program modules, compiling, linking, and executing require far more time than the creative aspects of
deciding which variables to print, when to print them, and how to interpret them. Is there a better way?
Yes — continue reading.

The SWAT Debugger

The SWAT Debugger does not debug in the sense of removing errors. However, it is a big help in
finding errors; then it’s up to you to change your program to eliminate the errors.

To use the SWAT debugger, you should read the SWATTM Debugger User's Manual and the Release
Notice for the current revision of the documentation. However, a brief explanation of SWAT software
fundamentals and a sample SWAT debugging session follow. They will show you the features of the
SWAT debugger and should whet your appetite to use it.

Sample Program Modules SORT10.F77 and TEST_SORT10.F77

Subroutine SORT10.F77 contains instructions to sort a character array of up to 100 10-byte elements
into alphabetical order. The main program, TEST_SORT!10.F77, contains an unsorted character
array of 10-byte elements. At runtime, TEST_SORT10 CALLs SORT10 to sort the array, and then
the main program displays the sorted array. Following are the first pages of TEST_SORTI10.LS and
SORT10.LS after the compiler has created them. The respective compilation commands are

F77/DEBUG/L=TEST_SORT10.LS TEST_SORT10
F77 /DEBUG/L=SORT10.LS SORT10

The /DEBUG switch has the compiler generate symbols and code for SWAT.

5'2 Licensed Material-Property of Data General Corporation 093-000288

Source f

ile: TEST.SORT10.F77

Compiled on 19-Jul-82 at 15:18:39 by A0S/VS F77 Rev 01.32.00.00

Options:

O N OO G W

093-000288

F77/DEBUG/L=TEST.SORT10.LS
PROGRAM TEST.SORT10 ! TO TEST SUBROUTINE SORT10
CHARACTER*80 ALL.OF_THE_NAMES | ALL THE NAMES, IN ONE CONVENIENT

C AND EASY-TO-CONSTRUCT STRING
CHARACTER*10 NAMES(8) I <NAMES> WILL CONTAIN THE EIGHT

c ELEMENTS THAT <SORT10> WILL

c SORT ALPHABETICALLY.

c THE NEXT TWO LINES HELP TO CONSTRUCT <ALL_OF_THE-NAMES>.

€00000000111111111122222222223333333333444444444455555555556666666666777

€23456789012345678901234567890123456789012345678901234567890123456789012

DATA ALL..OF_THE-NAMES / 'MIKE HENRIETTA ENRICO LISA
+ JEFFREY BETSY ALICE NORMAN)
C PLACE THE 8 INDIVIDUAL FIRST NAMES INTO <NAMES> FROM THE SINGLE
c STRING <ALLOF_THE-NAMES>.

DO 10 I =1, 8
NAMES(I) = ALL.OF_THE_NAMES(10*I-9 : 10*I) | EXAMPLE: IF
c I =2, THEN <ALL.OF_THE_NAMES(11:20)> IS
c "HENRIETTA " AND <NAMES(2)> IS ALSO 'HENRIETTA '.
10 CONTINUE

C SORT THE NAMES INTO ALPHABETICAL ORDER.
CALL SORT10 (NAMES, 8)

C PRINT THE RESULTS.
WRITE (10, *)
WRITE (10, *) 'THE SORTED NAMES ARE:’
WRITE (10, *)
DO30I=1, 8
WRITE (10, *) NAMES(I)
30 CONTINUE

WRITE (10, *)

WRITE (10, *) "*** END OF JOB ***’
sTop

END

Licensed Material-Property of Data General Corporation

5-3

Source file:
Compiled on 19-Jul-82 at 15:19:36 by A0S/VS F77 Rev 01.32.00.00
Options: F77/DEBUG/L=SORT10.LS

00 N D AW

BB BB B WWWWWWWWW WM MNMNDMNMNMNDMNDMND O QAW A A
BWNL AOWONOURWMN AOODWONODODUMAEWNDOWONDOM AR WRNLAO WO

45
46
47

5-4

L B 2]

OO,

OO0 OO

c

10
20

30

SORT10.F77 _//

SUBROUTINE SORT10 (C-ARRAY, N)

THIS SUBROUTINE SORTS THE FIRST <N> ELEMENTS OF A
CHARACTER*10 ARRAY, <C_ARRAY>, WITH AT MOST 100 ELEMENTS
(EACH 10 BYTES LONG).

SORTING METHOD: TRADITIONAL “BUBBLE” SORT WHICH MOVES THE
HIGHER-VALUED ELEMENTS (SUCH AS “ZACHARY”) TO THE RIGHT IN
THE ARRAY AND THE LOWER-VALUED ELEMENTS (SUCH AS “AMANDA")
TO THE LEFT ELEMENTS OF THE ARRAY.

CHARACTER*10 C-ARRAY(100)

CHARACTER*10 TEMP I TEMPORARY STORAGE AREA REQUIRED

BY THE SORT ROUTINE

IF (N .LT. 2) GO TO 30 | ND NEED TO SORT.

NLESS-1 =N - 1

HERE WE GO ...

DO 20 J = 1, NLESS-1

M= N-J
DO 10 I =1 M N
IF (C_ARRAY(I) LE.

1 C_ARRAY(I+1)) 60 TO 10
IT’S NECESSARY TO SWAP TWO ADJACENT ELEMENTS OF <C_ARRAY>.
FOR EXAMPLE, <C_ARRAY(2)> MIGHT CONTAIN “EDWARD " AND
<C_ARRAY(3)> MIGHT CONTAIN “BEVERLY "; THEN THE NEXT

THREE STATEMENTS EXECUTE TO PERFORM THE SWAP. AFTER THE
SWAP, <C_ARRAY(2)> WILL CONTAIN “BEVERLY " AND
<C-ARRAY(3)> WILL CONTAIN “EDWARD "

TEMP = C-ARRAY(I)

C-ARRAY(I) = C_ARRAY(I+1)

C-ARRAY(I+1) = TEMP

CONTINUE
CONTINUE

DONE!
RETURN

END

Licensed Material-Property of Data General Corporation 093-000288

Sample Execution without the SWAT Debugger

The command to create TEST_.SORT10.PR so that we can execute it either with or without the
SWAT debugger is

F77LINK/DEBUG TEST_SORT10 SORT 10
If we give the CLI command

X TEST_SORT10
then TEST_SORT10.PR displays the following.
THE SORTED NAMES ARE:

ALICE
NORMA
ENRICO
EY BETSY
HENRIETTA
LISA JEFFR
MIKE
N

¥¥% END OF JOB ***
STOP

Obviously, this program has at least one bug that results in the mixing of names. We also observe that
the garbled names appear in alphabetical order. For the time being, resist the temptation to search
TEST_SORT10.F77 and SORT10.F77 for bugs. Read the following summary of the SWAT debugger,
and then you’ll see how it can help locate the bug.

SWAT Debugger Fundamentals

The SWAT debugger executes to allow easy tracing of your program. Basically, you select places in
your program where you wish to know the values of key variables. You tell the debugger to execute
your program and pause at the selected places. There, you have the debugger display the key variables’
values. Next, you can terminate program execution and fix the source code or continue to the next
selected place.

You need only a subset of SWAT debugger commands to locate the problem in program units
TEST_SORTI10 and SORT10. The command names, descriptions, and examples are as follows.

093-000288 Licensed Material-Property of Data General Corporation 5'5

Command Description Example

BREAKPOQOINT Set a place in the program where the SWAT debugger BREAKPOINT 10
will suspend its execution. You specify a line number
from the program unit’s compiler-created .LS file. The
debugger suspends the program just before executing
the first machine language instruction that the specified
source program instruction resulted in.

BYE Terminate the execution of both the SWAT debugger BYE

and the program file, and return to the CLI.
CLEAR Remove a breakpoint from a program. CLEAR 10
CONTINUE Resume execution at a breakpoint. CONTINUE
ENVIRON- Select the program unit, usually for moving from one to ENVIRONMENT
MENT the other (such as from the main program to a subroutine SORT10

to set a breakpoint).
LIST List a range of source program lines on the console. Use LIST 20, 30

of LIST frees you from constant reference to a printed

.LS file.
TYPE Display the value of one or more variables on the console. TYPE I, ARR(3)
% If you execute the SWAT debugger with the AUDIT % Now display J

switch, then all text appearing on the console goes into
an audit file for later printing. The debugger places
lines from you that begin with “%” into the audit file,
but it does nothing else with these lines.

Sample Execution with the SWAT Debugger
Instead of giving the CLI command

X TEST_SORT10
as we did before, type

X SWAT/AUDIT TEST_SORT10

SWAT.PR executes and creates TEST_SORTI10.PR as a son process. Here, all dialog between you
and the debugger goes into audit file TEST_SORT10.AU. Records in TEST_SORT10.AU beginning
with “> 7 represent commands you give in response to the SWAT debugger prompt “> . Records
that don’t begin with “> ” represent the debugger’s output. Not including the /AUDIT switch means
that the dialog appears on the console only.

Marll is the programmer who has created TEST_SORT10.F77 and SORT10.F77. Following is the
dialog he and the SWAT debugger created in TEST_SORT10.AU. The records in TEST_SORT10.AU
are numbered to make it easier to refer to them. The SWAT debugger does rot place such record
numbers in the audit (.AU) files it creates.

Marll created an unusually large number of comment lines (the ones beginning with “> %”) as he
located his error. Read TEST_SORTI10.AU very carefully to learn how you can use the SWAT
debugger. You might have to refer several times to TEST_SORTI10.LS and to SORT10.LS as you
read TEST..SORT10.AU.

5'6 Licensed Material-Property of Data General Corporation 093-000288

w N

N OO N

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

USER PROGRAM TEST_SORT10 SWAT AUDIT ON 07/20/82 AT 13:37:31

A0S/VS SWAT Revision 02.19.00.00 ON 07/20/82 AT 13:37:.36
PROGRAM -- :UDD2:F77:MARLL:TEST_SORT10

> %

> % Set a breakpoint to see if <NAMES> receives its elements correctly
> % from <ALL-OF.THE.NAMES>.

> BREAKPOINT 21

Set at :TEST_SORT10:21

> %

> % Also set a breakpoint just before the CALL to SORT10.
> BREAKPOINT 24

Set at :TEST-SORT10:24

> %

> % Verify the breakpoints.

> LIST 20, 25

20 C "HENRIETTA * AND <NAMES(2)> IS ALSG 'HENRIETTA ~’

21B 10 CONTINUE

22

23 C SORT THE NAMES INTO ALPHABETICAL ORDER.
24B CALL SORT10 (NAMES, 8)

25

>%

> % Move to subroutine SORT10 and set appropriate breakpoints.
> ENVIRONMENT :SORT10

:SORT10

> BREAKPOINT 22, 36

Set at :SORT10:22

Set at :SORT10:36

> %

> % Verify the breakpoints.

> LIST 22, 36

22B DO 20 J = 1, NLESS-

23 M= N-J

24

25 DO 10 I =1, M

26 IF (CARRAY(I) .LE.

27 1 C-ARRAY(It1)) GO TO 10

28

29 C IT'S NECESSARY TO SWAP TWO ADJACENT ELEMENTS OF <C_ARRAY>.
30¢C FOR EXAMPLE, <C_ARRAY(2)> MIGHT CONTAIN “EDWARD " AND
31¢C <C_ARRAY(3)> MIGHT CONTAIN “BEVERLY "; THEN THE NEXT

32 C THREE STATEMENTS EXECUTE TO PERFORM THE SWAP. AFTER THE
33 ¢C SWAP, <C_ARRAY(2)> WILL CONTAIN “BEVERLY " AND

34 C <C-ARRAY(3)> WILL CONTAIN “EDWARD "

35

36B TEMP = C_ARRAY(I)

093-000288 Licensed Material-Property of Data General Corporation

5-7

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
81
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106

5-8

> %
> % Return to the main program ...
> ENVIRONMENT @MAIN

:TEST_SORT10

> % ... and begin program execution.
> CONTINUE

Breakpoint trap at :TEST_SORT10:21

> %

> % Look at the first few elements of <NAMES> while the program
> % continues to execute.

> TYPE I, NAMES(I) ; CONTINUE

1

“MIKE "

Breakpoint trap at :TEST_SORT10:21
> TYPE I, NAMES(I) ; CONTINUE

2

“HENRIETTA 7

Breakpoint trap at :TEST_SORT10:21
> TYPE I, NAMES(I) ; CONTINUE

3

“ENRICO "

Breakpoint trap at :TEST_SORT10:21

> %

> % So far, so good. Since <NAMES> seems OK, I'1l clear this breakpoint
> % and continue. '

> CLEAR 21

Cleared at :TEST_SORT10:21

> CONTINUE

Breakpoint trap at :TEST_SORT10:24

> %

> % 6o ahead and let SORT10 execute.
> CONTINUE

Breakpoint trap at :SORT10:22

Y,
%
% Now I'm in subroutine SORT10.

> TYPE N, NLESS.

8

7

> %

> % 0K -- move into the D0 20 and DO 10 loops that sort <C_ARRAY>.
> CONTINUE

Breakpoint trap at :SORT10:36

> TYPE J, I, C_ARRAY(I), C_ARRAY(I+1)

1

1

“MIKE

“HENRIETTA "

> %

> % 0K -- C-ARRAY(1) and C_ARRAY(2) have to swap their values.

Licensed Material-Property of Data General Corporation 093-000288

107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
148

> CONTINUE

Breakpoint trap at :SORT10:36

> TYPE J, I, CLARRAY(I), CARRAY(I+1)

1

2

“MIKE "

“ENRICO "

> %

> % 0K -- C-ARRAY(2) and C_ARRAY(3) have to swap their values.
> CONTINUE

Breakpoint trap at :SORT10:36
> TYPE J, I, CARRAY(I), C_ARRAY(I+1)

1
3

“MIKE "

“LISA JEFFR"

> %

> % I've got a problem! “MIKE " is a valid name but “LISA JEFFR" is

> % wrong. Somehow “LISA " and “JEFFREY " have been incorrectly
> % mixed together. Now I’'1l display all the elements of <C_ARRAY> to
> % see if there are any other such mixtures.

> TYPE C.ARRAY(1), C-ARRAY(2), C-ARRAY(3), C_ARRAY(4)

“HENRIETTA ”

“ENRICO "

“MIKE "

“LISA JEFFR"
> TYPE C_ARRAY(5), C_ARRAY(6), C-ARRAY(7), C_ARRAY(8)

“EY BETSY”
ALICE”
" NORMA”
“N »
> %
> % The last five elements of <C_ARRAY> are wrong. I’'1l quit the debugger
> % and take a close look at main program TEST_SORT10, which is the
> % source of <CLARRAY>.
> BYE

SWAT TERMINATED

TEST_SORTI10.AU is largely self-explanatory. Pay special attention to the following lines.

7
21,24

30
36,50

What is not self-explanatory is the bug. Somehow the last five elements of C_ARRAY in SORT10 —
which originate from NAMES in TEST_SORTI10 — have mixed together. Marll decides to execute
the debugger again and look more carefully at NAMES instead of moving to subroutine SORTI0.

The SWAT debugger gives the pathname of the program file.

Marll’s instructions in lines 11 and 15 set breakpoints at lines 21 and 24 of TEST_SORTI0.
LISTing lines 20 through 25 verifies the setting of these breakpoints by showing a “B” next

to line numbers 21 and 24.

Marll set two breakpoints with one statement.

Note again the letter “B” to signify a breakpoint next to line numbers 22 and 36 of

SORTI0.

Perhaps he was too hasty with his comments in lines 77 through 80 of TEST_SORTI10.AU.

093-000288 Licensed Material-Property of Data General Corporation

Marll gives the CLI commands

DELETE TEST_SORT10.AU
X SWAT/AUDIT TEST__.SORT10

It’s necessary to delete the audit file because SWAT/AUDIT appends to <PROGRAM NAME>.AU
instead of deleting and recreating it. Again, the /AUDIT switch isn’t necessary, but it lets him have a
hardcopy of the dialog for later analysis. The resulting TEST_SORT10.AU that points to the error

follows.
1
2
3 __
4 USER PROGRAM test.sort10 SWAT AUDIT ON 07/26/82 AT 09:10:44
5
6 A0S/VS SWAT Revision 02.19.00.00 ON 07/26/82 AT 09:10:47
7 PROGRAM -- :UDD2:F77:MARLL:TEST_SORT10
8 > %
9 > % I'1l set a breakpoint where I can display ALL the elements of <NAMES>.
10 > BREAKPOINT 21
11 Set at :TEST.SORT10:21
12 > LIST 15, 21
13 15 C PLACE THE 8 INDIVIDUAL FIRST NAMES INTO <NAMES> FROM THE SINGLE
14 16 C STRING <ALL_OF_THE_NAMES>.
15 17 DO 10 I =1, 8
16 18 NAMES(I) = ALLOF_THE_NAMES(10*I-9 : 10*I) ! EXAMPLE: IF
17 19 ¢C I = 2, THEN <ALLOF_THE_NAMES(11:20)> IS
18 20 C "HENRIETTA ' AND <NAMES(2)> IS ALSO 'HENRIETTA '.
19 21B 10 CONTINUE
20 > %
21 > % Here we go!
22 > CONTINUE
23
24 Breakpoint trap at :TEST_SORT10:21
25 > TYPE I, NAMES(I) ; CONTINUE
26 1
27 “MIKE "
28
29 Breakpoint trap at :TEST_SORT10:21
30 > TYPE I, NAMES(I) ; CONTINUE
31 2
32 “HENRIETTA "
33
34 Breakpoint trap at :TEST_SORT10:21
35 > TYPE I, NAMES(I) ; CONTINUE
36 3
37 “ENRICO "
38
39 Breakpoint trap at :TEST_SORT10:21
40 > TYPE I, NAMES(I) ; CONTINUE
41 4
42 “LISA JEFFR”
43
44 Breakpoint trap at :TEST_SORT10:21
45 > TYPE I, NAMES(I) ; CONTINUE
46 5
47 “EY BETSY”
48
49 Breakpoint trap at :TEST-SORT10:21
5' 1 O Licensed Material-Property of Data General Corporation

093-000288

50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88

89
90
91
92
93
94

> TYPE I, NAMES(I) ; CONTINUE
6
“ ALICE”

Breakpoint trap at :TEST-SORT10:21
> TYPE I, NAMES(I1) ; CONTINUE

7

“ NORMA”

Breakpoint trap at :TEST_SORT10:21
> TYPE I, NAMES(I)

8

“N

> %

> % The first three elements of <NAMES> are 0K and I can’'t see any

> % immediate reason for the error (the mixing) in the last five
> % elements. I'11 investigate by going backwards and LISTing the
> % CHARACTER string <ALL.OF_THE_NAMES>, from which <NAMES>

> % obtains its elements.

> LIST 9, 13

9 C THE NEXT TWO LINES HELP TO CONSTRUCT <ALL_OF_THE.NAMES>.

10 C00000000111111111122222222223333333333444444444455555555556666666666777
11 €23456789012345678901234567890123456789012345678901234567890123456789012
12 DATA ALL_OF.THENAMES / 'MIKE HENRIETTA ENRICO LISA

13 + JEFFREY BETSY ALICE NORMAN T/

Rather puzzling. I can see that “LISAbbbbbb” (b = blank) is in
lines 12 and 13. The first five blanks of “LISAbbbbbb” come
from line 12 and the last blank comes from line 13. <NAMES(4)>
is “LISAbDJEFFR” with just one blank. It looks like only the
blank in “+ JEFFREY" of line 13 has arrived in the incorrect
<NAMES(4)>. In other words, the five blanks after “LISA” in

% line 12 have disappeared. What’'s going on here? I'm going to

% terminate SWAT and think of why the five blanks after “LISA”

% in line 12 have disappeared.

32 3| 3® R

E L

% However, before terminating SWAT I'11l display <ALLOF_THENAMES>.
TYPE ALL-OF-THE_NAMES

VVVVVVVVVYVYVYVYV
32

“MIKE HENRIETTA ENRICO LISA JEFFREY BETSY ALICE NORMAN
> %

> % This display also shows that the first five of the necessary six

> % blank characters after “LISA” have disappeared.

> BYE

SWAT TERMINATED

The key question is “What has happened to the first five of the six blanks in 'LISAC OO OO0 (O
= blank)?” One thing you have to remember about the F77 compiler is that, by default, it reads a line

from the source module and ignores any trailing blanks. In our case, the last characters of line 12 of
TEST_SORT10.F77 were cither

LIssA0DO OO0 <>

or

LISA<<NL>

093-000288 Licensed Material-Property of Data General Corporation 5' 1 1

The F77 compiler ignored any blanks at the end of line 12 and processed the blank in “+ JEFFREY”
of line 13. This ignoring effectively shifted the last four elements of ALL_OF_THE_NAMES left by
five spaces. Thus, the DO 10 loop of TEST_SORTI10 constructed NAMES with the following
contents:

MIKEOOOIO

HENRIETTAO

ENRICODNICO

LISACJJEFFR

EYOIIIBETSY

0000C0ALICE

OOCONORMA

NOOCOO0000

Even though SORT10 worked correctly with the array it received from TEST_SORT10, the array was
wrong in the first place, and thus the sorted displayed output from TEST_SORTI10 was wrong. This is
a perfect example of GIGO — garbage in, garbage out!

Corrections to Sample Program Modules

How do we correct TEST_SORT10 and SORTI10? First, SORT10 is fine; it properly sorts the array
it receives. There are at least two ways to correct line 12 of TEST_SORTI10.F77:

1. Leave it alone and change the compilation command for TEST_SORTI10 from
F77 TEST_SORT10
to
F77/CARDFORMAT TEST_SORT10

The /CARDFORMAT switch directs the compiler to pad (with blanks) to 72 characters any
source program line that is less than 72 characters long. F77 then would combine characters 64
through 72 of line 12 with character 7 of line 13 to form the desired “LISAOO OO OO,

2. Delete lines 3 and 4 of TEST_SORT10.F77. Then, replace lines 9 through 22 with the following.

DATA NAMES / 'MIKE ", '"HENRIETTA ', 'ENRICO ’
+ "LISA ", 'JEFFREY ", '"BETSY
+ "ALICE ", 'NORMAN ’ /

The SWAT Debugger — a Summary

SWAT is a very flexible and powerful programming aid. The key to its use is the effective placing of
breakpoints and the displaying of the proper variables and arrays at those breakpoints. There is no
convenient formula for this placing and displaying. You'll have to employ a fair amount of trial and
error as you learn to use the SWAT debugger.

5‘ 1 2 Licensed Material-Property of Data General Corporation 093-000288

Avoid Errors BEFORE Coding

The old saying that “an ounce of prevention is worth a pound of cure” applies to FORTRAN 77
programming. You have seen that the SWAT debugger makes debugging much easier than the
traditional method of placing extra WRITE statements and then later removing them. Even so, you're
better off to follow certain techniques before and during the coding stage. Improving the design of a
program often reduces the need for debugging it.

The subject of proper program design and coding is a broad one — far too broad for explanation here.
However, we list several books next. Each of them contains many suggestions for creating program
units that should reduce the need for later debugging. Data General in no way endorses these books or
requires that you read any of them; the list is merely for your convenience. The books’ authors and titles
are:

» HenryF. Ledgard, “Programming Proverbs for FORTRAN Programmers”, Hayden Book Company,
Inc., Rochelle Park, New Jersey (1975).

¢ Brian W. Kernighan and P.J. Plauger, “The Elements of Programming Style”, McGraw-Hill Book
Company, New York, New York (1974).

» Charles B. Kreitzberg and Ben Shneiderman, “The Elements of FORTRAN Style: Techniques for
Effective Programming”, Harcourt Brace Jovanovich, Inc., New York, New York (1972).

e Dennie Van Tassel, “Program Style, Design, Efficiency, Debugging, and Testing”, Prentice-Hall,
Inc., Englewood Cliffs, New Jersey (1974).

* Louis A. Hill, Jr., “Structured Programming in FORTRAN?", Prentice-Hall, Inc., Englewood Cliffs,
New Jersey (1981).

Mr. Van Tassel’s book contains an entire chapter on debugging.

Data General Bugs?

The F77 compiler is a large and complicated program. The runtime libraries are a collection of many
subroutines. We honestly state that bugs could exist somewhere among all this software. In fact, several
compiler error messages have the form “Possible compiler error If this message persists, please
submit software trouble report.”

Your system manager should let you have access to the Software Release Notice that applies to the
revision of FORTRAN 77 you are using. Among other things, the Release Notice tells you about:

« The newest features of F77.

e Problems corrected since the last release of F77.

e Problems remaining in F77 with possible ways to work around them.
» Changes to the F77 documentation, including this manual.

e Using Software Trouble Reports.

In particular, if you suspect you’ve found an error in the compiler or in the runtime routines, then read
the section of the Release Notice about a Software Trouble Report (STR). This section explains how to
verify that you really have found a problem in Data General software. It also explains how to use an
STR to communicate with Data General about the problem.

End of Chapter

093-000288 Licensed Material-Property of Data General Corporation 5' 1 3

Chapter 6
Subprograms

You FORTRAN 77 programmers often create program files (.PR files) that are a collection of one
main program unit and one or more subprograms (subroutine and function). The FORTRAN 77
Reference Manual describes how to create such program files when the main program unit and all of
its subprograms are written in F77.

You actually have a wide choice in selecting languages for a main program unit and its subprograms.
For example, you can write a F77 program unit that calls a subroutine subprogram written in assembly
language. And, a COBOL program can call a subroutine written in F77 to perform extensive
calculations.

The three major parts of this chapter present:
» The structure of F77/assembly language interfaces.
= An overview of high-level-language/F77 interfaces.

e Examples of specific high-level-language/F77 interfaces, such as a BASIC program and its called
F77 subroutine.

F77 and Assembly Language Subprograms

This section assumes you are familiar with assembly language and want to use it to write subprograms
for calling from F77. Before reading on, remember that Chapter 3 explains how you can use the ISYS
function to access the operating system. Thus, you may have no need to write assembly language
subroutines whose sole purpose is to perform an operating system call.

VS/ECS Calling Conventions

The F77 compiler generates code to implement the CALL statement or reference to a function
subprogram. This code observes the following three conventions. They are part of the Virtual System /
External Calling Sequence (VS/ECS).

1. At runtime, the code works with the addresses of the arguments. It pushes them onto the stack in
reverse order of their appearance in the argument list. Each such pushed addressed is a 32-bit
WORD address for Hollerith constants and for most data types. The exceptions are:

. The code pushes a 32-bit BYTE address for CHARACTER variables and character
constants.
. The code pushes the WORD address of the first of two 32-bit words for statement

labels (e.g., *90). The first of these two words contains the new value of the program
counter (PC). That is, the first word contains the address in the compiled code of the
first instruction resulting from the statement. The second of the two words contains the
frame pointer (FP) value for use with this compiled code.

. The code pushes the WORD address of arguments declared as EXTERNAL or
INTRINSIC. This word contains the Link-resolved address in the program file that
satisfies the global reference these declarations have made. When the argument is an
executable routine, this word contains the new value of the PC for use when the
LCALL instruction accesses the routine.

093-000288 Licensed Material-Property of Data General Corporation 6' 1

If any argument is type CHARACTER, then the runtime code places extra arguments on the
stack. These extra arguments are called dope vectors. They inform the called routine of the actual
size of the CHARACTER arguments. Either the compiler or the runtime code builds the dope
vectors. The runtime code pushes the addresses of all required dope vectors onto the stack; then it
pushes the addresses of all the arguments (non-CHARACTER and CHARACTER) onto the
stack as described previously.

NOTE: If you're writing assembly language subprograms for reference from F77 programs, you
need to know that these dope vectors exist on the stack. However, Data General
determines the count and content of them and they might change over time. Your
subprograms should not attempt to refer to or use the dope vectors in any way. Instead,
the F77 program unit should use extra arguments to pass length information. Your
subprogram can then obtain the length argument via the appropriate argument address
and be independent of any dope vector.

The LCALL instruction calls EXTERNAL arguments and includes the argument count and a
relocated absolute memory reference. This argument count includes any dope vectors and can be
greater than the number of arguments the program specified in its CALL statement or function
reference.

The WRTN instruction will “pop” from the stack all argument addresses that were previously
“pushed” there. More specifically, the stack pointer value is restored to its value before step |
occurred.

After the calling program unit regains control:

. All floating-point accumulators are undefined, except FPACO can contain the result of
a function subprogram reference that returns a floating-point value. The “Function
Subprograms” section of this chapter discusses this reference.

. All fixed-point accumulators are preserved except AC3, which will contain the frame
pointer, and ACO, which could contain the result of a function reference that returns a
LOGICAL or INTEGER value.

. Function results returned in a temporary location will be in the location, the address of
which was in AC2 at the time of the reference.

Finally, F77 passes all arguments to subprograms by reference. That is, the subprograms perform
operations directly on the arguments, and not on local copies of them.

VS/ECS Return Block

F77
The
runti
state

and other AOS/VS languages use the Virtual System / External Calling Sequence (VS/ECS).
VS/ECS return block is the fundamental data structure for linkage between routines in the F77
me environment. The block is built on the stack of the calling routine. The execution of a CALL
ment reaches this linkage for subroutine subprograms; a function reference reaches this linkage for

function subprograms. Software constructs the block in two separate steps:

1.
2.

6-2

The CALLING routine pushes onto the stack the addresses of the arguments it is passing.

The CALLED routine, as its first instruction, executes a WSAVS or WSAVR. This instruction
pushes a wide return block onto the stack. It also allocates the CALLED routine’s stack frame, if
needed, beyond this wide return block.

Licensed Material-Property of Data General Corporation 093-000288

The CALLED routine finishes by executing a WRTN instruction. This instruction:
e Pops the CALLED routine’s stack frame from the stack.

* Pops the wide return block from the stack.

e Returns to the CALLING routine.

Figure 6-1 contains a general diagram of the VS /ECS return block, and is followed by notes that apply
to the different items depicted in the figure. Next, Figures 6-2 and 6-3 further illustrate Figure 6-1
because they contain listings of a specific main program and CALLed subroutine. The subroutine iis
named TYP_SUB — an abbreviation of “typical subroutine.” The main program, since it tests
subroutine TYP_SUB, is named TEST_TYP_SUB. These listings, created by the F77 compiler with
the “/CODE” switch, confirm the way a subroutine accesses its arguments.

Several notes apply to phrases appearing in Figure 6-1.

Pointer to arg i
This is a word or byte pointer (depending on the data type) that points to argument .

The first argument is always the 12th (decimal) double word off the frame, the second argument is
always the 14th, etc.

REMEMBER — USE THE PARAMETERS FROM LANG_RT_PARAMS.SR!

Flags
These are status bits that the WSAVS or WSAVR instruction sets.

n

This number shares a word with Flags. It is the number of double words on the stack that are used for
argument and dope vector addresses. WRTN uses n to pop the complete contents of the return block off
the stack. (n is not always equal to the number of user-specified arguments on the stack.)

The parameter ARGS from LANG_RT_PARAMS.SR is the word offset to the 16 bits in whichn
resides. n is the right-most 15 of these 16 bits.

Old ACO
This is the saved value of ACO at the time of the call.

If a function subprogram is returning a value to the caller in ACO, then the result is placed here where
the WRTN instruction will pop it into the caller’s ACO.

To access this entry in the return block in order to refer to the caller’s ACO, use the paramecter offset
SAVEQ. To modify this entry in order to return a fixed-point function value, usc the parameter offset
FRTN.

093-000288 Licensed Material-Property of Data General Corporation 6'3

Decimal Contents Symbolic j
Frame . . offset -
Offset from FP (**)

~<— Old SP

-10 - 2*n Pointer to arg n ARG"N™
| -10 - 2% Pointer to arg i ARG"I™
n
c
r -10-4 Pointer to arg 2 ARG2
e
a -10 -2 Pointer to arg 1 ARG1
S
i -10 Flags | n (n/a) /ARGS
n
g -8 Old ACO SAVEO (= FRTN)
A -6 Old AC1 SAVE1
d
d -4 Old AC2 SAVEZ (= FTMP)
o2 Old FP OLDFP ~
e
s 0 C Return PC (*) —<— FP OLDPC
S
e| +2 First User Temporary TMP
s

Additional
Procedure Data
* The carry is bit O of this double word, and the PC is in

bits 1 through 31.

** These symbolic offsets are defined in the source file, LANG_RT_PARAMS.SR,
included with the AOS/VS Common Language Library. In all cases you should
always use these symbolic offsets, and not numeric offsets, to address
entries in the return block. The easiest way to work with these parameters
is to add them to your permanent symbol table file, MASM.PS. See the
AOS/VS Macroassembler Reference Manual for more information.

1D-00112

Figure 6-1. The VS/ECS Return Block

6'4 Licensed Material-Property of Data General Corporation 093-000288

-

Source

00 N O WU AW

P N N . S T =)
W o0 N MW A wih A O W

Source

00000

Line 7
00002
00004

Line 8
00006
00010

Line 9

00012
00014

DG-25233

file: TEST.TYP_SUB.F77

o

Compiled on 2-Aug-82 at 11:49:52 by A0S/VS F77 Rev 02.00.00.00
Options: F77/CODE/L=TEST-TYP.SUB.LS

PROGRAM TEST_TYP.SUB

THIS PROGRAM TESTS SUBROUTINE <TYP_SUB>. THIS PROGRAM'S

LISTING FILE, <TEST-TYP_SUB.LS>, SHOWS THE VS/ECS
RETURN BLOCK USED FOR LINKAGE WITH SUBROUTINES.

R1 = 25.2
R2 = 16.8
I1=133
I2 = 872

FIND THE OVERALL SUM.
CALL TYP_SUB (R1, R2, I1, I2, SUM4)
PRINT *, 'THE OVERALL SUM IS ', SUM4

STOP
END

file: TEST-TYP_SUB.F77

Opcode

123471

121011
161051

121011
161051

143051
161431

Compiled on 2-Aug-82 at 11:50:00 by A0S/VS F77 Rev 02.00.00.00

Code Listing

Instruction Reference

TEST.TYP_SUB:

WSAVS 20 . 16.
XFLDS 0,.-4 . [-2] 25.2
XFSTS 0,+14,3 . 12. R
XFLDS 0,.-12 . [-4] 16.8
XFSTS 0.+16,3 . 14. R2
NLDAT 41,0 ; 33.

XWSTA 0,+20,3 ; 16, I1

Figure 6-2. A Listing of TEST_TYP_SUB.F77 and Its Generated Code (continues)

093-000288

Licensed Material-Property of Data General Corporation

DG-25233

Line 10

00016
60020

Line 14

00022
00024
00026
00030
00032
00034*

Line 16

00040
00042
00044*
60050
00052
00054
00056
00057+
00062
00063
00065*
00071
60073*
00077*

Line 18

00103*

147051
165431

117051
117051
117051
117051
117051
123311

107051
107051
123311
1470351
132011
176011
163511
123371
157151
137081
123311
117051
123311
123311

123311

NLDAI 1550,1 ; 872.
XWSTA 1,122,3 ; 18, I2
XPEF +24,3 ; 20. SUM4
XPEF f22,3 ; 18, 12
XPEF +20,3 ; 16, I1
XPEF +16,3 ; 14. R2
XPEF 14,3 ; 12. R1
LCALL TYP.SUB,5
XPEF .143 ; [103] $.536
XPEF .-64 ; [-22] <dope>
LCALL F77E?EXTERNAL FILE_INIT.LD_WRITE,?2
NLDAI 12,1 ; 10.
XLEF 2,.-70 ; [-16] THE OVERALL SUM IS
XLEF 3,126,3 ; 22. <temp>
WBLM
LPEF 10
LDAFP 3
XPEFB +54,3 ; 44, <temp>
LCALL F77E?FILELD.WNRITE.CHAR,2
XPEF 24,3 ; 20. SUM4
LCALL F77E?FILELD-WRITE_REAL4,1
LCALL F77E?FILE_TERM_LD_WRITE,O

$.536:
LCALL F.STOPN,O

6-6

Figure 6-2. A Listing of TEST._TYP_SUB.F77 and Its Generated Code (concluded)

Licensed Material-Property of Data General Corporation

093-000288

Source file: TYP_SUB.F77
Compiled on 2-Aug-82 at 11:35:47 by A0S/VS F77 Rev 02.00.00.00
Options: F77/CODE/L=TYP_SUB.LS

1 SUBROUTINE TYP.SUB (REAL-1, REAL-2, INT_1, INT-2, OVERALL)
: SUM_REALS = REAL.1 + REAL2

g SUM_INTS = FLOAT(INT-1 + INT22)

3 OVERALL = SUMREALS + SUM_INTS

: RETURN
10 END

Source file: TYP-SUB.F77
Compiled on 2-Aug-82 at 11:35:54 by A0S/VS F77 Rev 02.00.00.00

Code Listing

Reloc Opcode Instruction Reference
Line 1

TYP_SUB:
00000 123471 WSAVS 11 ;9.
Line 3
00002 161011 XFLDS 0,@-14,3 ; -12. REAL
00004 160011 XFAMS 0,@-16,3 ; -14. REAL2
00006 161051 XFSTS 0,416,3 ; 14. SUMREALS
Line §
00010 161411 XWLDA 0,0-20,3 ; =16, INT.A
00012 160430 XWADD 0,@-22,3 ; -18. INT2
00014 102251 WFLAD 0,0
00015 102330 FRDS 6,0
00016 161051 XFSTS 0,+20,3 ; 16. SUM_INTS
Line 7
00020 161011 XFLDS 0,120,3 ; 16. SUM_INTS
00022 160011 XFAMS 0,116.3 ; 14. SUMREALS
00024 161051 XFSTS 0,8-24,3 ; -20. OVERALL
Line 9
00026 103651 WRTN

DG-25234

Figure 6-3. A Listing of TYP_SUB.F77 and Its Generated Code

093-000288 Licensed Material-Property of Data General Corporation

Old AC1
This is the saved value of ACI at the time of the call.

To access this entry in the return block, use the parameter offset SAVE1.

Old AC2
This is the saved value of AC2 at the time of the call.

If a functicn subprogram is returning a value in a temporary location, AC2 will have been loaded (prior
to the call) with a word pointer to a suitable temporary location.

To access this entry in the return block in order to refer to the caller’s AC2, use the parameter offset
SAVEZ2. To refer to this entry as a pointer to the temporary location, use the parameter offset FTMP.

Old FP
This is the caller’s frame pointer.

To access this entry in the return block, use the parameter offset OLDFP.

C[Return PC
These are the values of the carry bit and of the PC. The WRTN instruction restores these values.
To access these entries in the return block, use the parameter offset OLDPC.

Note how Figures 6-2 and 6-3 illustrate the general principles of Figure 6-1. For example, the fourth
argument in both program units is the second of the two integer numbers to be added. Its name is 12 in
TEST_TYP_SUB.F77 and INT_2 in TYP_SUB.F77. Both 12 and INT_2 refer to the same memory
location; its offset is 18 words from the frame pointer. Observe that the compiler has generated code
that places this fourth argument on the stack after it has placed the fifth argument there.

Function Subprograms

Function subprograms return one value to the caller. Under the VS/ECS convention, this value arrives
to the caller in either an accumulator or in a compiler-generated temporary location, depending on the
data type.

The following list shows where a VS/ECS function returns its value and under what circumstances

In ACO: If the function specifies a result data type of INTEGER*2, INTEGER*4,
LOGICAL*2, or LOGICAL*4, then the VS/ECS software returns the
value in ACO by placing it in FRTN in the return block just before returning
to the caller.

In FPACO: If the function specifies a result data type of REAL*4 or REAL*8
(DOUBLE PRECISION), then the VS/ECS software returns the value by
moving it into floating-point accumulator FPACO just before returning to

the caller.
Ina TEMPORARY If the function specifies any data type other than the above six, then the
whose address VS/ECS software places the result in a suitable temporary. The called
is in AC2; routine finds this temporary by using the word address found in FTMP of

the return block. Instructions could need to copy and convert this address to
a byte address inside character functions. However, the called routine must
not change the actual value in FTMP.

6'8 Licensed Material-Property of Data General Corporation 093-000288

Coding Assembly Language Routines for Use with F77 with Macros

When writing assembly language routines for F77, you may want to use the set of macros and symbols
supplied in the files VF77SYM.SR, F77_FMAC.SR, PARF77.SR, and LANG_RT_PARAMS.SR.
This section describes the use of the FORTRAN CALL macro set contained in the first two of these
files.

These macros are supplied to aid in converting existing FORTRAN 5 programs that have used
FMAC.SR . The AOS/VS file F77_FMAC.SR is a subset of the FORTRAN 5 file FMAC.SR,
because some concepts and features present in the AOS environment do not transport to the AOS/VS
environment,

Some of the things that the macros are used for are:

» To handle passed-in arguments (NXTARG, SKPARG).

» To manipulate the stack- and frame-pointers (ISZSP, DSZSP, ISZFP, DSZFP).

* To set up entry points to your routine (NENTRY, PENTRY, FENTRY, ZENTRY).
e To define arguments and temporaries (DEFARGS, DEFTEMPS).

» To return from your routine (ISA.NORM, ISA.ERR).

Documentation on all the macros is available in file F77_FMAC.SR and in the FORTRAN 5
Programmer’s Guide (AOS). The macros summarized here are

TITLE
STATTR
DEFARGS
DEFTMPS
DEF
FENTRY
FRET
END

If these macros are used, TITLE must be the first one invoked (except for preliminary comment lines).
This macro specifies the title of the routine you are writing and initializes the environment for the other
macros.

When using FMAC.SR, you needed to use the S2ATTR macro. Under AOS/VS, this is no longer
needed. Any use of STATTR will be a no-op.

DEFARGS immediately follows TITLE. This macro is used to start the definition of your routine’s
arguments. You should define each argument using the DEF macro. For example:

TITLE ESSAY
DEFARGS
DEF SOUND
DEF SPECIOUS

These four lines declare two arguments, SOUND and SPECIOUS, in the routine ESSAY. Even if your
routine has no arguments, you must use DEFARGS.

093-000288 Licensed Material-Property of Data General Corporation 6"9

DEFTMPS follows DEFARGS and DEF’s (if any). DEFTMPS is used to start the definitions of your
routine’s temporaries. You use DEF to define each temporary. For example:

DEFTMPS
DEF BO (10.) ; Argument is size in 16-bit words
(must be in parentheses).
; When no argument is given,
the default length of 1 word is assumed.

DEFTMPS must appear even if your routine does not require any temporaries.

DEF names each of your routine’s arguments and temporaries. You must name the arguments in the
order in which they appear when the routine is CALLed. In FORTRAN programming environments,
itis always your responsibility to ensure that the arguments provided by the calling routine match those
expected by the called routine in number, order and type.

DEF assigns to the symbol you supply a unique, sequential offset on the stack. Entries on the stack are
addressed by indexing from the current frame pointer, which must be loaded into either AC2 or AC3.
At the beginning of your routine, AC3 contains the value of the frame pointer. To access an argument
passed by the caller, use the symbol for the argument, indexed by the AC containing the frame pointer,
as an indirect address. Temporaries on the stack are accessed by using the symbol for the temporary,
indexed by the AC containing the frame pointer.

FENTRY foliows DEFARGS and DEFTMPS. FENTRY generates a WSAVS instruction and defines
your entry point. AC3 contains the frame pointer when the first instruction after FENTRY is executed.

Finally, your subprogram code can be written. You can use any AC’s or FPAC’s you need — the AC’s
will be restored as required when your routine completes.

FRET returns control to the calling routine. This macro generates a WRTN instruction, which restores
the caller’s environment, and resumes execution of the caller.

END must be the last line of your routine. This macro generates a .END assembler directive, and
terminates the environment set up by the previous macros.

See the next section for an examples of complete assembly language subroutines.

F77-to-Assembly Interface Examples

Figure 6-4 contains a listing of program TEST_RUNTM.F77. As its name implies, the program tests
subroutine RUNTM which, in turn, makes a PRUNTM system call to obtain process statistics. Figure
6-5 contains a listing of the first version of assembly language subroutine RUNTM.SR. It uses the
symbols for stack displacement from the files VF77SYM.SR (and F77_FMAC.SR to access the
arguments from the calling routine. Figure 6-6 contains a listing of the second version of assembly
language subroutine RUNTM.SR. It also uses symbols for stack displacement from VF77SYM.SR
and F77_FMAC.SR and, in addition, uses FORTRAN 77 CALL macros from these files.

NOTE: The first pages of both versions of RUNTM.SR are identical, except for the instructions to
assemble RUNTM.SR.

6' 1 O Licensed Material-Property of Data General Corporation 093-000288

DG-25235

10

PROGRAM TEST.RUNTM

THIS PROGRAM TESTS SUBROUTINE <RUNTM> WHICH RETURNS THE
PROCESS'S RUNTIME STATISTICS.

THE ARGUMENTS GIVEN TO <RUNTM> ARE:

NONE

THE ARGUMENTS RETURNED BY <RUNTM> ARE:

INTEGER*4 ELAPSED | ELAPSED TIME IN SECONDS
SINCE PROCESS'S CREATION

INTEGER*4 CPU I PROCESS’S CPU TIME IN
MILLISECONDS

INTEGER*4 I0_BLOCKS ! NUMBER OF I/0 BLOCKS READ
OR WRITTEN

INTEGER*4 PAGEMILSECS ! NUMBER OF PAGE/MILLISECONDS

INTEGER*4 IER ! ERROR CODE FROM <RUNTM>

CRUNCH SOME NUMBERS TO ACCUMULATE SOME CPU TIME.
DO 10 I = 1, 10000
X = FLOAT(I)
VARIABLE1 = SIN(X) + TAN(X) - SQRT(X)
VARIABLE2 = 1.0/VARIABLE1
CONTINUE

OBTAIN THE PROCESS'S RUNTIME STATISTICS.
CALL RUNTM(ELAPSED, CPU, I0-BLOCKS, PAGE_MILSECS, IER)

DISPLAY THE RESULTS.
IF (IER .NE. O) THEN
PRINT *, "ERROR ', IER, ' OCCURRED DURING EXECUTION ',
"OF SUBROUTINE RUNTM.’

ELSE
PRINT *, 'PROCESS ELAPSED TIME IN SECONDS: ", ELAPSED
PRINT *, 'PROCESS CPU TIME IN MILLISECONDS: ', CPU
PRINT *, 'NUMBER OF I/0 BLOCKS: ", TO-BLOCKS
PRINT *, "NUMBER OF PAGE/MILLISECONDS: ", PAGE-MILSECS
ENDIF
PRINT *

PRINT *, "*** END OF JOB ***’

CALL EXIT
END

093-000288

Figure 6-4. Main Program TEST_RUNTM.F77

Licensed Material-Property of Data General Corporation

6-11

SUBROUTINE RUNTM.SR
; This F77-callable assembly subroutine obtains process runtime
; statistics by making a “?RUNTM” system call. It uses
; the VS/ECS conventions.
; This routine executes in the sharable code area, but builds the packet
: for the system call on the user’s stack, in unshared
: memory. Note carefully how the offsets that define
; the system call packet are used for addressing the stack.

; CALL Syntax:
; CALL RUNTM (IELAPSED, ICPU, IIOBLKS, IP_MS, IER)

; Arguments (all returned to caller):

TIELAPSED: INTEGER*4 (elapsed time in seconds
; since process’s creation)
; ICPU: INTEGER*4 (process’'s CPU time in
: milliseconds)
; TI0-BLKS INTEGER*4 (number of 1/0 blocks read
: or written)
; IP_MS: INTEGER*4 (number of page/milliseconds)
: IER: INTEGER*4 (error code from ?RUNTM)

; To assemble this routine:

* With LANG_RT_PARAMS.SR built into MASM.PS:

. —r
; X MASM RUNTM
; * With LANG-RT_PARAMS.SR not built into MASM.PS:
; X MASM/0=RUNTM.0B LANG_RT_PARAMS.SR/PASS1 RUNTM
; To link this routine with F77 programs:
; F77LINK main-program-name RUNTM
DG-25236
Figure 6-5. Subroutine RUNTM .SR, Version | (continues)
~
6' 1 2 Licensed Material-Property of Data General Corporation 093-000288

o ok ok ok ok ok ok ok ok %k K ok ok %k ok ok K K ok ok ok ok k ok % k%
B

.TITLE RUNTM
-ENT RUNTM

-NREL 1

PACKET = TMP

Version 1

% 2k %k ok ok Kk ok kK ok K ok ok ok kK R %k k kK K ok K ok ok

; Shared.

; To build ?RUNTM packet on the stack,

PACKETLEN = (?GRLTH+1)/2

define packet start as the offset to
the first user temporary,

and calculate the maximum number of
double words on the stack which will
be needed to build the packet -- by
adding 1 to packet length in single
words, and dividing by 2.

RUNTM: ; Routine entry:
WSAVS PACKETLEN ; Save the state, and enough stack
; space for the packet, and put
; AC3 <== my FRAME POINTER.
; Make system call:
WADC 0.0 ; ACO <== -1 to indicate this process
XLEF 2,PACKET,3 ; AC2 <== address of packet
?RUNTM ; Get runtime stats
WBR RUNTERROR ; Error on system call
; Good return:
; Move values into caller’'s arguments
XWLDA 0,PACKET+?GRRH,3 ; Get elapsed time in seconds
XNSTA 0,@AR61,3 ; Put into 1st argument via pointer
XWLDA 0,PACKETT?GRCH,3 ; Get CPU time in milliseconds
XWSTA 0,@ARG2,3 ; Put into 2nd argument via pointer
XWLDA O0,PACKET+?GRIH,3 ; Get I/0 blocks read or written
XWSTA 0,8ARG3,3 ; Put into 3rd argument via pointer
XWLDA 0,PACKET+?GRPH,3 ; Get # page/milliseconds
XWSTA 0,@ARG4,3 ; Put into 4th argument via pointer
WSUB 0,0 ; Zero ACO to show good return
RUNTERROR: ; Enter here if error. Common path
; for setting error return variable:
XWSTA 0,@ARG5,3 ; Put (ACO) into Sth argument.
WRTN ; Go back to F77 caller.
.END
DG-25236
Figure 6-5. Subroutine RUNTM.SR, Version I (concluded)
093-000288 Licensed Material-Property of Data General Corporation 6' 1 3

DG-25237

'

SUBROUTINE RUNTM.SR

; This F77-callable assembly subroutine obtains process runtime
statistics by making a “?RUNTM” system call. It uses

H

v

’
H
v
’
v
H

the VS/ECS conventions.

This routine executes in the sharable code area, but builds the packet
for the system call on the user’'s stack, in unshared
memory. Note carefully how the offsets that define
the system call packet are used for addressing the stack.

CALL Syntax:

CALL RUNTM (IELAPSED, ICPU, IIO_BLKS, IP_MS, IER)

Arguments (all returned to caller):

IELAPSED: INTEGER*4
ICPU: INTEGER*4
IT0-BLKS INTEGER*4
IP_MS: INTEGER*4
IER: INTEGER*4

; To assemble this routine:

(elapsed time in seconds
since process’s creation)
(process’s CPU time in
milliseconds)
(number of I/0 blocks read
or written)
(number of page/milliseconds)
(error code from ?RUNTM)

* With LANG_RT_PARAMS.SR built into MASM.PS:

X MASM RUNTM

* With LANG-RTPARAMS_SR not built into MASM.PS:

X MASM/0=RUNTM.0B LANG_RT_PARAMS.SR/PASS1
VF77SYM.SR/PASS1 F77-FMAC.SR/PASS1 RUNTM

To link this routine with F77 programs:

F77LINK main-program-name RUNTM

Figure 6-6. Subroutine RUNTM.SR, Version 2 (continues)

Licensed Material-Property of Data General Corporation 093-000288

o ek ok ok ok ok ok ok ok ok ok ok ok k% %k ok ok ok K ok ok ok ok ok Xk
H

TITLE

DEFARGS

DEF IELAPSED
DEF ICPU

DEF IIO

DEF IPMS

DEF ERR—STAT

DEFTMPS
DEF PACKET (?GRLTH)

; Macros defined in F77_FMAC.SR ar

RUNTM

7

verSIOn 2 % ok ok %k ok ok %k Kk %k %k ok ok Kk k k %k k ok ok K Kk Kk ok %k %k

e identified by “@FMAC” in comment field.

; Name the object module, generate @FMAC

a language identifying tag comment,
and specify shared code.

; Begin argument definitions: @FMAC

’

H

@FMAC
@FMAC
@FMAC
@FMAC

; (Use two underscores since this is @FMAC

an argument to a macro that removes
one of them: “ERR_STAT” becomes
“ERRSTAT" as desired.)

Begin temporary definitions: @FMAC
To build ?RUNTM packet on the stack, @FMAC
define PACKET as a temporary, with
length equal to the maximum number of
words needed to build the packet.

FENTRY RUNTM ; Routine entry: @FMAC
WADC 0,0 ; ACO <== -1 to indicate this process
XLEF 2,PACKET,3 ; AC2 <== address of packet
?RUNTM ; Get runtime stats
WBR RUNTERR ; Error on system call
; Good return:
; move values into caller’s arguments
XWLDA 0O,PACKET+?GRRH,3 ; Get elapsed time in seconds
XWSTA 0,@IELAPSED,3 ; Put into IELAPSED via address on stack
XNLDA O,PACKETH+?GRCH,3 ; Get CPU time in milliseconds
XWSTA 0,@ICPU,3 ; Put into ICPU via address on stack
XWLDA O,PACKET+?GRIH,3 ; Get I/0 blocks read or written
XWSTA 0,8I1I0,3 ; Put into IIO0 via address on stack
XWLDA 0,PACKET+?6RPH,3 ; Get # page/milliseconds
XWNSTA 0,8IPMS,3 ; Put into IPMS via address on stack
WSUB 0,0 ; Zero ACO to show good return
RUNTERR: ; Enter here if error. Common path
for setting error return variable:
XWNSTA 0,@ERR-STAT,3 ; Put code into ERRSTAT via argument.
FRET ; 6o back to F77 caller. @FMAC
END @FMAC
DG-25237
Figure 6-6. Subroutine RUNTM.SR, Version 2 (concluded)
093-000288 Licensed Material-Property of Data General Corporation 6‘ 1 5

The following commands assemble the first version of RUNTM.SR (assuming that
LANG_RT_PARAMS.SR is not built into MASM.PS), compile TEST_RUNTM.F77, and create
TEST_RUNTM.PR:

X MASM/0O=RUNTM.OB LANG_RT_PARAMS.SR/PASS1 RUNTM
F77 TEST_RUNTM
F77LINK TEST_RUNTM RUNTM

The following commands assemble the second version of RUNTM.SR (assuming that
LANG_RT_PARAMS.SR is not built into MASM.PS), compile TEST_RUNTM.F77, and create
TEST_RUNTM.PR:

X MASM/0O=RUNTM.OB LANG_RT_PARAMS.SR/PASS1 &
VF77SYM.SR/PASS1 F77_FMAC.SR/PASS1 RUNTM

F77 TEST_RUNTM

F77LINK TEST_RUNTM RUNTM

Let’s look at the results of executing TEST_RUNTM.PR (with either version of RUNTM.SR):
) X TEST_RUNTM |

PROCESS ELAPSED TIME IN SECONDS: 3
PROCESS CPU TIME IN MILLISECONDS: 1381
NUMBER OF I/O BLOCKS: 0
NUMBER OF PAGE/MILLISECONDS: 13

¥** END OF JOB ***
The results usually vary slightly each time TEST _RUNTM.PR executes.

Incompatibilities Between AOS and AOS/VS F77 Macro F77_FMAC.SR

Argument Names

The symbols ARGO, ARG, ..., ARG15 were used in AOS F77 F77_FMAC.SR to provide symbolic
access to arguments on the stack that are passed to assembly language subroutines. AOS/VS
LANG_RT._PARAMS.SR defines different values of these symbols because of the different method
of passing arguments. AOS F77 made a distinction between functions and subroutines. If the routine
was a subroutine, then the first argument in the list was referred to as ARGO; if it was a function, then
ARGT1 was the first argument, and ARGO designated the slot to be used for the function result. With
AOS/VS F77, the last slot pushed is the first argument that the user wrote; no ARGO is needed.

This might cause a problem with existing assembly language routines that are migrating from the AOS
F77 or AOS FORTRAN 5 environment. Consider the two possible cases:

Routine type Conversion action required

Subroutine (no Add 1 to the ARGn references (e.g., change ARG1 to ARG2).
result argument)

Function Results are handled DIFFERENTLY . See the previous section
“Function Subprograms.”

Differences in Macros ISZFP, DSZFP, ISZSP, and DSZSP

The macros ISZFP, DSZFP, ISZSP, and DSZSP are different under AOS/VS because the stack- and
frame-pointers are not present in a memory location in the address space as they are under AOS.

Under AOS, these macros are invoked with no argument to increment or decrement the stack or frame
pointer, and with the argument “@” to increment or decrement the location pointed to by the
corresponding pointer. The AOS/VS versions need to be invoked with an accumulator that they can use
for scratch purposes for the operation. The previous contents of the accumulator will be lost. If the “@”
argument is used, then the next sequential word will be skipped if the result of the operation is zero.

6' 1 6 Licensed Material-Property of Data General Corporation 093-000288

AOS Form AOS/VS Form

ISZFP ISZFP n
ISZFP @ ISZFP @,n

If you use the the “@” option, n must be 2 or 3 (an index AC).

Nonsupported Macros
AOS/VS F77 does not support the following macros in F77_FMAC.SR.

ARGS C?WNL P?SET
C?BAD IS1.ERR TMPS
C7BNL ISI.NORM U?DATA
C?DEF ISAENTRY U?DSZ
C?NIL LDC U?ISZ
C?NOD M?BARG U?LDA
C?WAD M?WARG U?STA

New Macros ISA.NORM and ISA.ERR

The macros ISA.NORM and ISA.ERR have been changed in the F77_FMAC.SR file supplied with
AOS F77 and AOS/VS F77 from the previous versions of FMAC.SR. The AOS F77 and AOS/VS
F77 functionality of these two changed macros is identical.

The macros ISA.NORM and ISA .ERR have been changed because of a side effect of the presence of
character data in FORTRAN 77. When you pass a character argument, F77 also passes a “dope
vector” for that argument which describes the length of the character argument. This length is used by
the called routine when the character argument is referenced. A call of the form

CALL SUB(C1,1,C2,)
where C1 and C2 are CHARACTER variables, is really treated by the compiler as
CALL SUB(CI, 1, C2, J, <dope for Cl >, #, <<dope for C2>>)

Here “#” is simply a placeholder because “I”, not being a character argument, does not need a dope
vector. Note that there is no corresponding placeholder for “J” at the end of the list because it would
have been the first argument whose address is pushed (such addresses are pushed in reverse order) and
would be as useless as extra leading zeros when writing numbers.

The ISA.NORM and ISA.ERR macros from FMAC.SR assumed that the last argument in the list
(whose address was the first one pushed) was the ier argument. The macro had no way of knowing that
the last argument was not really the ier argument, but rather a dope vector, when character entities
were passed.

F77_FMAC.SR contains modified versions of ISA.NORM and ISA.ERR:
Old Syntax New Syntax
ISA.NORM ISA.NORM Jier_pos]
ISA.ERR /errorcode] ISA.ERR [new_errorcode [,ier_pos]]

If the routine you are writing is not called with character arguments, then you may omit “ier_pos”. The
presence of “ier_pos” tells ISA.NORM and ISA.ERR not to assume that the last argument is the “ier”
argument, and to use the supplied position.

“new_errorcode” is used exactly as “errorcode” except that it can additionally take the value “*”,
which means to use the value of the errorcode that is in ACQ. The symbol “*” is a placeholder, which
allows you to specify a nondefault “ier_pos” and to supply the errorcode in ACO.

Examples: ISA.ERR *3 - ier is argument 3, error code is in ACO
ISA.NORM 5 - ier is argument 5

093-000288 Licensed Material-Property of Data General Corporation 6- 1 7

Compatibility Between Languages

One of the features of F77 is that the calling conventions and the return block format it uses are
compatible with other AOS/VS languages that also use the Common Code Generator. We refer to
these conventions as the “VS/ECS” — an acronym for Virtual System / External Calling Sequence.
The languages using the Common Code Generator are BASIC, C, COBOL, PASCAL, and PL/IL

For example, you can write a subroutine in F77 to call a procedure written in PL/I; a PL/1 procedure
can refer to an F77 function subprogram in the same way it would refer to a PL/I procedure with a
RETURNS attribute; and BASIC programs can access subroutines written in F77. The rest of this
chapter explains subprograms written in F77 and linkage to them.

The arguments in the parameter lists of the calling and called routines must agree in number, order,
and type. Furthermore, you must make sure that the internal representations of any arguments or
returned values are compatible. For example, an F77 argument declared as INTEGER*2 requires a
PL/I caller to declare its corresponding argument as FIXED BIN(15). Some data types in other
languages may not have a corresponding data type in F77, and vice versa. For example:

* F77 does not support any data types that correspond to PL/I’s ALIGNED CHARACTER,
VARYING CHARACTER, or BIT data types.

* F77 does not support any data type that corresponds to BASIC’s variable length strings.
» COBOL does not support any data type that corresponds to F77’s COMPLEX data type.

You must be familiar with the internal data representation of both languages.

Multidimension Array Storage

F77 stores the elements of a multidimension array differently from other languages. It stores them by
varying the left-most subscript most rapidly, while other languages vary the right-most subscript most
rapidly. For example, the northern New England states have the abbreviations VT, NH, and ME (for
Vermont, New Hampshire, and Maine) while the abbreviations for the southern New England states
are MA, CT, and RI (for Massachusetts, Connecticut, and Rhode Island). It seems natural to place
these six abbreviations in a two-dimension array with two rows and three columns. The following
sequences of F77 and PL/I statements accomplish this.

PROGRAM STATES STATES: PROCEDURE;
CHARACTER*2 NE_STATES(2,3) DECLARE NE.STATES(2,3)
CHARACTER(2):

NE-STATES(1,1) = 'VvT’ NE_STATES(1.1) = "VT';
NE_STATES(1,2) = 'NH’ NE_STATES(1,2) = 'NH’;
NE-STATES(1.3) = 'ME’ NE_STATES(1,3) = "ME’;
NESTATES(2,1) = 'MA’ NESTATES(2.1) = "MA’;
NE_STATES(2,2) = 'CT’ NELSTATES(2,2) = "CT';
NE_STATES(2,3) = 'RI’ NE-STATES(2,3) = 'RI’;

We can think that the six elements of NE_STATES are stored as

Column 1 Column 2 Column 3
Row 1 vT NH ME
Row 2 MA cT RI

to aid in the coding process.

6' 1 8 Licensed Material-Property of Data General Corporation 093-000288

Such thinking helps in constructing statements to interchange the corresponding elements in the rows
so that NE_STATES would then contain

Column 1 Column 2 Column 3
Row 1 MA CT RI
Row 2 VT NH ME

F77 and the other Common Code Generator languages store the six elements of NE_STATES in six
sequential storage locations with increasing addresses. F77 stores the six elements differently from the
other languages. See Figure 6-7.

Increasing Addresses
£77|NE—STATES (1, 1)|NE_STATES (2,1)|NE_STATES (1,2) NE_STATES (2,2)|NE_STATES (1,3)|NE_STATES (2,3)
VT "MA’ ‘NH’ cT ‘ME’ "RI
Increasing Addresses
fthef NE_STATES (1,1)|NE_STATES (1,2)] NE_STATES (1,3)| NE_STATES (2, 1)|NE_STATES (2,2)|NE_STATES (2,3)
anguages T "‘NH’ “ME’ ‘MA’ T ‘R
1D-00113

Figure 6-7. An Example of Storage of Multidimension Arrays by F77 and Other Languages

We write a rather specialized F77 subroutine to swap the corresponding elements of an array such as
NE_STATES. The resulting subroutine SWAP_ROWS.F77 appears next.

SUBROUTINE SWAP_RONS (ARRAY)
INTEGER*2 COLUMN
CHARACTER*2 ARRAY(2,3), TEMP

DO 10 COLUMN = 1, 3
TEMP = ARRAY(1,COLUMN)
ARRAY(1,COLUMN) = ARRAY(2,COLUMN)
ARRAY(2,COLUMN) = TEMP
10 CONTINUE
RETURN
END

093-000288 Licensed Material-Property of Data General Corporation 6' 1 9

If we add the statement

CALL SWAP_ROWS (NE_STATES)

to STATES.F77, then its compilation and linking with SWAP_ROWS correctly results at runtime in

Column 1 Column 2 Column 3
Row 1 MA cT RI
Row 2 VT NH ME

However, if we add the statement

CALL SWAP.ROWS (NE_STATES):

to STATES.PLI, then its compilation and linking with SWAP_ROWS incorrectly results at runtime
in

Column 1 Column 2 Column 3
Row 1 NH VT MA
Row 2 ME RI cT

The difference in the results occurs because of the different sequential storage of array NE_STATES
by F77 and by PL/I.

To generalize from this example, you must be careful when you write F77 subroutines to process
multidimension arrays from calling programs that are in a language different from F77. You have to
allow for F77’s different storage of these arrays. Single dimension arrays and simple variables present
no such problem.

Case Sensitivity

F77 and BASIC are case-insensitive because they map all external references to uppercase letters. For
example, a CALL to subroutine VaRiEs compels Link to locate and load the module with external
entry point “VARIES” into the program file. PL/I and Link are case sensitive. So

* You must declare in uppercase letters the name of any F77 subprogram that you call or refer to in
a PL/I source module.

* You should declare in uppercase letters the name of any PL/I subprogram that you call or refer to
in an F77 source module.

A general way to avoid problems is to use uppercase letters in any program module name and in
commands to Link.

6'20 Licensed Material-Property of Data General Corporation 093-000288

LANG_RT.LB

F77 and the other Common Code Generator languages use the same set of common mathematics and
system interface routines, all of which conform to VS/ECS. This set is in LANG_RT.LB, the
AOS/VS Common Language Library. Each language also uses a separate set of runtime routines to
handle 1/0O and certain support functions. These routines are language-specific. If you try to link these
separate runtime routines into the same program file, conflicts could arise between the names of (and
operations performed by) routines from F77, and the names and operations from another language. To
avoid this situation, design your program so that only one language does all of the program’s 1/0.

A Sample Subprogram and its Caller

Figure 6-8 contains a listing of subroutine subprogram GENERAL.F77. This subroutine:

e Receives an array of single-precision floating-point numbers.

« Receives an array of INTEGER*2 numbers.

¢ Receives a single-precision floating-point number that is an angle measurement (in degrees).

e Returns the largest of the single-precision floating-point numbers.

« Returns the smallest of the INTEGER*2 numbers.

+ Returns the trigonometric sine of the received angle.

» Returns 1 in an error variable if there are too few elements in either array; otherwise, returns 0.

GENERAL.F77 exists so that the other Common Code Generator languages can call it to process their
data. You will soon see sample programs, written in BASIC, C, PASCAL, and PL/I (as well as F77)
that call GENERAL. COBOL is different enough to require a modification of GENERAL.F77 whose
name is GENERAL1.F77.

Figure 6-9 contains a listing of main program TEST_GENERAL.F77. As its name implies,
TEST_GENERAL.F77 is an F77 program to test subroutine GENERAL.

Note that all the variables in GENERAL.F77 and TEST_GENERAL.F77 are cither REAL*4 or
INTEGER*2. Each of the Common Code Generator Languages supports these two data types.

The compilation, link, and execution commands for TEST_GENERAL.F77 and GENERAL.F77 are

F77 TEST_GENERAL

F77 GENERAL

F77LINK TEST_GENERAL GENERAL
XEQ TEST_GENERAL

The output displayed in response to the last command is

THE LARGEST REAL*4 NUMBER IS: 8.94
THE SMALLEST INTEGER*2 NUMBER IS: -2846
THE SINE OF 30. DEGREES IS: .5

STOP

093-000288 Licensed Material-Property of Data General Corporation 6‘2 1

10

20

SUBROUTINE GENERAL (REAL_ARRAY, REAL_SIZE, INT_ARRAY, INT_SIZE,
ANGLE, LARGEST_REAL, SMALLEST_INT, SINE_ANGLE, ERROR)

INTEGER*2 REAL_SIZE

REAL*4 REAL_ARRAY(REAL_SIZE)
INTEGER*2 INT_SIZE

INTEGER*2 INT_ARRAY(INT-SIZE)
REAL*4 ANGLE

REAL*4 LARGEST-REAL
INTEGER*2 SMALLEST_INT
REAL*4 SINE-ANGLE

INTEGER*2 ERROR

ERROR = 0 I Assume there's no error in the array sizes.
But, check the sizes and RETURN with the
error variable set if there is an error.

IF (REAL.SIZE _LT. 1 .OR. INT-SIZE .LT. 1) THEN

ERROR = 1
RETURN
ENDIF

Find the largest element in <REAL_ARRAY> and place it in
<LARGEST-REAL>.
LARGEST_REAL = REAL_ARRAY(1)
DO 10 I = 2, REALSIZE
IF (REAL-ARRAY(I) .GT. LARGEST_REAL)
LARGEST_REAL = REAL_ARRAY(I)
CONTINUE

Find the smallest element in <INT-ARRAY> and place it in
<SMALLEST.INT>.
SMALLEST-INT = INT_ARRAY(1)
DO 20 I = 2, INT_SIZE
IF (INTAARRAY(I) .LT. SMALLEST_INT)
SMALLESTLINT = INT_ARRAY(I)
CONTINUE

Compute the sine of <ANGLE> after converting <ANGLE> from degrees to
radians.
SINE_ANGLE = SIN(3.141593*ANGLE/180.0) ! PI radians = 180 degrees.

Done!
RETURN
END
DG-25238
Figure 6-8. Subroutine Subprogram GENERAL.F77
6'22 Licensed Material-Property ot Data General Corporation 093-000288

PROGRAM TEST-GENERAL I to test subroutine GENERAL

REAL*4 REALS(10} / 8.61, -6.00, 8.94, 4.18,

3.40,
7.56, -9.57, 0.00, -1.24,
0/

0.52 /
INTEGER*2 RSIZE /1
INTEGER*2 INTS(5) / 386, -2846, 3091, -33, 5104 /
INTEGER*2 I.SIZE / 5/
REAL*4 ANGLE / 30.0 /
REAL*4 BIG-REAL
INTEGER*2 SMALLLINT
REAL*4 SINE_ANGLE
INTEGER*2 IER
C Here we go ...
CALL GENERAL (REALS, RSIZE, INTS, I_SIZE, ANGLE,
BIGREAL, SMALL_INT, SINE_ANGLE, IER)
IF (IER .EQ. 0) THEN
PRINT *
PRINT *, 'THE LARGEST REAL*4 NUMBER 1IS: ", BIG_REAL
PRINT *, 'THE SMALLEST INTEGER*2 NUMBER IS: ", SMALL.INT
PRINT *, "THE SINE OF ', ANGLE, ' DEGREES IS: ', SINE_ANGLE
PRINT *
ELSE
PRINT *
PRINT *, "ERROR OCCURRED IN SUBROUTINE GENERAL.’
PRINT *
ENDIF
sToP
END
DG-25239
Figure 6-9. Main Program TEST_GENERAL.F77
093-000288 Licensed Material-Property of Data General Corporation 6'23

High-Level Languages and F77 Subroutines

BASIC, C, COBOL, F77, PASCAL, and PL/I follow VS/ECS. The rest of this chapter consists of the \/)
following for each language, except F77:

* A list of F77 data types and the language’s corresponding data types.

* A sample program in the language that calls GENERAL.F77 (or, in the case of COBOL,
GENERALI1.F77).

* An explanation of any peculiarities of the language that affect F77 subroutines. You're already
aware of COBOL.

BASIC and F77

This section lists F77 data types and their BASIC correspondents. It also shows the BASIC program
TEST_GENERAL.BASIC, that calls subroutine GENERAL.F77.

F77 and BASIC Data Types

F77 BASIC
INTEGER*2 INTEGER and INTEGER*2
INTEGER*4 INTEGER*4
REAL*4 REAL and REAL*4
REAL*8 and REAL*8
DOUBLE PRECISION
COMPLEX None
COMPLEX*16 and None j
DOUBLE PRECISION COMPLEX ~
LOGICAL*?2 None — But, a BASIC INTEGER *2 variable whose value

is 0 or -1 is the same as a respective F77 LOGICAL*?2
variable whose value is .FALSE. or .TRUE..

LOGICAL*4 None — But, a BASIC INTEGER *4 variable whose value
is 0 or -1 is the same as a respective F77 LOGICAL*4
variable whose value is .FALSE. or .TRUE..

CHARACTER*N string_name%*N (fixed-length string)
(“N” is a constant.)

Sample Program

Program TEST_GENERAL.BASIC calls subroutine GENERAL. This program’s listing is shown in
Figure 6-10. You can create file TEST_GENERAL.BASIC by using SED or SPEED, or by using the
BASIC interpreter itself. TEST_GENERAL.BASIC is a data-sensitive file.

6‘24 Licensed Material-Property of Data General Corporation 093-000288

00100 REM PROGRAM TEST_GENERAL I to test subroutine GENERAL
00110
00120 OPTION BASE 1
00130
00140 DECLARE REAL*4 REALS(10)
00150 DATA 3.40, 8.61, -6.00, 8.94, 4.18
00160 DATA 7.56, -9.57, 0.00, -1.24, 0.52
00170 MAT READ REALS
00180
00190 DECLARE INTEGER*2 R.SIZE
00200 DATA 10
00210 READ R.SIZE
00220
00230 DECLARE INTEGER*2 INTS(5)
00240 DATA 386, -2846, 3091, -33, 5104
00250 MAT READ INTS
00260
00270 DECLARE INTEGER*2 I_SIZE
00280 DATA S
00290 READ I.SIZE
00300
00310 DECLARE REAL*4 ANGLE
00320 DATA 30.0
00330 READ ANGLE
00340
00350 DECLARE REAL*4 BIG_REAL
00360 DECLARE INTEGER*2 SMALL_INT
00370 DECLARE REAL*4 SINE_ANGLE
00380 DECLARE INTEGER*2 IER
00390
00400 REM Assigning values to the arguments of GENERAL that this
00410 REM program doesn’t compute with avoids a code 71167
00420 REM warning message (“Identifier not assigned”).
00430 LET BIG.REAL, SMALL_INT, SINE_ANGLE, IER =0
00440
00450 REM Here we go ...
00460 ASM GENERAL(REALS(),R-SIZE,INTS(),I-SIZE, ANGLE,R&
BIG-REAL,SMALL_INT,SINE_ANGLE, IER)
00470
00480 IF IER = 0 THEN
00490 PRINT
00500 PRINT “THE LARGEST REAL*4 NUMBER IS: "; BIG_REAL
00510 PRINT “THE SMALLEST INTEGER*2 NUMBER IS: "; SMALL_INT
00520 PRINT “THE SINE OF ";ANGLE;" DEGREES IS: "; SINE.ANGLE
00530 PRINT
00540 ELSE
00550 PRINT
00560 PRINT “ERROR OCCURRED IN SUBROUTINE GENERAL."
00570 PRINT
00580 END IF
00590
00600 BYE
00610 END
DG-25240
Figure 6-10. Program TEST_GENERAL.BASIC
093-000288 Licensed Material-Property of Data General Corporation 6'25

The AOS/VS BASIC software includes the BASIC interpreter as file BASIC.PR. The software also
includes file BASICASM.SR and BASICLINK.CLI. You must make changes to these files and create
a new BASIC.PR before executing TEST__GENERAL.BASIC. Proceed as follows.

1. Ask your system manager for the locations of these files. It’s likely that BASIC.PR is in a public
directory such as :UTIL. Then, BASICASM.SR and BASICLINK.CLI are likely in a directory
set aside for the BASIC software that Data General has released to your installation. Thus, you
could well have to make this latter directory your working directory and move the BASIC.PR file
you create there to the public directory.

2. Edit BASICASM.SR. After the line
-ENT BASICASM
add the line
.EXTL GENERAL
Also, after the line
BASICASM:
add the two lines

.TXT "GENERAL’
GENERAL

Assemble BASICASM.SR.

4. If you haven’t already done so, compile GENERAL.F77 to obtain GENERAL.OB. You must be
sure that BASICLINK.CLI has access to GENERAL.OB.

5. Use the macro BASICLINK.CLI to create a new BASIC.PR that contains instructions from
GENERAL.OB. The specific command is

BASICLINK GENERAL

BASICLINK invokes Link; in turn, Link could take several minutes to build BASIC.PR.

6. Execute BASIC.PR and then have it run program TEST_GENERAL.BASIC. The CLI command
to do these things is

XEQ BASIC TEST_GENERAL.BASIC

You will see the following output on your console.

AOS/VS BASIC Revision ...

THE LARGEST REAL*4 NUMBER IS: 8.94
THE SMALLEST INTEGER*2 NUMBER IS: -2846
THE SINE OF 30 DEGREES IS: .5

AOS/VS BASIC terminated on ...

6'26 Licensed Material-Property of Data General Corporation 093-000288

C and F77

This section lists F77 data types and their C correspondents. It also shows the C program

TEST_GENERAL.C, that calls subroutine GENERAL.F77.

F77 and C Data Types

F77

INTEGER*2
INTEGER*4
REAL*4

REAL*8 and
DOUBLE PRECISION

COMPLEX

COMPLEX*16 and
DOUBLE PRECISION COMPLEX

LOGICAL*2
LOGICAL*4
CHARACTER*1

CHARACTER*N
(“N” is a constant.)

CHARACTER*(¥*)

Sample Program
Program TEST_GENERAL.C calls subroutine GENERAL. This program’s listing is shown in Figure

6-11.

093-000288

C

int or short int
long int

float or short
float

double or long
float

None

None

None
None
char

None

None

Licensed Material-Property of Data General Corporation

6-27

/* Program TEST_GENERAL to test subroutine GENERAL */

#nolist
#include <stdio.h>
#include <math.h>

#list

main ()

float reals[] = { 3.40, 8.61, -6.00, 8.94, 4.18,
7.56, -9.57, 0.00, -1.24, 0.52 };

short int r-size = 10;

short int ints[] = { 386, -2846, 3091, -33, 5104 };

short int isize = 5;

float angle = 30.0;

float big.real;

short int smalliint;

float sine_angle;

short ier;

$fortran void GENERAL();

/* Next call subroutine GENERAL. “GENERAL” must be capitalized for
/* Link and the non-array arguments must be pointers.

GENERAL (reals, &r.size, ints, &isize, &angle,
&bigreal, &small-int, &sine_angle, &ier);

if (ier == 0)

printf (“\n");

*/
*/

printf (“THE LARGEST REAL*4 NUMBER IS: %f\n”, bigreal);
printf (“THE SMALLEST INTEGER*2 NUMBER IS: %hd\n", small_int);
printf (“THE SINE OF %f DEGREES IS: %f\n", angle, sine-angle);

else
printf (“\n”):
printf ("ERROR OCCURRED IN SUBROUTINE GENERAL.\n"):
printf {“\n");
DG-25241
Figure 6-11. Program TEST_GENERAL.C
6'28 Licensed Material-Property of Data General Corporation 093-000288

Assume that you have the directory with the C software on your searchlist and that you have compiled
GENERAL.F77 to create GENERAL.OB. Then, use the following commands to compile, link, and
execute TEST_GENERAL.C.

CC TEST_GENERAL
CCL TEST_GENERAL GENERAL
XEQ TEST_GENERAL

The output from the execution of TEST_GENERAL.PR is

THE LARGEST REAL*4 NUMBER IS: 8.939999
THE SMALLEST INTEGER*2 NUMBER IS: -2846
THE SINE OF 30.000000 DEGREES 1S: 0.500000
COBOL and F77

F77 normally creates word addresses for arguments when it compiles a main program or any
subprogram. COBOL always creates byte addresses for its arguments. Recall from the “VS/ECS
Calling Conventions” section of this chapter that F77 creates a byte address for CHARACTER
arguments. Thus, it’s necessary to rewrite GENERAL.F77 so it contains only CHARACTER
arguments. The corresponding COBOL arguments must be declared PIC X(); then both compilers will
create byte addresses to strings of ASCII characters. ‘

We'll call the new subroutine GENERAL1L.F77. It contains statements to convert CHARACTER
arguments to numbers and vice versa by using internal files. Furthermore, the CHARACTER
arguments in GENERAL1 must be declared fixed-length because the length of such an argument
cannot be an argument itself. Why not? Consider the following statements.

SUBROUTINE WHYNOT (ARRAY, SIZE, NAME, LENGTH)

INTEGER*4 SIZE
REAL*4 ARRAY(SIZE)

CHARACTER*2 LENGTH
CHARACTER*(LENGTH) NAME

PRINT *, 'LENGTH IS ', LENGTH
RETURN
END

O A QWO N O W
-0

F77 allows statements 3 and 4, but disallows statements 6 and 7. Furthermore,

CHARACTER*(*) NAME

will not work here because of the dope vectors F77 places on the stack. Also, you cannot replace line 6
by

INTEGER*2 LENGTH

because COBOL creates a byte address for LENGTH’s corresponding argument in contrast to F77’s
word address.

083-000288 Licensed Material-Property of Data General Corporation 6"29

F77 and COBOL Data Types

No table of F77 and COBOL data types appears here. For example, it’s true that FORTRAN 77’s
internal storage of REAL*8 data is exactly the same as that of COBOL’s COMPUTATIONAL-2
data. However, you have seen that a// COBOL/F77 interprogram communication must be via a PIC
X(N)/CHARACTER*N argument correspondence, where N is an integer constant (between 1 and
32767). Thus, a F77/COBOL data type table is useless.

Sample Program Units

Subroutine subprogram GENERALI1.F77 appears in Figure 6-12. It may not be as general as you
would like, but COBOL’s byte pointer convention for arguments and F77’s creation of dope vectors for
CHARACTER arguments forces GENERALI1.F77 to have specific declarations such as

CHARACTER*30 INT-ARRAY_RECORD
INTEGER*2 INT_ARRAY(S)
INTEGER*2 INT.SIZE / S /

Let’s trace some data through this subroutine. We’ll choose bytes 10 through 18 of CHARACTER
variable REAL_ARRAY_RECORD. GENERALI receives the address of REAL_ARRAY_RE-
CORD from TEST_GENERALIL. (The 90 bytes of this CHARACTER variable are known to
TEST_GENERALI1 as REALS-AS-CHARACTERS))

1. The characters in these 9 bytes are “ 8.94E+00".
2. The statement

READ (REAL—ARRAY._RECORD, 10} REAL_.ARRAY

converts these 9 bytes to a single-precision floating-point number (4-bytes long) in REAL_AR-
RAY(2). Its value is 8.94.

3. The 8DO 408 loop results in LARGEST_REAL containing exactly the same 4 bytes as
REAL_ARRAY(2).

4. The statement
WRITE (LARGEST—REAL.—RECORD, 60) LARGEST—REAL

places “ .894E+01” into the 9 bytes of LARGEST_REAL_RECORD. There is no practical
way to force F77 to place “ 8.94E+00” into LARGEST_REAL_RECORD.

5. When TEST_GENERALI regains control, it accesses these 9 bytes via the name BIG-REAL-AS-
CHARACTERS.

Figure 6-13 contains COBOL program TEST_GENERAL1.CO.

6-30 Licensed Material-Property of Data General Corporation 093-000288

OO

DG-26242

10

20

30

[aM]

SUBROUTINE GENERAL1 (REAL_ARRAY_RECORD, INT_ARRAY_RECORD,
ANGLERECORD,
LARGEST_REAL_RECORD, SMALLEST_INT_RECORD,
SINE_ANGLE-RECORD, ERROR_RECORD)

This version of subroutine GENERAL is for calling by, and only
by, a COBOL program. The caller passes and expects only
DISPLAYable arguments. Thus, F77 must extract REAL and INTEGER
values from the the CHARACTER arguments it receives. then F77
must return its results as CHARACTER arguments. This
subroutine uses internal files to convert CHARACTER variables
to REAL and INTEGER variables, and vice versa.

CHARACTER*90 REAL_ARRAY_RECORD
REAL*4 REAL-ARRAY(10)
INTEGER*2 REALSIZE / 10 /

CHARACTER*30 INT_ARRAY_RECORD
INTEGER*2 INT-ARRAY(5)
INTEGER*2 INTSIZE / 5 /

CHARACTER*9 ANGLE_RECORD
REAL*4 ANGLE

CHARACTER*9 LARGEST_REAL-RECORD
REAL*4 LARGEST_REAL

CHARACTER*6 SMALLEST_INT_RECORD
INTEGER*2 SMALLEST_INT

CHARACTER*9 SINE_ANGLE_RECORD
REAL*4 SINE-ANGLE

CHARACTER*S ERROR_RECORD
INTEGER*2 ERROR

ERROR = 0 I There’'s no error in the array sizes
because they are fixed length.

Extract <REALARRAY> from the string of ASCII characters in
<REAL_ARRAY_RECORD>.

READ (REAL_ARRAY_RECORD, 10) REAL_ARRAY

FORMAT (10E9.2)

Extract <INT-ARRAY> from the string of ASCII characters in
<INT.ARRAY-RECORD>.

READ (INT-ARRAY-RECORD, 20) INT_ARRAY

FORMAT (516)

Extract <ANGLE> from the string of ASCII characters in
<ANGLE-RECORD>.

READ (ANGLE-RECORD, 30) ANGLE

FORMAT (E9.2)

093-000288

Figure 6-12. Subroutine Subprogram GENERALI.F77 (continues)

Licensed Material-Property of Data General Corporation

6-31

40

50

60

70

80

90

DG-25242

Find the largest element in <REAL-ARRAY> and place it in
<LARGEST-REAL>.

LARGEST_REAL = REAL.ARRAY(1)

DO 40 I = 2, REALSIZE

IF { REAL_ARRAY(I) .GT. LARGEST-REAL)
LARGEST-REAL = REAL.ARRAY(I)
CONTINUE

Find the smallest element in <INT-ARRAY> and place it in
<SMALLEST._INT>.
SMALLEST_INT = INT_ARRAY(?1)
DO 50 I = 2, INT.SIZE
IF (INT-ARRAY(I) .LT. SMALLEST-INT)
SMALLEST_INT = INT_ARRAY(I)
CONTINUE

Compute the sine of <ANGLE> after converting <ANGLE> from degrees
to radians.
SINE_ANGLE = SIN(3.141593*ANGLE/180.0) ! pi radians = 180 degrees.

Place <LARGEST.REAL> into LARGEST_REAL_RECORD as a string of
ASCII characters.

WRITE {(LARGEST_REALRECORD, 60) LARGEST_REAL

FORMAT (ES.3)

Place <SMALLEST_INT> into SMALLEST_INT-RECORD as a string of
ASCII characters.

WRITE (SMALLEST_INT_RECORD, 70) SMALLEST_INT

FORMAT (I6)

Place <SINE.ANGLE> into SINE_ANGLE_RECORD as a string of
ASCII characters.

WRITE (SINE-ANGLE_RECORD, 80) SINE_ANGLE

FORMAT (F9.7)

Place <ERROR> into ERROR_RECORD as a string of
ASCII characters.

WRITE (ERROR-RECORD, 90) ERROR

FORMAT (I5)

Done!
RETURN
END

6-32

Figure 6-12. Subroutine Subprogram GENERALI.F77 (concluded)

Licensed Material-Property of Data General Gorporation 093-000288

T

IDENTIFICATION DIVISION.
PROGRAM-ID. TEST-GENERAL1.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
77 ANGLE-AS-CHARACTERS PIC X(9) VALUE IS ' 3.00E+01’ .
77 BIG-REAL-AS-CHARACTERS PIC X(9).
77 SMALL-INT-AS-CHARACTERS PIC X(6).
77 SINE-ANGLE-AS-CHARACTERS PIC X(9).
77 IER-AS-CHARACTERS PIC X(5).
01 REALS-AS-CONSTANTS.
05 REAL-1 USAGE IS COMPUTATIONAL-2 VALUE IS 3.40.
05 REAL-2 USAGE IS COMPUTATIONAL-2 VALUE IS 8.61.
05 REAL-3 USAGE IS COMPUTATIONAL-2 VALUE IS -6.00.
05 REAL-4 USAGE IS COMPUTATIONAL-2 VALUE IS 8.94.
05 REAL-5 USAGE IS COMPUTATIONAL-2 VALUE IS 4.18.
05 REAL-6 USAGE IS COMPUTATIONAL-2 VALUE IS 7.56.
05 REAL-7 USAGE IS COMPUTATIONAL-2 VALUE IS -9.57.
05 REAL-8 USAGE IS COMPUTATIONAL-2 VALUE IS 0.00.
05 REAL-9 USAGE IS COMPUTATIONAL-2 VALUE IS -1.24.
05 REAL-10 USAGE IS COMPUTATIONAL-2 VALUE IS 0.52.
01 INTS-AS-CONSTANTS.
05 INT-1 USAGE IS COMPUTATIONAL PIC IS $9999 VALUE IS 386.
05 [INT-2 USAGE IS COMPUTATIONAL PIC IS S9999 VALUE IS -2846.
05 INT-3 USAGE IS COMPUTATIONAL PIC IS $9999 VALUE IS 3091.
05 [INT-4 USAGE IS COMPUTATIONAL PIC IS $9999 VALUE IS -33.
05 INT-5 USAGE IS COMPUTATIONAL PIC IS $9999 VALUE IS 5014.
01 REALS-AS-CHARACTERS.
05 REAL-1 PIC IS +9.99E199.
05 REAL-2 PIC IS +9.99E+99.
05 REAL-3 PIC IS +9.99E199.
05 REAL-4 PIC IS +9.99E+199.
05 REAL-5 PIC IS +9.99E+99.
05 REAL-6 PIC IS +9.99E+99.
05 REAL-7 PIC IS +9.99E199.
05 REAL-8 PIC IS +9.99E+99.
05 REAL-9 PIC IS +9.99E+99.
05 REAL-10 PIC IS +9.99E+99.
01 INTS-AS-CHARACTERS.
05 INT-1 PIC IS ----- 9.
05 [INT-2 PIC IS ----- 9.
05 [INT-3 PIC IS ----- 9.
05 [INT-4 PIC IS ----- 9.
05 INT-5 PIC IS ----- 9.
DG-25243
Figure 6-13. Program TEST_GENERALI.CO (continues)
093-000288 Licensed Material-Property of Data General Corporation

PROCEDURE DIVISION.

MOVE CORRESPONDING REALS-AS-CONSTANTS TO REALS-AS-CHARACTERS.
MOVE CORRESPONDING INTS-AS-CONSTANTS TO INTS-AS-CHARACTERS.

* Here we go ...
CALL 'GENERAL1’ USING REALS-AS-CHARACTERS,
INTS-AS~-CHARACTERS,
ANGLE-AS-CHARACTERS,

BIG-REAL-AS-CHARACTERS,
SMALL-INT-AS-CHARACTERS,
SINE-ANGLE-AS-CHARACTERS,
IER-AS-CHARACTERS.

IF IER-AS-CHARACTERS IS NOT EQUAL TO ° 0’
DISPLAY * "
DISPLAY “ERROR OCCURRED IN SUBROUTINE GENERAL1.
DISPLAY * "
ELSE
DISPLAY * "

DISPLAY “THE LARGEST REAL*4 NUMBER IS:
BIG-REAL-AS-CHARACTERS

DISPLAY “THE SMALLEST INTEGER*2 NUMBER IS:
SMALL-INT-AS-CHARACTERS

DISPLAY “THE SINE OF ", ANGLE-AS-CHARACTERS,
“ DEGREES IS: ", SINE-ANGLE-AS-CHARACTERS

DISPLAY *

STOP RUN.

DG-25243

Figure 6-13. Program TEST_GENERALI.CO (concluded)

Note that the program converts all its COMPUTATIONAL-2 (i.e., REAL*8) numbers in REALS-AS-
CONSTANTS to strings of ASCII characters (i.e, CHARACTER*9) in REALS-AS-
CHARACTERS. For example, the compiler converts the four ASCII characters “8.94” to a REAL*8
number whose name is REAL-2 OF REALS-AS-CONSTANTS. The runtime routines convert this
REAL*8 number to the 9 bytes “ 8.94E400” in REAL-2 OF REALS-AS-CHARACTERS as a
result of the statement

MOVE CORRESPONDING REALS-AS-CONSTANTS TG REALS-AS-CHARACTERS.

You have seen that subroutine GENERALI receives access to this CHARACTER data item
“ 8.94E+00".

Note also that TEST_GENERALL1 receives the results of GENERALI’s efforts as PIC X (i.e.,
CHARACTER) data. IER-AS-CHARACTERS is an example.

Similarly, the PIC S9999 (i.e., INTEGER*2) data go through similar transformations. The COBOL
compiler transforms the 3 bytes “386” into the binary digits 000000000000000000000001 10000010 in
the 4-byte area whose name is INT-1 OF INTS-AS-CONSTANTS. At runtime the statement

MOVE CORRESPONDING INTS-AS-CONSTANTS TO INTS-AS-CHARACTERS.

results in the 6 bytes “ 386" being placed in INT-1 OF INTS-AS-CHARACTERS. Of course,
GENERALI has access to these 6 bytes; it may refer to them by INT_ARRAY_RECORD(1:6).
GENERALI converts these 6 bytes to an INTEGER*2 number via its

READ (INT—ARRAY_RECORD, 20) INT__ARRAY

statement.

6'34 Licensed Material-Property of Data General Corporation 093-000288

Assume that you have the directory with the COBOL software on your searchlist and that you have
compiled GENERALI.F77 to create GENERAL1.0OB. Then, use the following commands to compile,
link, and execute TEST_GENERALI1.CO.

COBOL/0O=TEST_.GENERAL1.0B TEST_GENERAL1.CO
CLINK TEST_GENERAL1 GENERAL1 F77NOPCT.OB F7710.LB/OVER F77ENV.LB F77MT.LB
XEQ TEST_GENERAL 1

The FORTRAN libraries and F77NOPCT.OB must appear in the CLINK command because the
instructions in GENERALL.F77 result in calls to subroutines that are in the library files and to
subroutine F77NOPCT.

The output from the execution of TEST_GENERALI.PR is

THE LARGEST REAL*4 NUMBER IS: S94E+01
THE SMALLEST INTEGER*2 NUMBER IS: -2846
THE SINE OF 3.00E+01 DEGREES IS: 3000000

NOTE: COBOL considers data items declared as COMPUTATIONAL-1 or COMPUTATIONAL-2
identically (i.e., as double-precision floating-point). In other words, COMPUTATIONAL-1
data items are not single-precision floating-point numbers.

PASCAL and F77

This section lists F77 data types and their PASCAL correspondents. It also shows the PASCAL
program TEST_GENERAL.PAS, that calls subroutine GENERAL.F77.

F77 and PASCAL Data Types

093-000288

F77 PASCAL

INTEGER*2 SHORT_INTEGER or INTEGER with the
/INTEGER=SHORT compiler switch

INTEGER*4 LONG_INTEGER or INTEGER with no /INTEGER
compiler switch or INTEGER with the /INTEGER
=LONG compiler switch

REAL*4 REAL

REAL*8 and DOUBLE_REAL

DOUBLE PRECISION

COMPLEX None

COMPLEX*16 and None

DOUBLE PRECISION COMPLEX
LOGICAL*2

LOGICAL*4

CHARACTER*]

CHARACTER*N
(“N” is a constant.)

Sample Program

None — But,a PASCAL SHORT_INTEGER variable
whose value is 0 or -1 is the same as a respective F77
LOGICAL*2 variable whose value is .FALSE. or
.TRUE.

None — But, a PASCAL LONG_INTEGER variable
whose value is 0 or -1 is the same as a respective F77
LOGICAL*4 variable whose value is .FALSE. or
.TRUE.

CHAR
PACKED ARRAY [l..N] OF CHAR

Program TEST_GENERAL.PAS calls subroutine GENERAL. This program’s listing is shown in

Figure 6-14.

Licensed Material-Property of Data General Corporation 6'35

program TEST_GENERAL (input,output);

type
REAL_ARRAY= array [1..10] of real;
INT_ARRAY= array [1..5] of short.integer;
var
REALS: REAL_ARRAY;
R-SIZE: short_integer;
INTS: INT-ARRAY;
I.SIZE: short-integer;
ANGLE : real;
BIG.REAL: real;
SMALL_INT: shortinteger;
SINE-ANGLE: real;
IER: short_integer;
external procedure GENERAL(REALS: REALARRAY;
R.SIZE: short-integer;
INTS: INT-ARRAY;
ISIZE: short.integer;
ANGLE:: real;
var BIG.REAL: real;
var SMALL_INT: short-integer;
var SINELANGLE: real;
var IER: short-integer
begin
REALS[1]:= 3.40;
REALS[2]:= 8.61;
REALS[3]:= -6.00;
REALS[{4]:= 8.94;
REALS[5]:= 4.18;
REALS[6]:= 7.56;
REALS[7]:= -9.57;
REALS[8]:= 0.00;
REALS[9]:= -1.24;
REALS[10]}:= 0.52;
RSIZE:= 10;
INTS[1]:= 386;
INTS[2]:= -2846;
INTS[3]:= 3091;
INTS[4]}:= -33;
INTS[5]:= 5104;
I.SIZE:= 5;
ANGLE:= 30.0;
DG-25244
Figure 6-14. Program TEST_GENERAL.PAS (continues)
6-36

Licensed Material-Property of Data General Corporation

093-000288

{Here we go ...}
GENERAL(REALS,R-SIZE,INTS,6I_SIZE, ANGLE,
BIG_REAL, SMALL_INT,SINE_ANGLE, IER};

if IER = 0 then begin

writeln;
writeln(’'THE LARGEST REAL*4 NUMBER IS: ", {“5:2" = “FS.Z"}
BIG-REAL:5:2);
writeln(THE SMALLEST INTEGER*2 NUMBER IS:
SMALLLINT);

writeln(' THE SINE OF ', ANGLE:5:2,’ DEGREES IS: ',

SINE_ANGLE:5:2);
writeln

end

else begin
writeln;
writeln(ERROR OCCURRED IN SUBROUTINE GENERAL.'):
writeln
end

end.

DG-25244

Figure 6-14. Program TEST_GENERAL.PAS (concluded)

Assume that you have the directory with the PASCAL software on your searchlist and that you have
compiled GENERAL.F77 to create GENERAL.OB. Then, use the following commands to compile,
link, and execute TEST_GENERAL.PAS.

PASCAL TEST_GENERAL
PASLINK TEST_GENERAL GENERAL
XEQ TEST_GENERAL

The output from the execution of TEST_GENERAL.PR is

THE LARGEST REAL*4 NUMBER IS: 8.94
THE SMALLEST INTEGER*2 NUMBER IS: -2846
THE SINE OF 30.00 DEGREES IS: 0.50

093-000288 Licensed Material-Property of Data General Corporation 6‘37

PL/Y and F77

This section lists F77 data types and their PL/I correspondents. It also shows the PL/I program
TEST_GENERAL.PLI, that calls subroutine GENERAL.F77.

F77 and PL/1 Data Types

F77
INTEGER*2

INTEGER*4
REAL*4
REAL*4

REAL*8 and
DOUBLE PRECISION

REAL*8 and
DOUBLE PRECISION

COMPLEX

COMPLEX*16 and
DOUBLE PRECISION COMPLEX

LOGICAL*2

LOGICAL*2

CHARACTER*N
(“N” is a constant.)

CHARACTER*(*)

Sample Program

Program TEST_GENERAL.PL1 calls subroutine GENERAL. This program’s listing is shown in

Figure 6-15.

PL/1

FIXED BIN(1) through
FIXED BIN(15)

FIXED BIN(16) through
FIXED BIN(31)

FLOAT BIN(1) through
FLOAT BIN(21)

FLOAT DEC(1) through
FLOAT DEC(6)

FLOAT BIN(22) through
FLOAT BIN(53)

FLOAT DEC(7) through
FLOAT DEC(16)

None

None

ALIGNED BIT(16) variable, which is aiways either “0000”B4
or “FFFF”B4; or

FIXED BIN(15) variable, which is always either O or -1

ALIGNED BIT(32) variable, which is always either
“00000000”B4 or “FFFFFFFF”B4; or

FIXED BIN(31) variable, which is always either O or -1
CHAR(N)

CHAR(*)

6'38 Licensed Material-Property of Data General Corporation 093-000288

TEST-GENERAL :

PROCEDURE;
DECLARE REALS(10) FLOAT BINARY(15) STATIC INIT
3.40, 8.61, -6.00, 8.94, 4.18,
7.56, -9.57, 0.00, -1.24, 0.52),
R_SIZE FIXED BINARY(15) STATIC INIT(10),
INTS(5) FIXED BINARY(15) STATIC INIT (
386, -2846, 3091, -33, 5104),
ISIZE FIXED BINARY(15) STATIC INIT(5),
ANGLE FLOAT BINARY(15) STATIC INIT(30),
BIGREAL FLOAT BINARY(15),
SMALL_INT FIXED BINARY(15),
SINE-ANGLE FLOAT BINARY(15),
IER FIXED BINARY(15),
GENERAL ENTRY((10) FLOAT BIN(15), /* REALS */
FIXED BIN(15), /* RSIZE */
(5) FIXED BIN(15), /* INTS %/
FIXED BIN(15), /* ISIZE */
FLOAT BIN(15), /* ANGLE */
FLOAT BIN(15), /* BIG_REAL */
FIXED BIN(15), /* SMALL_INT*/
FLOAT BIN(15), /*SINE-ANGLE*/
FIXED BIN(15)), /* IER */
80UTPUT FILE;

OPEN FILE(@OUTPUT) STREAM OQUTPUT PRINT;
/* Here we go ... */

CALL GENERAL(REALS, R-SIZE, INTS, I_SIZE, ANGLE,
BIGREAL, SMALL.INT, SINE_ANGLE, IER);

IF IER = 0 THEN
DO;

PUT FILE(@OUTPUT) SKIP LIST (* ");

PUT FILE(@OUTPUT) SKIP EDIT(
“THE LARGEST REAL*4 NUMBER IS: ",
BIGREAL) (A, F(5.2));

PUT FILE(®OUTPUT) SKIP EDIT(
“THE SMALLEST INTEGER*2 NUMBER IS: ",
SMALL-INT) (A, F(5));

PUT FILE(@OUTPUT) SKIP EDIT(
“THE SINE OF ", ANGLE, “ DEGREES IS: ",

SINE_ANGLE) (A, F(5.1). A, F(7.4));
PUT FILE(@OUTPUT) SKIP LIST (* ");
END;

DG-25245

Figure 6-15. Program TEST_GENERAL.PLI (continues)

093-000288 Licensed Material-Property of Data General Corporation 6'39

]
-
ELSE
DO;
PUT FILE(@OUTPUT) SKIP LIST (“ ");
PUT FILE(@OUTPUT) SKIP LIST (
“ERROR OCCURRED IN SUBROUTINE GENERAL.");
PUT FILE(@OUTPUT) SKIP LIST (“ ");
END;
STOP;
END; /* OF PROGRAM TEST_GENERAL */
DG-25245

Figure 6-15. Program TEST_GENERAL.PLI (concluded)

Assume that you have the directory with the PL/I software on your searchlist and that you have
compiled GENERAL.F77 to create GENERAL.OB. Then, use the following commands to compile,
link, and execute TEST_GENERAL.PLI1.

PL1 TEST_GENERAL
PL1LINK TEST_GENERAL GENERAL
XEQ TEST_GENERAL

The output from the execution of TEST_GENERAL.PR is

THE LARGEST REAL*4 NUMBER IS: 8.94
THE SMALLEST INTEGER*2 NUMBER IS: -2846 |
THE SINE OF 30.0 DEGREES 1S: 0.5000 —r

End of Chapter

6'40 Licensed Material-Property of Data General Corporation 093-000288

Chapter 7
Programming Hints

This chapter presents several diverse topics that may help you implement F77 programs. The topics are
as follows.

e The F77 Error File
* Improving Program Readability
e Program Enhancements

» F77 Output and Printing Special Forms

The F77 Error File

The FORTRAN 77 Reference Manual explains how to incorporate and use file ERR.F77.IN in your
F77 program units. It’s worth repeating that use of this error file means your program works with
mnemonics. These mnemonics and their corresponding text explanations never change form one
revision of F77 to another. This is in possible contrast to the use of “hard-wired” constant values for
error identification.

ERR.F77.IN sometimes changes with a new release of F77. You usually don’t have to recompile and
relink any current programs just because they %INCLUDE ERR.F77.IN. New programs should
%INCLUDE the latest error file.

Improving Program Readability

Chapter 5 mentions the importance of carefully designing programs to minimize the need for subsequent
debugging. You should also create programs that other programmers can easily understand and
maintain. Just remember that few things in electronic data processing are more permanent than
“temporary” programs that departed programmers have written!

Program Enhancements
This section explains:
» The effect of certain compiler switches on performance.
e Ways to improve runtime computation speed.

» Ways to improve runtime /O speed.

093-000288 Licensed Material-Property of Data General Corporation 7 - 1

Compiler Switches and Program Performance

Compiler options can heavily influence F77 program performance. Some options depend on others, and
selecting one could reduce the impact of others. The options could affect:

¢ The compilation time.

* The ability of the compiler to optimize.

» The disk space needed by compiler-generated files.

* The memory needed at runtime.

¢ The execution time.

The most significant effects of the compiler switches are:

/DEBUG

/DOTRIP=1

/LINEID

/PROCID

/SAVEVARS

/SUB

7-2

slows the compilation because of the extra information it makes for the SWAT
debugger. The generated code can’t carry certain values in the accumulators from
one statement to the next. Instead, the code must store newly computed values in
memory at the end of some statements. Chapter 5 has shown you the convenience
of using the SWAT debugger. Once you have used it to locate bugs, then recompile
without this switch (delete any leftover .DL and .DS files) and relink to create a
faster executing program file.

generates code which is slightly more efficient than /DOTRIP=0. Be certain that
the program logic will work correctly with this switch before using it.

adds extra instructions to the generated code. Each source statement results in
extra code to update specific locations to reflect the number of the source statement
in the listing file. Not only do these extra instructions increase the execution time
of the program file, but they might prevent the optimizer from doing a thorough
job.

adds extra instructions to the program file to allow the program to keep track of
the currently executing procedure. If you want top performance, don’t use it.

is often required to make programs from other vendors produce correct results, or
sometimes even to run at all. Many non-DG FORTRANSs provide static (nonstack)
storage of variables by default. The result is that the program can subtly depend
on such features as having uninitialized variables containing zero, and preserving
the values of local variables in subprograms from one CALL or function reference
to the next. The /SAVEVARS switch provides this preservation in F77; so does
the SAVE statement. However, neither has uninitialized variables contain zero.

There is another potential effect of the /SAVEVARS option: some program
algorithms (most often those involving large amounts of subscript manipulation),
can cause the generated code to “run out of accumulators.” That is, the code must
go to great lengths to free the resource called an “index register” (AC2 and AC3).
If this “running out” occurs, /SAVEVARS (or SAVE) has the compiler allocate
specific memory addresses, thus allowing faster calculation of offsets and less
conflict among accumulator usage.

There is no definite way to predict whether or not static allocation of variables will
help a given program. You must experiment in each case.

has the compiler insert extra instructions in the generated code. Each time the
code evaluates a subscript or substring expression and calculates the actual offset
into the array or string, it also compares the offset to the appropriate limit. This
comparison takes time, and also reduces the optimizer’s ability to use the
accumulators for storing data and expression values.

Licensed Material-Property of Data General Corporation 093-000288

Usually, the simple compilation command line
F77/0PT your_program_name

produces the best code (and a longer compilation time). Sometimes adding /SAVEVARS or
/DOTRIP=1 (or both) can produce better code.

Enhancing Computational Speed

Once you have selected compiler options to increase runtime performance of a debugged program,
consider the effects of computation at runtime. This section gives tips and techniques to speed up
computations.

First, integer arithmetic is faster than single-precision arithmetic, which is faster than double-precision
arithmetic.

Second, truncation during floating-point operations is slightly faster and slightly more inaccurate than
rounding. Truncation appears to be very common in the industry and programmers have lived with it
for years. You select truncation or rounding at link time. The F77LINK macro selects rounding by
default.

Third, you improve compilation and execution speed by running on an idle system with lots of physical
memory and a large working set.

Enhancing 1/0 Speed

Data General created some F77 programs whose sole purpose was to read records from a common file
via different I/O statements. This file contained thousands of 100-byte ASCII data strings that were
separated by NEW-LINE characters. The slowest possible access technique was used as a basis for
comparison with other techniques. Its relative speed is thus 1.00. The “Result” column below gives the
quotient of a technique’s records/second number divided by the records/second number of the slowest
technique.

File Access Technique Result
Read the file as a data-sensitive file into an integer 1.00
array using the data descriptor “100A1” for each
record.
Read the file as a data-sensitive file into a character 4.54
variable using the data descriptor “A100” for each
record.
Read the file as a fixed file into a character variable 5.01

using the data descriptor “A100” for each record.

Read the file as a fixed file into a character variable 6.84
with unformatted 1/0 for each record.

Read the file as a dynamic file into a character variable 6.72
with unformatted 1/O for each record and with the
default BLOCKSIZE (512).

Read the file as a dynamic file into a character variable 6.92
with unformatted 1/O for each record and with a
BLOCKSIZE value of 32767.

093-000288 Licensed Material-Property of Data General Corporation 7'3

NOTE: These numbers reflect operation with a particular ECLIPSE computer, operating system,
peripherals, and revision of F77. Use them as guides to show how to increase 1/O performance
and not as guaranteed results.

Here are some general and some F77-specific approaches to consider as you try to increase 1/O speed.

» Use the record format of the file to your advantage. In general, RECFM =DATASENSITIVE will
give the slowest file I/O, with VARIABLE, FIXED, and DYNAMIC successively faster. You can
attain the fastest possible 1/O by performing unformatted reads and writes of an array with a file
whose records are dynamic. In this case, I/O occurs directly from and to an array without the F77
runtime routines doing any data movement.

* Define a large BLOCKSIZE in the OPEN statement to reduce the number of file accesses required
for sequentially processing a file.

¢ To output an array using formatted 1/0, use a sequence like

C SEQUENCE A
DIMENSION IARRAY(50)

WRITE (10, 100) IARRAY
100 FORMAT (5015)

It is much more efficient to do an I/O operation on an entire array rather than on its individual
elements. While a sequence like

c SEQUENCE B
DIMENSION IARRAY(50)

WRITE (10, 100) (IARRAY(I), I = 1, 50)
100 FORMAT (5015)

displays identical results, it results in about 50 system calls (one for each element of IARRAY),
instead of about one system call. In other words — avoid implied DO loops for 1/O whenever
possible. Finally, FORMAT statement 100 in both of the above sequences is more efficient than

100 FORMAT (50(I5))

In general, avoid FORMAT statements that have sizable repeat counts outside specifications with
parentheses.

» If you have to use only a known part of an array for I/O, then (as mentioned before) try to avoid
implied DO loops. Instead, use EQUIVALENCE or assignment statements to define another array
whose consecutive elements are those of the known subset. For instance, assume that the respective
array names arc A_ARRAY and B_ARRAY so that B_ARRAY contains the necessary subset of
A_ARRAY’s elements. Then write a statement pair such as

WRITE (10, 110) B—ARRAY
110 FORMAT (12F6.2)

instead of

WRITE (10, 110) (A—ARRAY(I), I = 1, 23, 2)
110 FORMAT (12F6.2)

» Suppose you need to use a unit number that is normally preconnected to some other file. It is faster
to CLOSE the preconnected unit and to OPEN the file you want on that unit than it is to directly

7'4 Licensed Material-Property of Data General Corporation 093-000288

OPEN the file on that unit. Why? Directly OPENing the file on the unit is actually a reOPEN of a
preconnected unit that hasn’t been accessed yet — and extra processing is necessary to determine if
such a reOPEN refers to the name of the preconnected file or to some new file. The CLOSE
statement eliminates the need for the extra processing. For example:

Faster Slower

CLOSE (6) OPEN (6, FILE="F00’, ...)
OPEN (6. FILE="F00", ...)

F77 Output and Printing Special Forms

Suppose your F77 program writes to a data-sensitive file and the output fincludes a form-feed
character (whose octal value is <<014>>). When you print the file via a QPRINT command, XLPT.PR
(as part of AOS/VS) sends this character to the printer which advances the paper to the next page.

At most installations:
* The printer then advances three lines and printing resumes on the fourth line.

» The printer prints only 63 lines on a page and then advances to the fourth line of the next page to
resume its output.

In addition, the first response to the QPRINT command is frequently a header page (filename in large
letters, pathname, times, dates, etc.) and a form feed.

You can have the printer behave differently. For example, you might want to print special forms that
are not the default 66 lines long (i.e., 11 inches for a switch setting of 6 lines per inch). And, you might
want printing on the first line of the form.

What software steps are necessary to change the default behavior of the printer? You must use the
Forms Control Utility (FCU) program and sometimes place special nonprinting control characters in
the output files your FORTRAN 77 programs create. You or your system’s operator must also give
specific commands to EXEC to print the special forms.

If you aren’t familiar with EXEC commands to control the printer, or with FCU.PR, then read the
appropriate manuals — the Advanced Operating System/Virtual Storage (AOS/VS) Operator’s Guide
and the A0S & AOS/VS CLI User’s Manual.

The basic steps to prepare and print a file on nonstandard forms are:

* Determine the layout of the form. You have to know the first line of printing, the length and width
of the form, the last line printing can occur on, and any lines that the paper should advance to by
skipping to channels 2 through 11 of a vertical forms unit (VFU); i.e., a carriage control tape.

» Write, compile, Link, and execute the F77 program that inserts form-feed characters and VFU
control characters in the output file. The AOS/V'S CLI User’s Manual explains the VFU control
characters and their effects. And the output file should have data-sensitive records.

» Execute FCU.PR and describe your special form to it.
* Your system operator should:
- Record the current LPP, CPL, and HEADERS values for the selected printer (with its VFU).

- PAUSE the printer and change the lines-per-page (LPP) and characters-per-line (CPL) settings
to the true length and width of the special form. You must have already given these same
numbers when you executed FCU.PR for the form. Also, insure that the HEADERS setting is
correct (frequently, zero). If you don’t do this, unwanted header page information might print on
at least the first form.

- Insert and align the special forms.
- CONTINUE the printer.

093-000288 Licensed Material-Property of Data General Corporation 7'5

- Print (QPRINT) the output file.

- PAUSE the printer. Reset the LPP, CPL, and HEADERS settings to those of the next form. _//
- Remove the special forms.

- Insert and align the next forms.

- CONTINUE the printer.

Background for Two Examples

Marll is the corresponding secretary of his antique auto club. Part of his job is to keep track of members
and their autos. He creates a file called MEMBERS.DATA with data-sensitive organization because
programs that contain LIST-directed READ statements will read the file. These programs will create
two files: MEMBERS.LABELS — for printing on address labels, and MEMBERS.CARDS — for
printing on index cards. The filenames of these respective programs are PRINT_LABELS.F77 and
PRINT_CARDS.F77.

Figure 7-1 contains a listing of file MEMBERS.DATA.

“MARLL DALRYMPLE",“64 WOOSTER DRIVE”,“ ", “FRAMINGHAM”,h“MA”,“01701"
“31 FORD MODEL A PHAETON", “40 FORD CONVERTIBLE", “40 FORD COUPE"

“47 FORD 'WOODIE' WAGON", ° v

“GORDON CLIFFORD",*“501 BELKNAP ROAD”,“BOX 44", “WAYLAND", “MA”, “01778"
“34 FORD CABRIOLET", “35 BUICK RUMBLE SEAT COUPE”, “39 PACKARD SEDAN"
“46 CHRYSLER TOWN & COUNTRY”, “52 MG TD ROADSTER”, “ ~

DG-25246

Figure 7-1. File MEMBERS.DATA

Example 1 — Printing Labels

Figure 7-2 contains a listing of program PRINT_LABELS. Note that one form-feed character will
precede the characters for each label. The only channel skipping the printer will do while working with
the labels is to channel 1 — precisely the effect of the form-feed character. The labels are 15/16 inches
high by 3.5 inches wide, which is a standard size.

7 '6 Licensed Material-Property of Data General Corporation 093-000288

PROGRAM PRINT__LABELS | TO PREPARE FILE <MEMBERS.LABELS>
c FOR PRINTING LABELS

CHARACTER*25 NAME, ADDRESS_—_1, ADDRESS__2
CHARACTER*15 CITY
CHARACTER*2 STATE
CHARACTER*S ZIP
CHARACTER*26 CARS_OWNED(6)
INTEGER COUNT / 0 / ! COUNT OF LABELS PRINTED
OPEN (2, FILE='MEMBERS.DATA’, STATUS='OLD’, IOINTENT="INPUT’)}
OPEN (3, FILE="MEMBERS.LABELS’', STATUS='FRESH', IGINTENT='QUTPUT’)

10 READ (2, *, END=60) NAME, ADDRESS_1, ADDRESS._2, CITY, STATE, ZIP
READ (2, *) ! (CARS—OWNED(I), I = 1, 3) READ THESE RECORDS, AND
READ (2, *) | (CARS_—_OMNED(I), I = 4, 6) THEN IGNORE THEM.
WRITE (3, 20) NAME

20 FORMAT ('<FF>’, A) ! <NAME> GOES ON A NEW LABEL.
WRITE (3, 30) ADDRESS__1

30 FORMAT (A)
IF (ADDRESS—2 .NE. “ ") WRITE (3, 30) ADDRESS_2
WRITE (3, 40) CITY, STATE

40 FORMAT (A, 2X, A)
WRITE (3, 50) ZIP

50 FORMAT (10X, A) | INDENT ZIP CODE FOR THE POSTAL SERVICE.
COUNT = COUNT + 1
GO TO 10

60 WRITE (3, 70) COUNT | END THE LABELS EXPLICITLY.

70 FORMAT ('<FF>', ’'*** * 14, ° LABELS PRINTED ***’)
CLOSE (2)
CLOSE (3)
PRINT *, "FILE MEMBERS.LABELS IS READY FOR PRINTING’
STOP
END

DG-25247
Figure 7-2. Program PRINT_LABELS
093-000288 Licensed Material-Property of Data General Corporation 7 = 7

Marll executes PRINT_LABELS.PR tocreate MEMBERS.LABELS. He also has to execute FCU.PR
to create the VFU specifications file for MEMBERS.LABELS. This file is in the User Data Area
(UDA) assigned to MEMBERS.LABELS. The dialog between Marll and FCU.PR appears next.

) XEQ FCU)
AOS Forms Control Utility Revision ...
Type 'Help’ for instructions

Command ? G

Pathname ? MEMBERS.LABELS)

Characters Per Line (16-255)
/80]? 35)

Tab Stops (2-79, OR STANDARD)
[8,16,24,32,40,48,56,64,72]

2

Form length in Lines Per Page (6-144)
[66]? 6)

Top of Form (Channel 1) Line Number (1-6)
[1]?)

Bottom of Form (Channel 12) Line number (1-6)
[6]?)

VFU Tape (Line numbers 1-6, Channels 2-11, OR STANDARD)
[] :

2

Output to Pathname
[:UDD:F77-MARLL-MEMBERS.LABELS]?)
Command ? BYE)
FCU terminating ...
Marll verifies that the VFU specifications file exists with the CLI command
FILESTATUS/UDA MEMBERS.LABELS
AOS/VS responds with
MEMBERS.LABELS UDA

Marll and his system’s operator, John, go to the operator’s console (username OP) and to the printer.
They perform the following steps.

1. They determine that the current LPP, CPL, and HEADERS values are 66, 80, and 1, respectively.
2. They wait for the current print queue to LPT (devicename @1LPB) to complete.
3. John gives these commands to the CLI.

CONTROL @EXEC PAUSE @LPB
CONTROL @EXEC LPP @LPB 6
CONTROL @EXEC CPL @LPB 35
CONTROL @EXEC HEADERS @LPB 0

4. They insert and align the labels in their Model 4216 printer.

John gives these commands to the CLI.

CONTROL @EXEC CONTINUE @LPB

QPRINT :UDD:F77:MARLL:MEMBERS.LABELS
CONTROL @EXEC PAUSE @LPB

CONTROL @EXEC LPP @LPB 66

CONTROL @EXEC CPL @LPB 80

CONTROL @EXEC HEADERS @LPB 1

7 '8 Licensed Material-Property of Data Generat Corporation 093-000288

6. They remove the labels and reinsert standard 11-inch high paper.

7. John gives the command
CONTROL @EXEC CONTINUE @LPB

to finish the restoration of the printer to its previous settings.

Example 2 — Printing Index Cards

Figure 7-3 contains a printed index card. Specifically

» Its height is 3 inches (= 18 lines) and its width is 5 inches (= 50 characters).
* Marll wants printing to begin on the second line of the form.

» Marll wants the printer to advance each card as quickly as possible from the name/address area of
the form to line 10 before printing the cars a member owns. He arbitrarily chooses channel 4 of the
electronic carriage control tape to correspond to line 10.

GORDON CLIFFORD

501 BELKNAP ROAD

BOX 44

NAYLAND MA 01778

35 BUICK RUMBLE SEAT COUPE
39 PACKARD SEDAN
46 CHRYSLER TOWN & COUNTRY
52 MG TD ROADSTER

00 N O N & WM A OwWOo NG & W A

|
|
|
|
I
I
I
I
|
34 FORD CABRIOLET :
I
I
I
!
|
I
|

P N N Qe i N =y

DG-00114

Figure 7-3. A Typical Index Card

Figure 7-4 contains a listing of program PRINT_CARDS. Note that one form-feed character will
precede the characters for each card. The printer must skip to channel 1 while working with the cards;
the form-feed characters in FORMAT statements 20 and 80 accomplish this. The 2 bytes
<<022><<103> in FORMAT statement 50, along with the proper execution of FCU.PR, cause the
printer to advance a card to its line 10. The “$” character is in statement 50 to prevent the issuance of
a NEWLINE character (<C12>) and the resulting advance of an index card to line 11 for the printing
of the first antique auto’s information.

093-000288 Licensed Material-Property of Data General Corporation 7 "9

10

20

30

40

50

60

70
80

DG-26248

PROGRAM PRINT_CARDS | TO PREPARE FILE <MEMBERS.CARDS>
FOR PRINTING OF INDEX CARDS

CHARACTER*25 NAME, ADDRESS_1, ADDRESS_2
CHARACTER*1S CITY

CHARACTER*2 STATE

CHARACTER*S ZIP

CHARACTER*26 CARS—OWNED(6)

INTEGER COUNT / 0 / ! COUNT OF CARDS PRINTED

OPEN (2, FILE='MEMBERS.DATA', STATUS='O0LD', IOINTENT='INPUT')
OPEN (3, FILE='MEMBERS.CARDS’, STATUS="FRESH’', IOINTENT='OUTPUT')

READ (2, *, END=70) NAME, ADDRESS—1, ADDRESS_—2, CITY, STATE, ZIP
READ (2, *) (CARS_—OWNED(I), I = 1, 3)
READ (2, *) (CARS_OWNED(I}, I = 4, 6)

WRITE (3, 20) NAME

FORMAT ("<FF>’, &) ! <NAME> GOES ON A NEW LABEL.
WRITE (3, 30) ADDRESS—1

FORMAT (A)

IF (ADDRESS—-2 .NE. “ ") WRITE (3, 30) ADDRESS—2

WRITE (3, 40) CITY, STATE, ZIP
FORMAT (A, 2X, A, 2X, &)

SKIP TO LINE 10 (THAT IS, CHANNEL 4 OF THE VFU “TAPE") ...
WRITE (3, 50)
FORMAT ('<022><103>", $)

. AND PRINT THE CARS THE MEMBER OWNS.
DO6OI=1,6
IF (CARS—OWNED(I) .NE. “ ") WRITE (3, 30) CARS—OWNED(I)
CONTINUE
COUNT = COUNT + 1
60 TO 10

WRITE (3, 80) COUNT ! END THE CARDS EXPLICITLY.
FORMAT ('<FF>’', ’*** ' 14, ' CARDS PRINTED ***')

CLOSE (2)
CLOSE (3)

PRINT *, 'FILE MEMBERS.CARDS IS READY FOR PRINTING’

STOP
END

Figure 7-4. Program PRINT_CARDS

Licensed Material-Property of Data General Corporation 093-000288

Marll executes PRINT_CARDS.PR to create MEMBERS.CARDS. He also has to execute FCU.PR
to create the VFU specifications file for MEMBERS.CARDS. The dialog between Marll and FCU.PR
appears next.

) XEQ FCU)
AOS Forms Control Utility Revision ...
Type 'Help’ for instructions

Command ? C

Pathname ? MEMBERS.CARDS |

Characters Per Line (16-255)
[80]? 501

Tab Stops (2-79, OR STANDARD)
[8.16,24,32,40,48,56,64,72]

2

Form length in Lines Per Page (6-144)
[66] 72 181

Top of Form (Channel 1) Line Number (1-18)
[4]? 2]

Bottom of Form (Channel 12} Line number (2-18)
[18]?)

VFU Tape (Line numbers 2-18, Channels 2-11, OR STANDARD)
[]

? 4-10]

2)

Output to Pathname
[:UDD:F77-MARLL:MEMBERS.CARDS] ?)

Command ? BYE)
FCU terminating ...

Marll and his system’s operator, John, go to the operator’s console (username OP) and to the printer.
They perform the following steps.

1. They determine that the current LPP, CPL, and HEADERS values are 66, 80, and 1, respectively.
2. They wait for the current print queue to LPT (devicename @LPB) to complete.
3. John gives these commands to the CLI.

CONTROL @EXEC PAUSE @LPB

CONTROL @EXEC LPP @LPB 18

CONTROL @EXEC CPL @LPB 50
CONTROL @EXEC HEADERS @LPB O

4. They insert and align the cards on their Model 4216 printer.

John gives these commands to the CLI.

CONTROL @EXEC CONTINUE @LPB
QPRINT :UDD:F77:MARLL:MEMBERS.CARDS
CONTROL @EXEC PAUSE @LPB

CONTROL @EXEC LPP @LPB 66

CONTROL @EXEC LPP @CPL 80

CONTROL @EXEC HEADERS @LPB 1

093-000288 Licensed Material-Property of Data General Corporation 7' 1 1

6. They remove the cards and reinsert standard 11-inch high paper.

7. John gives the command
CONTROL @EXEC CONTINUE @LPB

to finish the restoration of the printer to its previous settings.

The most important point in this section is that you must place special characters (VFU codes) in an
output file so that when it prints, the paper advances properly. The 40S/VS Operator’s Guide explains
how the FORMS command can help to eliminate the need for giving many specific instructions each
time you need to print an F77-created output file on special forms.

End of Chapter

7' 1 2 Licensed Material-Property of Data General Corporation 093-000288

Chapter 8
Introductionto DG/DBMS

Overview

The Data General Database Management System (DG/DBMS) is a CODASY L-compliant, network-
structured, database management system.

In general, a database is a collection of interrelated data. This data is stored in a way that controls
redundancy, while allowing many distinct applications to use the information in different ways. The
database system controls access to the data, and stores the data independent of the programs that use
it.

DG/DBMS is a system that manages and coordinates access to all the data in the database. With it,
you can set up your applications so that information from different sources exists in the same database.
Many programs can then access and modify the data concurrently. In this way, the system need not
store data more than once, and all programs can access the most recent information about any subject.

DG/DBMS protects data by allowing only certain programs to access certain data. Some programs can
modify data, others can only read data. DG/DBMS prevents more than one program from modifying
the same piece of data simultaneously. Furthermore, it prevents a program from accessing information
that might be inconsistent because another program is in the process of modifying the same information.

This chapter and the next seven describe the statements and clauses you must add to your FORTRAN
77 program in order to use DG/DBMS, and how to link the DG/DBMS library routines with your
FORTRAN 77 program. Because we are assuming your familiarity with DG/DBMS, we have not
included a full discussion of DG/DBMS here. You should read the Data General/Database Management
System (DG/DBMS) Reference Manual before you attempt to use the FORTRAN 77 preprocessor.

DG/DBMS Description

DG/DBMS isa CODASYL-compliant DBMS. The database administrator (DBA) in your organization
uses the interactive Data Definition Facility (DDF) to enter the description of the database structure.
This description is called the Schema and is written in the data definition language (DDL.). There is
one schema per database, which names and describes the contents of every data item in the database.
It also names and describes the grouping of data items into records, and the structural relationships
between records (called sets).

The DBA also uses the DDF to create one or more subschemas, each of which describes one “view” of
the database. A subschema contains: a subset of the data items, records, and sets, all of which were
defined in the schema. Data items can be reordered within a record and defined to be of a different data
type and length than that used in the schema. While the schema is a language-independent description
of the database, the subschemas are language-dependent. This means that a COBOL program, a
FORTRAN 5 program, and a FORTRAN 77 program that “see” the same data will each use a
different subschema. This is because the internal representation of some data types is different for each
language. Figure 8-1 illustrates the schema-to-subschema-to-language relationships.

093-000288 Licensed Material-Property of Data General Corparation 8' 1

- s Subschema 1 - FORTRAN 77
D (FORTRAN 77) Program
a
t S
a c
b h
~ . FORTRAN 77
a Program
s m
e a
Subschema 2 D COBOL
(COBOL) Program

1D-00115

Figure 8-1. Schema-Subschema-Language Relationships

Notice that all of the relationships are two-way. That is, DG/DBMS performs the correct
transformations from schema to subschema and from subschema to schema.

Your application program cannot change the defined structure of the database or create a new one.
Only your DBA can do this. However, the DBA can allow you to add, delete, or change the values of
entries and to change the relationships between entries in the database.

The FORTRAN 77 Preprocessor Interface
The FORTRAN 77 language interface is a preprocessor-runtime interface to DG/DBMS.

The FORTRAN 77 preprocessor analyzes a data manipulation language (DML) similar to the
specifications in the “CODASYL FORTRAN DATA BASE FACILITY” (January 1980). The
preprocessor translates each DML statement in your application program into one or more executable
FORTRAN 77 statements. These statements set up the necessary parameters for a CALL statement to
a runtime interface routine. You must give your program to the preprocessor immediately before the
actual FORTRAN 77 compilation (of the preprocessor’s output from your program).

In order to understand what the FORTRAN 77 preprocessor is doing, you must know a little of how
DG/DBMS works. Every data item, record, and set in the schema and subschema is assigned an
internal identifier by the DDF. The association of symbolic names to internal identifiers must be made
by the preprocessor or runtime routines before the DBMS can process a command. For example, in a
DML statement that refers to a record by name (e.g., “EMPLOYEE™), the preprocessor or runtime
routines must convert the name to the record’s identifier (e.g., 3). In order to simplify the runtime
interface, as well as for performance considerations, this association is done at compile time. The

8'2 Licensed Material-Property of Data General Corporation 093-000288

-

~

FORTRAN 77 preprocessor performs the translation from FORTRAN-like DML statements that use
symbolic names for data items, records, and sets to CALLs to the DBMS runtime routines that have
the correct internal identifiers.

Figure -2 shows the relationships between the various DG/DBMS components, the FORTRAN 77
preprocessor, and your program. It is important to understand these relationships. The figure shows the
following:

» The DDF uses the DBA’s description of the schema and subschema to produce a database, called
the metadata database. This database describes the schema and all of the subschemas. The
FORTRAN 77 subschema source code generator within the DDF produces a file witha FORTRAN
77 format specification of all sets, records and items in the subschema. The metadata binder
produces a compact representation of the metadata database; this is the packed metadata (PMD).
The PMD includes a set of files that can be used to compute an internal identifier given a symbolic
name. The subschema source code file and the metadata files are left in the database directory for
use by the preprocessor in translating your programs.

» The FORTRAN 77 preprocessor reads a source file that contains your program or subprogram.

A DG/DBMS FORTRAN 77 program contains an INVOKE statement that names the subschema
to be used. The correct subschema source code file is inserted into your program and all DML
statements in the program are converted to CALLs to the appropriate DBMS runtime routine,
replacing symbolic names by their internal identifiers. All non-DBMS statements are left unchanged.
Note that the only difference between compiling a program that contains DML statements and
compiling one that does not, is the preprocessor step. The CLI macro DB.F77.CLI has made this
step nearly invisible. The preprocessor also correctly processes non-DBMS source files that contain
only one run unit.

o The output of the preprocessor is a FORTRAN 77 source program that is input to the FORTRAN
77 compiler. After compilation you use AOS/VS Link to link your compiled program with the
DG/DBMS runtime routines to produce an executable program file.

Figure 8-2 summarizes these points.

How to use the Interface

To use DG/DBMS statements in a FORTRAN 77 program, you must include a description of the
database in your program. Your DBA will have built this description with the DDF.

First, the DBA uses the DDF to describe and create the schema of the entire database. Then, the DBA
creates subsets of the schema (called subschemas), which are compatible with FORTRAN 77 syntax.
The preprocessor INVOKE statement automatically copies the subschema source code file into your
F77 program.

The DDF automatically produces the FORTRAN 77 source file when the DBA defines a subschema.
If the DBA modifies a subschema, you must recompile your F77 program with the new version of the
subschema.

For example, for the database with the name, TREATMENT_DATABASE, using the subschema
name, PATIENT_SEARCH, located in directory, :UDD:BRUCE, you would write the statement

D INVOKE(SUBSCHEMA="PATIENT_SEARCH",
SCHEMA=":UDD:BRUCE: TREATMENT-DATABASE")

in an F77 source program.

Subschemas have special access controls that determine if a user has compile, retrieve, and update
access 10 a subschema. The DG/DBMS Reference Manual contains complete information about
subschema access rights.

093-000288 Licensed Material-Property of Data General Corporation 8'3

ID-00116

DBA
Schema & DDF
Subschema }

DDF FORTRAN Subschema
Source Code Generator

Subschema Source !

]
]
]
Code ! ;

Packed :
Metadata :

......... 4 —cemad! _--1-__---__-1
FORTRAN Source FORTRAN 77
Preprocessor
e R
: FORTRAN 77 Source Program :
y with DG/DBMS Subroutine Calls |
L SR U 1 ----------]
FORTRAN 77 Compiler
| Object File '
== mmmmmmm———em o
________________ 1 1 ! User Libraries
F77 Libraries 1 Link = mmmmmmemmmmmaa
} , DG/DBMS Library

8-4

Figure 8-2. Progression from Data Definition Through Executable Code

Licensed Material-Property of Data General Corporation

093-000288

The schema pathname is the AOS/VS directory pathname for the database directory. The subschema

name is the name of the subschema source code file without the “.F77” extension.

Figure 8-3 shows an example of subschema source code illustrating the use of DG/DBMS in F77.
Figure 8-4 shows the structure of the data.

c

OO OOOOOO0O0O OO0 MO O (]

OO OOOMOD

OO0

DG-25249

C SUBSCHEMA NAME IS “PATIENT_SEARCH”

ALLOWS ERASE GET MODIFY STORE

SET DEFINITION SECTION.

SET

SET

SET

SET

= DOCTORS—BY_.NAME

ALLOWS RECONNECT
OWNER IS SYSTEM
MEMBER IS DOCTOR
AUTOMATIC MANDATORY
ORDER IS SORTED BY KEY ASCENDING
KEYS ARE:
DOCTOR—LAST__NAME
DOCTOR_FIRST__NAME
DUPLICATES ALLOWED
MEMBER LIMIT IS NONE

= PATIENTS.BY__NAME

ALLOWS RECONNECT
OWNER IS SYSTEM
MEMBER IS PATIENT
AUTOMATIC MANDATORY
ORDER IS SORTED BY KEY ASCENDING
KEYS ARE:
PATIENT_LAST..NAME
PATIENT—FIRST_NAME
DUPLICATES ALLOWED
MEMBER LIMIT IS NONE

PATIENT..TREATMENTS
ALLOWS RECONNECT
OWNER IS PATIENT
MEMBER IS TREATMENTS
AUTOMATIC MANDATORY
ORDER IS NEXT

MEMBER LIMIT IS NONE

= DOCTOR—TREATMENTS

ALLOWS RECONNECT
OWNER IS DOCTOR
MEMBER IS TREATMENTS
AUTOMATIC MANDATORY
ORDER IS NEXT

MEMBER LIMIT IS NONE

093-000286&

Figure 8-3. Subschema Example (continues)

Licensed Material-Property of Data General Corporation

8-5

C RECORD DEFINITION SECTION.

C RECORD = DOCTOR ALLONWS ERASE GET MODIFY STORE

CHARACTER*1 DOCTOR
COMMON/DOCTOR/DOCTOR—LAST__NAME
CHARACTER*25 DOCTOR—LAST__NAME
c CONTENTS: CHAR*25L ALLOWS GET MODIFY

COMMON/DOCTOR/DOCTOR—FIRST__NAME
CHARACTER*20 DOCTOR—_FIRST_NAME
c CONTENTS: CHAR*20L ALLOWS GET MODIFY

COMMON/DOCTOR/SPECIALTY
CHARACTER*15 SPECIALTY

c CONTENTS: CHAR*15L ALLOWS GET MODIFY
COMMON/DOCTOR/INFO
CHARACTER*40 INFO
¢ CONTENTS: CHAR*40L ALLOWS GET MODIFY
COMMON/DOCTOR/BEEPER
INTEGER*2 BEEPER
c CONTENTS: NUMERIC ALLONS GET MODIFY
¢ RANGE : -9999 T0 1+9999

EQUIVALENCE (DOCTOR,DOCTOR—LAST—NAME)

C RECORD = PATIENT ALLOWS ERASE GET MODIFY STORE

CHARACTER*1 PATIENT
COMMON/PATIENT/PATIENT__LAST_NAME
CHARACTER*20 PATIENT_LAST__NAME
¢ CONTENTS: CHAR*20L ALLOWS GET MODIFY

COMMON/PATIENT/PATIENT .FIRST_NAME
CHARACTER*16 PATIENT_FIRST_NAME

c CONTENTS: CHAR*15L ALLOWS GET MODIFY
COMMON/PATIENT/WARD
CHARACTER*4 WARD
c CONTENTS: CHAR*4L ALLOWS GET MODIFY
COMMON/PATIENT/ROOM
INTEGER*2 ROOM
c CONTENTS: NUMERIC ALLOWS GET MODIFY
c RANGE : 10 TO +999

EQUIVALENCE (PATIENT,PATIENT_LAST_NAME)

DG-25249

Figure 8-3. Subschema Example (continued)

8'6 Licensed Material-Property of Data General Corporation 093-000288

C RECORD = TREATMENTS ALLOWS ERASE GET MODIFY STORE
CHARACTER*1 TREATMENTS
COMMON/TREATMENTS/DISEASE
CHARACTER*100 DISEASE
c CONTENTS: CHAR*100L ALLOWS GET MODIFY
COMMON/TREATMENTS/MEDICATION
CHARACTER*25 MEDICATION (5)
c CONTENTS: CHAR*25L ALLOWS GET MODIFY
COMMON/TREATMENTS/DIET
CHARACTER*200 DIET
c CONTENTS: CHAR*200L ALLOWS GET MODIFY
COMMON/TREATMENTS/SPECIAL__INSTRUCTIONS
CHARACTER*40 SPECIAL_INSTRUCTIONS (5)
c CONTENTS: CHAR*40L ALLOWS GET MODIFY
EQUIVALENCE (TREATMENTS,DISEASE)
C END OF FORTRAN 77 “PATIENT_.SEARCH” SUBSCHEMA.
DG-25249
Figure 8-3. Subschema Example (concluded)
093-000288 Licensed Material-Property of Data General Corporation 8'7

System

l

Doctors
by
Name

!

(DOCTOR)

Last-Name
First-Name
Specialty
Info

Beeper

i

Patients
by
Name

l

ID-00117

l

Doctor
Treatmen

l

(PATIENT)

Last-Name
First-Name
Ward
Room

Patients
ts Treatments

l
l

(TREATMENTS)

Disease

Medication

Diet
Special-Instructions

Figure 8-4. Structure of Data in the Subschema Example

A record type is a logical unit of data, composed of elementary items. Many records of the same record

Database Records

Subschema source code files have two parts. The first part, a series of comment lines, describes
interrecord relationships that are called sets. The second part, a series of declarations of named
COMMON areas, describes the various record types for the database.

type can exist in the database; we call these occurrences of the record type.

Figure 8-5 shows the subschema’s record type descriptions of our database. This part of the subschema
defines three record types with a total of 13 data items. The data items in this structure can be
manipulated with ordinary FORTRAN 77 statements (IF, assignment, etc.). But, if you use a special
collection of statements, called data manipulation language (DML) statements on those data items, the
data structure becomes a window into the DG/DBMS database.

8'8 Licensed Material-Property of Data General Corporation

When you INVOKE the subschema in your program, a storage area called the User Work Area
(UWA) is defined in named COMMON blocks. You use ordinary FORTRAN 77 statements to use
data in the UWA in your program. You use DML statements to transfer information between the
UWA and the database. The record definitions in the subschema both declare the data that your

program can access in the database, and define the UWA of the program.

Each record description includes a comment on user access rights. DG/DBMS enforces these restrictions
on any program using the subschema to access the database file. The preprocessor also enforces these

restrictions at compile time.

C RECORD DEFINITION SECTION.

C RECORD = DOCTOR ALLOWS ERASE GET MODIFY STORE

CHARACTER*1 DOCTOR
COMMON/DOCTOR/DOCTORLAST__NAME
CHARACTER*25 DOCTOR—.LAST_NAME
c CONTENTS: CHAR*25L ALLOWS GET MODIFY

COMMON/DOCTOR/DOCTOR—FIRST_—_NAME
CHARACTER*20 DOCTOR—FIRST__NAME
C CONTENTS: CHAR*20L ALLOWS GET MODIFY

COMMON/DOCTOR/SPECIALTY
CHARACTER*15 SPECIALTY

c CONTENTS: CHAR*15L ALLOWS GET MODIFY
COMMON/DOCTOR/INFO
CHARACTER*40 INFO
c CONTENTS: CHAR*40L ALLOWS GET MODIFY
COMMON/DOCTOR/BEEPER
INTEGER*2 BEEPER
c CONTENTS: NUMERIC ALLOWS GET MODIFY
c RANGE : -9999 T0 +9999

EQUIVALENCE (DOCTOR,DOCTOR—LAST__NAME)

C RECORD = PATIENT ALLOWS ERASE GET MODIFY STORE

CHARACTER*1 PATIENT
COMMON/PATIENT/PATIENT—_LAST__NAME
CHARACTER*20 PATIENT.—LAST__NAME
C CONTENTS: CHAR*20L ALLOWS GET MODIFY

COMMON/PATIENT/PATIENT _FIRST..NAME
CHARACTER*16 PATIENT_FIRST..NAME

¢ CONTENTS: CHAR*1SL ALLOWS GET MODIFY
COMMON/PATIENT/WARD
CHARACTER*4 WARD
c CONTENTS: CHAR*4L ALLOWS GET MODIFY

DG-25250

Figure 8-5. Example Subschema Record Type Description (continues)

093-000288 Licensed Material-Property of Data General Corporation

8-9

COMMON/PATIENT/ROOM
INTEGER*2 ROOM
c CONTENTS: NUMERIC ALLOWS GET MODIFY
c RANGE : +0 TO +999

EQUIVALENCE (PATIENT,PATIENT__LAST_NAME)

C RECORD = TREATMENTS ALLOWS ERASE GET MODIFY STORE

CHARACTER*1 TREATMENTS
COMMON/TREATMENTS/DISEASE
CHARACTER*100 DISEASE
c CONTENTS: CHAR*100L ALLOWS GET MODIFY

COMMON/TREATMENTS/MEDICATION
CHARACTER*25 MEDICATION (5)
c CONTENTS: CHAR*25L ALLOWS GET MODIFY
COMMON/TREATMENTS/DIET
CHARACTER*200 DIET
c CONTENTS: CHAR*200L ALLOWS GET MODIFY
COMMON/TREATMENTS/SPECIAL__INSTRUCTIONS
CHARACTER*40 SPECIAL_INSTRUCTIONS (5)
c CONTENTS: CHAR*40L ALLOWS GET MODIFY

EQUIVALENCE (TREATMENTS,DISEASE)

C END OF FORTRAN 77 “PATIENT__SEARCH” SUBSCHEMA.

DG-25250

Figure 8-5. Example Subschema Record Type Description (concluded)

8‘ 1 0 Licensed Material-Property of Data General Corporation 093-000288

Database Navigation

SYSTEM Sets

All schemas and subschemas contain a special record type, named SYSTEM. The SYSTEM record
serves as an initial entry point into the database. The SYSTEM record is system maintained and there
is only one occurrence of it, therefore, it can always be located. Set types that have the SYSTEM
record as their owner are called system sets. (The SYSTEM record can only be an owner, never a
member.) All programs that access a database start out by navigating in a system set because system
sets are the only set occurrences that can be directly located when a program starts.

Set Types

Relationships between different record types are defined by set types. The first part of a subschema
contains the definitions of the subschema’s sets. Figure 8-6 shows the set types in our example
subschema.

Each set type consists of the following:

The set’s name.

A clause listing the allowed connection statements.
An owner record type specification.

A member record type specification.
Insertion/retention criteria for member records.

The ordering criteria of the member records within a set occurrence. If the set is sorted, this includes
the list of the sort key item(s) and a clause specifying whether or not duplicate sort key values are
allowed.

The maximum number of member occurrences within a set occurrence (there could be no limit).

093-000288 Licensed Material-Property of Data General Corporation 8' 1 1

¢
c
c
¢
c
c
c
C
c
c
c

OO0

[r 2 e B or BN or BN ov BN ov N ov]

OO0

DG-25251

SET =

SET =

SET =

SET =

C SET DEFINITION SECTION.

DOCTORS—BY._NAME
ALLOWS RECONNECT
OWNER IS SYSTEM
MEMBER IS DOCTOR
AUTOMATIC MANDATORY
ORDER IS SORTED BY KEY ASCENDING
KEYS ARE:
DOCTOR—LAST—_NAME
DOCTOR—FIRST_—NAME
DUPLICATES ALLOWED
MEMBER LIMIT IS NONE

PATIENTS._BY__NAME
ALLOWS RECONNECT
OWNER IS SYSTEM
MEMBER IS PATIENT
AUTOMATIC MANDATORY
ORDER IS SORTED BY KEY ASCENDING
KEYS ARE:
PATIENT—_LAST_.NAME
PATIENT._FIRST__NAME
DUPLICATES ALLOWED
MEMBER LIMIT IS NCNE

PATIENT_TREATMENTS
ALLOWS RECONNECT
OWNER IS PATIENT
MEMBER IS TREATMENTS
AUTOMATIC MANDATORY
ORDER IS NEXT

MEMBER LIMIT IS NONE

DOCTOR.TREATMENTS
ALLOWS RECONNECT
OWNER IS DOCTOR
MEMBER IS TREATMENTS
AUTOMATIC MANDATORY
ORDER IS NEXT

MEMBER LIMIT IS NONE

Figure 8-6. Set Types in Subschema Example

Licensed Material-Property of Data General Corporation

093-000288

Set Occurrences

A set occurrence consists of a least one occurrence of the owner record type, and zero or more member
record occurrences. The set type specification defines the owner/member relationships in the set
occurrence.

The set type specifications and owner/member relationships are described in detail in the DG/DBMS
Reference Manual.

CODASYL databases are network databases. You can consider the set occurrences as the pathways
that you travel, and the record occurrences as the destinations to which you go. Figure 8-7 illustrates a
set occurrence.

Owner Records

One
Owner
Occurrence

One Set
Occurrence

3rd

y 2nd Member Records

1st
Member
Occurrence

iD-00118

Figure 8-7. A Set Occurrence

End of Chapter

093-000288 Licensed Material-Property of Data General Corporation 8' 1 3

Chapter 9
DG/DBMS SubschemaData Definition

Overview

The DBA defines a subschema using the Data Definition Facility. The description of the subschema
and record specifications for the FORTRAN 77 program are contained in a source code file, which is
produced by the FORTRAN 77 subschema source code generator, invoked by DDF upon request by
the DBA.

The subschema defines your view of the database. Each set is described by a group of comments. All
records and associated items are allocated in FORTRAN as named COMMON blocks.

Every FORTRAN 77 application program (or subprogram) must identify the subschema it is using
with an INVOKE statement before any other DML statement in the program. The INVOKE statement
has the form

D INVOKE (SUBSCHEMA = *<Css._name™>", SCHEMA = “<Cs__name>>")

where “D” must be in column 1, and where “INVOKE” must begin in column 7 or beyond. The
parameter <{ss_name>> is the subschema name and <(s_name> is the absolute or relative pathname
of the database. The INVOKE statement identifies the subschema that the preprocessor will use for the
data declarations it will make in your program.

Schema to Subschema Transformation

Data is transformed from DG/DBMS internal format to FORTRAN 77 format when it is read from
the database, and from FORTRAN 77 format to DG/DBMS internal format when it is stored. These
transformations are automatically performed by DG/DBMS. The DBA’s definition of the schema and
subschema determines the transformations to be performed.

Schema Data Formats

DG/DBMS stores all data in one of four internal formats and automatically converts data between
schema and subschema formats. The schema formats are:

» Multiple-precision signed integer (two’s complement binary) with implied decimal point.
e Floating point (single- and double-precision).

* Character.

* Bit.

093-000288 Licensed Material-Property of Data General Corporation 9‘ 1

FORTRAN 77 Subschema Data Formats

DG/DBMS supports three basic types of data formats in a FORTRAN 77 subschema. These are
numeric, character, and bit. The following sections describe the FORTRAN 77 data types that can be
used to represent these formats.

Numeric Data
Numeric data can be represented in a FORTRAN 77 subschema with any of the following data types:
¢ INTEGER*2 — Single-word signed integer (implied trailing decimal point).
* INTEGER*4 — Double-word signed integer (implied trailing decimal point).
» REAL*4 — Single-precision floating point.
¢« REAL*8 — Double-precision floating point.
* DOUBLE PRECISION — Double precision floating point

DG/DBMS can convert data items declared as numeric in the schema (either FIXED or FLOAT) to
any of the above data types. If the conversion results in the number being truncated, DG/DBMS will
issue a warning.

Character Data

Character data is represented in a FORTRAN 77 subschema with the CHARACTER*n data type.
DG/DBMS does not convert character data to any other formats; hence, the corresponding schema
data item must be declared as CHARACTER. Subschema data items can be longer or shorter than the
schema definition, and can have a different justification. Strings will be truncated to fit into shorter
data items. Strings moved into longer data items will be padded with blanks. Character strings must
contain valid ASCII characters and must not contain any nulls (i.e., ><<000>"); otherwise, a data
conversion error will result.

Bit Data

Since there is no bit data type in FORTRAN 77, the subschema allows the usual FORTRAN
programming practice of storing the data in variables and arrays of other FORTRAN 77 data types.
The following data types can be used:

* INTEGER*2, LOGICAL*2 (16 bits per element)
* INTEGER*4, LOGICAL*4, REAL*4 (32 bits per element)
« REAL*8, DOUBLE PRECISION (64 bits per element)

DDF will create an array of elements large enough to contain the bit string; e.g., a bit string of 31 bits
could be contained in a 2-occurrence array of INTEGER*2 or in a 1-occurrence array of INTEGER *4,

The type of data conversion used for items declared as BIT in the schema depends on the contents
declaration of the subschema. The contents declaration defines the usage the item will have in the
subschema. There are two ways to convert BIT items.

First, if the usage of the item in the subschema is declared as BIT, the destination data item will be
treated as a (left-justified) bit string. Starting with the leftmost bit, each bit is moved one at a time,
without any content checking. If the destination string is longer than the source, the excess is padded
with zero bits. If the destination string is shorter than the source, the excess bits are truncated on the
right. If any nonzero bits are truncated, a warning is returned. See the “Character and Bit Strings”
section in Chapter 14 for additional information.

The second way of handling bit strings is to define the subschema usage as NUMERIC. In this casc,
the destination is treated as a right-justified bit string whose length is the length of the data type (e.g.,
16 bits for INTEGER*2). Starting with the rightmost bit, the data is moved into the low-order bits of
the destination. If necessary, the string is truncated or padded on the left with zero bits.

9'2 Licensed Material-Property of Data General Corporation 093-000288

Supported Subschema Data Types and Conversion Rules
k/ Table 9-1 summarizes all the legal data type declarations in a FORTRAN 77 subschema.

Table 9-1. Supported FORTRAN 77 Subschema Data Types

Data Contents Data Size Aln Dimension
Declaration (bytes)

CHARACTER CHAR*n n B Number of times the item occurs in the

schema.

BIT INTEGER*2 2 w First dimension is the minimum number of

LOGICAL*2 2 W times the data type must occur in order to
INTEGER*4 4 w contain the data item.
LOGICAL*4 4 W .
REAL*4 4 w Second dimension is the number of times the
REAL*8 8 w item occurs in the schema.
DOUBLE 8 W
PRECISION
NUMERIC INTEGER*2 2 w Number of times the item occurs in the
INTEGER*4 4 w schema.
REAL*4 4 W
REAL*8 8 w
DOUBLE 8 w
PRECISION

where:

Data Contents defines the basic data type of the item.

\\ Data Declaration defines the FORTRAN 77 data declarations that are allowed for the
- given contents.

Size (bytes) defines the number of bytes of storage a single occurrence of the given
type occupies. To compute the total amount of space a type occupies,
multiply the byte size of the item by all its occurs clauses.

Aln defines the alignment required for the declaration; B means byte
alignment, W means word.

Dimension defines the dimension declarations for the given type.

093-000288 Licensed Material-Property of Data General Corporation 9 - 3

Table 9-2 summarizes the allowed schema-to-subschema data type mappings and the action DG /DBMS
takes.

Table 9-2. Schema to Subschema Data Type Mappings

Schema Type Specification
Subschema Type Fixed Float Character Bit
Specification Numeric Numeric

CHARACTER*N 4 4 2 3
INTEGER*2 1 1 4 3
INTEGER*4 1 1 4 3
LOGICAL*2 4 4 4 3
LOGICAL*4 4 4 4 3
REAL*4 1 1 4 3
REAL*8 1 1 4 3
DOUBLE 1 1 4 3
PRECISION

The following four notes apply to Table 9-2.

1. Numeric Move

After converting the data to the destination data type, DG/DBMS will:
. Align the digits on the decimal point (or implied decimal point).

. Truncate/pad to fit the source number into the destination number.
. Perform a range check, if a range was specified.

. Send a truncation warning if it truncates a number.

2. Character Move
DG/DBMS verifies the string for valid characters.

Characters in the source string are moved to the destination, as follows:

. If the destination string is left-justified, then the leftmost character of the source string is
moved to the leftmost character of the destination string, followed by the next leftmost
character, etc.

. If the destination string is right-justified, the system starts with the rightmost character of
the source string and moves it to the rightmost character position of the destination, followed
by the next rightmost character, etc.

If the destination string is longer than the source, DG/DBMS will pad it with blanks.

If the source string is longer than the destination, then the system truncates it to the size of the
destination. If any of the truncated characters were not blanks, you will receive a truncation
warning.

9'4 Licensed Material-Property of Data General Corporation 093-000288

3. Bit Move

Basically, this is the same as a character move, except that DG/DBMS:

J Performs no verification.

. Moves strings on a bit-by-bit basis, not by character.

. Pads with zero bits, not blanks.

. Will send a truncation warning if it truncates any nonzero bits (as opposed to blanks).

Bit strings with BIT as subschema content type are left-justified. Bit strings with NUMERIC as
subschema content type are right-justificd.

4. Nort allowed.

FORTRAN 77 Subschema Data Definition
Figure 9-1 is an example of the DDF screen used to define FORTRAN 77 subschema data types.

FORTRAN 77 SUBSCHEMA: DATA ITEMS: Record Name: EMPLOYEE

Fortran 77 Access

No. I Data Item: subschema name Contents Specification Rights
E schema name TYPE DIM G M

1 1 LASTNAME CHAR*20L C*10 Yy
LASTNAME

2 I MIDINIT CHAR*IL C*1 Yy
MIDINIT

3 I FIRSTNAME CHAR*1OL C*10 Yy
FIRSTNAME

4 1 EMPNO NUMERIC I*2 Yy
EMPNO

I/E: I = Include, E = Exclude Access rights: G = Get, M = Modify

Contents: NUMERIC, CHAR*nj (n = # of chars, j =L or R), BIT*n (n = # of bits)
Types: I*m=Integer, L*n=Logical, R*mReal, C*m=Character, D=Double Precision

DG-26252

Figure 9-1. Sample FORTRAN 77 Data Item Screen

093-000288 Licensed Material-Property of Data General Corporation 9'5

The following notes apply to Figure 9-1.

I.

I
E

The I/E column defines whether the data item is included (1) or excluded (E) from the subschema.
Excluded items are displayed dimly, and included items at normal intensity.

Data Item

The Data Item name column defines the name the item will have in the subschema. The name the
item has in the schema is displayed on the second line.

Contents

The Contents column defines the usage the data item will have in the subschema. FORTRAN 77
data items can contain CHARACTER data, BIT data, or NUMERIC data.

For data declared as CHARACTER in the schema, the Contents entry will be CHAR*nj, where
n is the number of characters in the string and j is the justification of the string (left or right). Both
the length and the justification of the item can be changed.

For data declared as BIT in the schema, this field determines whether the item is to be treated as
a bit string or as a number. Declaring the field as BIT*n causes the data item to be treated as a
left-justified bit string, where n is the number of bits in the string. Declaring the field as
NUMERIC causes the data item to be treated as a number (a right-justified string) whose length
is the maximum number of bits that can be contained in the data type declared.

For data declared as NUMERIC in the schema, this column will have NUMERIC in it and serves
only as a comment.

TYPE

The TYPE column defines the FORTRAN 77 data type declaration for the item. The supported
FORTRAN 77 types are: CHARACTER, INTEGER*2, INTEGER*4, LOGICAL*2, LOGI-
CAL*4, REAL*4, REAL*8, and DOUBLE PRECISION. Which data types are allowed depends
on the Contents entry. Table 9-1, earlier, defines all possible legal combinations of Contents and
TYPE.

DIM

The DIM (for “dimension”) column defines the array dimensions (if any) of the data item. The
numbers for this entry are computed and displayed by DDF and cannot be changed on this screen.
The values in the DIM column depend upon the item’s Contents entry and its schema occurs
value. For NUMERIC and CHARACTER data, the entry contains the occurs value of the item
in the schema. For BIT data, the field contains at most two dimensions. The first dimension
(calculated by DDF) reflects the amount of physical storage necessary to accommodate the data
item; the second dimension contains the occurs value of the item in the schema. If any array
dimension is computed to have a value of one, the dimension is omitted (its value is implicitly one).

Access Rights

Finally, the last two columns on the screen are used to define the access rights for the item. The
item can have Get (G) and/or Modify (M) access, or neither.

Default Subschema Data Types

When the DDF first generates a FORTRAN 77 subschema, it automatically translates the schema
data item definitions into the most appropriate FORTRAN 77 data item specifications. These
specifications of data type can be changed by the DBA before the subschema is bound. For additional
information about subschema binding consult the DG/DBMS Reference Manual.

9-6

Licensed Material-Property of Data General Corporation 093-000288

Table 9-3 shows the FORTRAN 77 specifications that DDF will generate as the default.

Table 9-3. Default FORTRAN 77 Subschema Data Types

Schema Contents FORTRAN Specification

CHARACTER

X(n)L CHAR*nL CHARACTER*n [(OCCURS)]

X(n)R CHAR*nR CHARACTER*n [(OCCURS)]
BIT

B(n) BIT*n INTEGER*2 [([(n+15)/16] [,OCCURS])]
FIXED NUMERIC

9(n)n < 5 NUMERIC INTEGER*2 [(OCCURS)]

9(n)4 < n < 10 NUMERIC INTEGER*4 [(OCCURS)]

9(n)9 <n NUMERIC DOUBLE PRECISION [(OCCURS)]

9(n).9(m) NUMERIC DOUBLE PRECISION [(OCCURS)]
FLOAT NUMERIC

P(1) NUMERIC REAL*4 [(OCCURS)]

P(2) NUMERIC DOUBLE PRECISION [(OCCURS)]

End of Chapter
093-000288 Licensed Material-Property of Data General Corporation 9' 7

Chapter 10

Data Manipulation Statements for
DG/DBMS

FORTRAN 77 Data Manipulation Statements

Overview

DG/DBMS databases are accessed by DML statements, which you include directly in your F77
application program. Each DML statement must contain a “D” in column 1. The “D” is optional on
continuation lines. Since one DML statement might produce more than one FORTRAN statement,
labels are not allowed on DML statements.

The DG/DBMS FORTRAN 77 DML syntax is compatible with that of FORTRAN 77. The DML
statements take the form of a command verb, generally followed by a list of keyword parameters
enclosed in parentheses. The parameters can be entered in any order.

Using Free Cursors

The use of free cursors allows your application programs to set and update their own database position
markers. For a complete description of free cursors and their uses, see the DG/DBMS Reference
Manual or the Guide to Using DG/DBMS.

To use free cursors in your FORTRAN program, you must include a declaration for each free cursor.
The format of this declaration is the following.

D FREE CURSOR fc__name /(n)], RECORD=rec_name
The D must be in column 1, and the keyword FREE CURSOR must begin in column 7 or beyond.

The FORTRAN program unit that contains the READY DML statement must contain a declaration
for every free cursor. In all other subprograms, only the free cursors that are used in that subprogram
have to be declared. Free cursors can also be one-dimensional arrays.

When any module is preprocessed, a FORTRAN 77 named COMMON statement and an INTEGER *2
declaration statement will be generated for each free cursor declared in that module.

It is very important that you use free cursors only in DML statements. Altering their values with
FORTRAN 77 statements will lead to unexpected results.

Note that FREE CURSOR statements are nonexecutable. They are used to declare internal data
structures and to make the association of fc._name with record type rec_name. As nonexecutable
statements that cause the declarations of COMMON blocks, FREE CURSOR statements must be
placed near the beginning of a module (but after the INVOKE statement).

The DML Statements
You use the DML statements to:
* Open and close a database.
« Handle transactions.

¢ Locate record occurrences.

093-000288 Licensed Material-Property of Data General Corporation 1 O' 1

* Read and update record occurrences.
e Modify the set participation of record occurrences.
» Assign and check cursors.

The statements are organized according to their functionality. The seven DML statement groups are
defined briefly in the following sections:

¢ Subschema Statements

e Transaction Statements

« Connection Statements

e Find Statements

e Record Statements

¢ Fetch Statements

o Utility Statements

Refer to the DG/DBMS Reference Manual for a complete description of the actions of these statements.

Subschema Statements
The subschema statements are INVOKE, READY, and FINISH.

INVOKE names the database and subschema to be used by the FORTRAN program. It should not be
confused with READY, which actually opens the database. INVOKE is a nonexecutable statement
that identifies the database to be used and sets up the declarations of named COMMON areas for the
data items and record types in the subschema.

READY opens the database for use through the INVOKEd subschema. You can indicate the usage
(EXCLUSIVE or CONCURRENT) and the mode (UPDATE or RETRIEVAL) with which the
database is to be opened.

FINISH terminates access to the database via the currently READY subschema.

Transaction Statements
The transaction statements are INITIATE, COMMIT, ROLLBACK, and CHECK.

INITIATE signals the start of a database transaction in either UPDATE or RETRIEVAL mode. The
transaction 1D assigned by DG/DBMS is returned as a parameter. Note that transactions cannot be
nested.

COMMIT signals the end of the outstanding transaction.
ROLLBACK voids the outstanding transaction, undoing any updates that you might have made.

CHECK returns the status of any transaction. The transaction id is represented as a double-precision
floating-point number. This statement returns an INTEGER*2 variable whose possible values are as
follows.

Code Meaning
0 Unknown Transaction
1 Transaction currently active
2 Transaction successfully completed
3 Transaction backed out (ROLLBACK completed)
4 System error; DG/DBMS cannot determine the status

Connection Statements
The connection statements are CONNECT, DISCONNECT, and RECONNECT.

1 0'2 Licensed Material-Property of Data General Corporation 093-000288

CONNECT inserts an existing member record into the set identified by the current-of-set. The record
can be identified through either a free cursor or by the current-of-record.

DISCONNECT removes a member record occurrence from the specified set. The record can be
identified by either a free cursor or by the current-of-record.

RECONNECT disconnects the given member record from its present set position and then reconnects
it into the position indicated by the specified current-of-set. The record can be identified only by a free
cursor.

Find Statements
The find statements are FIND CURRENT, FIND OWNER, FIND positional, and FIND keyed.

The ASSIGN free cursor clause is optional with all of the find DML statements. There is also an
independent ASSIGN statement.

FIND positional will return an end-of-set error if the search fails. FIND Keyed will return an
unsuccessful-keyed-search error if the search fails. An END clause can be included in the these FIND
statements to test for these conditions.

In all FIND statements, except for FIND CURRENT, the record clause is included for member
validation. It is also a source of data in FIND keyed.

FIND CURRENT has two forms. In the first form, the record to be located is that designated by a free
cursor or by the current-of-record. In the second form, the record to be located is that designated by the
specified current-of-set, if the record occurrence indicated by the current-of-set matches the given
record type.

FIND OWNER locates the owner record occurrence of the specified current-of-set.

FIND positional locates a specific member record occurrence within the given set occurrence. The
search is performed using a direction relative to the record that is current-of-set (FIRST, LAST,
NEXT, or PRIOR). Alternatively, the direction can be specified as a nonzero variable. If the variable
is positive, the nth record from the first record occurrence will be located. If the variable is negative,
then the nth record from the last record occurrence will be located.

FIND keyed can take several forms depending on the fields being compared, the source of the
comparison values, the relationship being tested and the direction of the search. The fields being
compared are either a SORT KEY (the key of a sorted set) or a SEARCH KEY (an arbitrary list of
data items in the record). The values used for comparison can be taken from ecither the user work area
(UWA) or the from the fields in the current record of the set occurrence (CUR_SET). The FORTRAN
relational operators .EQ., .GT., .LT., .GE., and .LE. can be used. However, not all operators are
allowed with all combinations of fields, value source (UWA or CUR_SET), and direction of search
(FIRST, LAST, NEXT or PRIOR). For the legal combinations, the FIND statement locates the
FIRST/LAST/NEXT/PRIOR member whose fields are in the specified relationship to the values
selected for the fields specified in the statement.

Record Statements
The record statements are GET, MODIFY, STORE, and ERASE.

GET retrieves either an entire record occurrence or a specified list of items within a record occurrence.
The record can be identified either with a free cursor or by the current-of-record. GET statements can
specify up to 15 items to be retrieved, or they can retrieve an entire record.

MODIFY updates all or some of the items in the specified record. The record can be identified either
with a free cursor or by the current-of-record. MODIFY statements can specify up to 15 items to be
updated, or they can update an entire record.

ERASE deletes a record occurrence, disconnecting it from all sets in which it is connected as a member.
The record can be identified either with a free cursor or by the current-of-record.

083-000288 Licensed Material-Property of Data General Corporation 1 0‘3

STORE creates a new record occurrence of the given type, connecting it into all sets in which it is an
automatic member. The ASSIGN free cursor clause can be used with this statement.

Fetch Statements

A FETCH statement is a combination of a FIND and GET. For each FIND statement defined in the
previous section “Find Statements” there is a corresponding FETCH statement. The syntax for a
FETCH is identical to that of a FIND. Each FETCH statement performs the search indicated cated by
its corresponding FIND (including the ASSIGN and END clauses). If the FIND succeeds, a GET is
done on the record and all the related cursors are updated. If the FETCH fails, the cursors are left
unchanged and no record is retrieved.

Utility Statements

The utility statements are ASSIGN, CONNECTED, OWNER, MEMBER, NULL, and EMPTY.
Each of these statements, except ASSIGN, acts as a logical function. They can be used either in a
logical assignment statement or as the logical expression in an IF construct.

When a free cursor is declared, it is associated with a specific record type. The ASSIGN free cursor
statement sets the named free cursor to the current-of-record of the record type with which it is
associated.

The CONNECTED function returns the value . TRUE., if the given record is a connected member of
the specified set; and it returns the value .FALSE., if it is not. The record can be identified either with
a free cursor or by the current-of-record.

The OWNER function returns the value . TRUE., if the current-of-set is on an owner record type of the
specified set; and it returns the value .FALSE., if it is not.

The MEMBER function returns the value . TRUE., if the current-of-set is on a member record type of
the specified set; and it returns the value .FALSE,, if it is not.

The NULL function returns the value . TRUE., if the specified free cursor, record cursor, or set cursor
does not distinguish a record; and it returns the value .FALSE., if it does.

The EMPTY function returns the value . TRUE,, if the specified set is empty; and it returns the value
.FALSE,, if it is not.

Error Handling

The preprocessor declares DBSTATUS as an INTEGER*2 variable in named COMMON. This
integer will be set by every DML statement to the resulting error code. A successful statement will
return the value zero. Unsuccessful statements will return either an AOS/VS error code or a DBMS
error code of the form 017xxxK. The DG/DBMS Reference Manual has a full description of all DBMS
error codes (including a description of the effect an error has on the database and on your cursors). You
can explicitly test the value of DBSTATUS at any time in your program or with your own default error
handler.

Several types of error handling options are available for the various DML statements. In all statements
(except the logical functions), an error clause (ERR=<err_opt>) can be included to specify an
action to be taken on any error returned from the call. The FIND and FETCH DML statements can
also contain an end clause (END= <end_opt>), which specifies an action to be taken when an
unsuccessful-keyed-search or an end-of-set error occurs. The format of the two clauses is as follows:

label
ERR = {subr [(args)]}
END = {Iabel

subr [(args)/}

1 0'4 Licensed Material-Property of Data General Corporation 093-000288

Depending on the error clauses that you include in a DML statement, the preprocessor will either
generate error handling code in your application program, or errors will be handled by calling a default
error subroutine. In any case, DBSTATUS always contains the error code returned by the most recent
DML statement.

If the ERR clause is included, but not the END clause, any error that occurs will be returned. The
preprocessor will generate one of the following two statements.

IF (DBSTATUS .NE. 0) GO TO label
IF (DBSTATUS .NE. 0) CALL subr /(args)/

If the ERR clause is not included, but the END clause is, the default error routine will be called if any
error other than end-of-set or unsuccessful-keyed-search occurs. The preprocessor will generate one of
the following two statements:

IF (DBSTATUS .EQ. ercode) GO TO label
IF (DBSTATUS .EQ. ercode) CALL subr [(args)]

The ercode symbol represents a constant for either the end-of-set error code or the unsuccessful-keyed-
search error code. For each FIND (or FETCH), only one of the two ercodes is a possible result. For
sort key or search key FINDs, unsuccessful-keyed-search could be returned. For positional FINDs,
end-of-set could be returned. The preprocessor will only generate code to check for the possible ercode.

If both the ERR clause and the END clause are included, any error that occurs will be returned. The
preprocessor will generate the following two statements in the order listed.

IF (DBSTATUS .EQ. ercode) {GO TO label
CALL subr [(args)]

IF ((DBSTATUS .NE. 0) .AND. (DBSTATUSNE. ercode))
{GO TO label
CALL subr [(args)]

If DBMS returns an error for which you have not specified an error handling clause, the default error
handling module, DBERROR, is called. This module performs two actions. First, it calls the FORTRAN
77 runtime ERRCODE with the value of DBSTATUS as input. ERRCODE will display the error and
an error traceback. Then, it transfers control to the father process. (See Chapter 2 for a further
explanation of ERRCODE).

Alternatively, you can write your own DBERROR routine and place it before the interface library in
your link line. This will cause your DBERROR routine to be used in place of the supplied default
DBERROR. The following information will be helpful in writing a DBERROR replacement:

« DBERROR must be defined as a SUBROUTINE with no arguments. The invoking statement is
CALL DBERROR.

e The subroutine can either terminate execution or RETURN. In the latter case, execution will
continue with the statement following the DML statement that resulted in the error.

¢ If your DBERROR subroutine makes use of DBSTATUS, it must either contain an INVOKE
statement or a declaration of DBSTATUS in named COMMON as follows.

COMMON/DBSTATUS/DBSTATUS
INTEGER*2 DBSTATUS

e The DBERROR subroutine can do DML. However, you must be aware that any DML statement
will reset DBSTATUS, since it is a global (COMMON) variable. Also, you must ensure that any
DML in DBERROR does not result in an error call to DBERROR, which executes a DML
statement that causes an error, etc.

End of Chapter

093-000288 Licensed Material-Property of Data General Corporation 1 0-5

Chapter 11

Data Manipulation Language Syntax for
DBMS

Syntax Overview

The syntax used in this chapter is the syntax used in the CODASYL FORTRAN Database Facility.
The syntax is a modified Backus-Normal Form (BNF), with the following rules in addition to those of
the usual BNF:

The rules for comments, continuation, statements, blank characters, and identifiers are as defined in
FORTRAN 77. DML statements cannot be labeled. A “D” is required in column 1 on the first line
of a DML statement, but is optional on any continuation statements. We use a “.” in column 6 on
second and subsequent lines to indicate the continuation of a DML statement. You can use any legal
continuation character.

In statements that contain a parenthesized list of parameters, a single comma (only) is required
between adjacent parameters. Also, no comma can follow a left parenthesis. For example, the illcgal
statement

D READY (,UPDATE, ,ERR=1100)
should become the legal statement

D READY (UPDATE, ERR = 100)

The parentheses enclosing a list in a WHERE clause, can be deleted if the list consists of one item.
For example

D FIND(FIRST,RECORD = EMP,SET—=EMPS WHERE((NAME) .EQ.UWA))
can become

D FIND(FIRST,RECORD==EMP,SET=EMPS, WHERE(NAME .EQ.UWA))

In a statement that has an empty parenthesized list, the parentheses must be deleted. For example,
change

READY()
to

READY

The clauses within a parenthesized list can be in any order. For example
FIND (FIRST,RECORD =EMP, SET==PAY)
is equivalent to

FIND (SET=PAY,RECORD = EMP,FIRST)

093-000288 Licensed Material-Property of Data General Corporation 1 1 = 1

Syntax Meta-Symbols

The following meta-symbols are used in this chapter. Note that a single vertical bar () represents “or”.

args

end_opt
err—_opt

fc_name

item

itemlist

label
logical
path_name

posit

rec_name

set_name

§s__name

s__hame

status

stmt

subr
tx_id

usinglist

List of valid FORTRAN 77 subroutine parameters. Arithmetic expressions are not
allowed.

{ tabel | subr /args/}
{ label | subr [args]|

Any valid free cursor name that you declare; maximum length is 32 characters. The
names of all free cursors must be unique in the first eight characters.

Any valid item name that is declared in your subschema; maximum length is 32 characters.

item /[.item].
There is a maximum of 15 items in an item list.

Any valid FORTRAN 77 statement label.
Any valid FORTRAN 77 LOGICAL variable.
Any valid AOS/VS pathname for a file.

DOUBLE PRECISION variable that can be used in the FIND positional statement to
indicate the search direction.

Any valid record name that is declared in your subschema; maximum length is 32
characters. Record names must be unique within the first eight characters.

Any valid set name that is declared in your subschema; maximum length is 32 characters.

The name of the subschema being used in a (sub)program. Maximum length is 27
characters.

The name of the schema (database) being used in a (sub)program.

INTEGER variable that you declare to receive the transaction status from CHECK
transaction.

Any valid FORTRAN 77 statement except a DO statement; it cannot be a DML
statement.

Any valid FORTRAN 77 subroutine name.

DOUBLE PRECISION variable that you declare to receive the transaction id from
INITIATE.

(item_list)

The remaining pages in this chapter present the details of cach DML statement. The statements appear
alphabeticaily.

11-2

Licensed Material-Property of Data General Corporation 093-000288

ASSIGN Statement

Format
D ASSIGN (FREE CURSOR=fc_name /,ERR=err._opt))

This statement assigns the free cursor fc_name to the record occurrence, which is current-of-record.
Free cursor fc_name is associated with a specific record type as a result of the FREE CURSOR
statement in which it was declared.

If you include the ERR=err_opt clause and DG /DBMS returns an error, control passes to err_opt.

CHECK Transaction Status Statement

Format
D CHECK (ID=tx_id /,ERR=-err_opt]) status

When you issue the CHECK Transaction Status command, DG/DBMS returns an integer describing
the status of the transaction into status. The following is a list of these codes and their meanings.

Code Meaning

0 Unknown transaction

1 Transaction currently active

2 Transaction successfully completed

3 Transaction backed out (ROLLBACK completed)

4 System error; DG/DBMS cannot determine the status

If you include the ERR=err_opt clause and DG/DBMS returns an error, control passes to err_opt.

The CHECK Transaction Status command never affects any cursors.

093-000288 Licensed Material-Property of Data General Corporation 1 1 ‘3

COMMIT Statement |

Format
D COMMIT [(ERR=err_opt)]

The COMMIT statement makes the updates you have made to the database permanent. Unless you
COMMIT your transaction, all changes you have made to the database will be rolled back.

After you COMMIT a transaction, any future transaction can see the modifications you have made to
the database. Before you COMMIT your transaction, your modifications are not visible to other users.
After the COMMIT, you need a new INITIATE command to continue to access the database.

If you include the ERR=err_opt clause and DG/DBMS returns an error, control passes to err_opt.
The COMMIT statement has no effect on any cursors.

Note that COMMIT is a relatively “inexpensive” command. DG/DBMS made all the database
modifications during the program transactions; COMMIT simply makes these modifications visible to
other users.

To end a transaction and abort all changes made during it, use the ROLLBACK statement.

CONNECT Statement ‘

Format

D CONNECT ({RECORD=rec_name | FREE CURSOR=fc_name},
J SET=set_name /,ERR=err_opt])

DG /DBMS connects the record indicated by current-of-record or by a free cursor to the owner record
within the current-of-set defined by set_name. You must be positioned on an occurrence of set_name
and have either a record cursor or a free cursor on the potential member record.

If you include the ERR=err_opt clause and DG/DBMS returns an error, control passes to err_opt.

CONNECT has no effect on free cursors. It sets the current-of-record to the connected record
occurrence. It sets the current-of-set for set_name to the connected record occurrence.

CONNECT statements are used to associate owner and member record occurrences in MANUAL or
OPTIONAL set types. (See the DG/DBMS Reference Manual for a full discussion of sets and set

types).

1 1 '4 Licensed Material-Property of Data General Corporation 093-000288

CONNECTED Function

Format

D logical = [.NOT.] CONNECTED
. ({RECORD=rec_name | FREE CURSOR=fc_name},
. SET=set_name)

D IF (/. NOT.] CONNECTED
. ({RECORD=rec_name | FREE CURSOR=fc_name/,
. SET=set_name)) stmt

This function tests to see whether or not the record indicated by current-of-record or a free cursor is
connected in the set type set_name.

DML logical functions must not contain any additional logical tests.

stmt cannot be a DML statement or a DO statement.

DISCONNECT Statement

Format

D DISCONNECT ({RECORD=rec_name | FREE CURSOR=fc_name{,
. SET=set_name /,ERR=err_opt])

This statement disconnects the member record on which you are currently positioned, or which you
have marked by a free cursor from its owner in set_name.

You cannot disconnect an occurrence in a MANDATORY set type. (However, you can ERASE the
member record occurrences.) See the DG/DBMS Reference Manual for a full discussion of sets and set
types.

If you include the ERR=err_opt clause and DG/DBMS returns an error, control passes to err_opt.

DISCONNECT has no effect on free cursors. It sets the current-of-record of the member record type
to the disconnected record. It leaves current-of-set in the disconnected set on the “hole” the record used
to occupy.

093-000288 Licensed Material-Property of Data General Corporation 1 1 ‘5

EMPTY Function

Format
D logical = [.NOT.] EMPTY (SET=set_name)
D IF (/. NOT.] EMPTY (SET=set_name)) stmt

This function tests to see whether or not the set occurrence identified by the current-of-set has any
member occurrences.

DML logical functions must not contain any additional logical tests.

stmt cannot be a DML statement or a DO statement.

ERASE Statement

Format

D ERASE ({RECORD=rec_name | FREE CURSOR=fc_name |
. [LERR=err_opt])

ERASE deletes from the database the record occurrence indicated by current-of-record or free cursor
fc_name. You cannot ERASE a record occurrence if it is the owner of another record occurrence in
any set; you must ERASE or DISCONNECT all of its member records first.

If you include the ERR=err_opt clause and DG/DBMS returns an error, control passes to err_opt.
ERASE sets the following to null:

» Free cursors that were pointing to the erased occurrence.

¢ Current-of-record for this record type.

e Current-of-set for all sets that the erased record owned.

ERASE sets the current-of-set for all sets in which the erased record was a connected member to the
“hole” the record left in the set occurrence.

Note that a DG/DBMS ERASE always causes an immediate, physical deletion. The only way to undo
an ERASE command is to ROLLBACK the transaction instead of COMMITting it.

1 1 "6 Licensed Material-Property of Data Generat Corporation 093-000288

FETCH CURRENT Statement

Format
D FETCH (CURRENT, {RECORDzreC_nameI
. FREE CURSOR=fc_name/,
. [LASSIGN=fc__name]
. [LERR=err_opt])
D FETCH (CURRENT, RECORD=rec_name, SET=set_name
. [LASSIGN=fc_name] [ERR=err_opt])

The FETCH CURRENT statement is the only FETCH that does not locate a new record occurrence.
The statement resets all the system cursors associated with a particular record type to point to the
same, previously known record occurrence. Current-of-record, current-of-set, or a free cursor indicate
the known record occurrence. If a record is successfully found, FETCH then gets the record.

If you specify just a record name or free cursor name, DG/DBMS will locate the appropriate
occurrence (provided the cursor is not null.) If you specify a record and set type for the record you want
to locate, the system will compare that record type to the one identified by current-of-set. If they match
and current-of-set is not null, DG/DBMS will perform the find as indicated, otherwise an error
message will be generated and all cursors will remain unchanged.

FETCH CURRENT has no effect on free cursors unless the optional ASSIGN clause is present, in
which case it will assign a free cursor to the found record.

FETCH CURRENT sets current-of-set to the located record in all sets in which the record is an owner
or a connected member, and sets current-of-record to the located record occurrence.

If you include the ERR=-err_opt clause and DG/DBMS returns an error, control passes to err_opt.

FETCH OWNER Statement

Format

D FETCH (OWNER, RECORD=rec_.name, SET=set_name
. [LASSIGN=fc_name] [, ERR=err_opt])

FETCH OWNER locates the owner record occurrence of the set indicated by the current-of-set for
set_name. If a record is successfully found, FETCH then gets the record.

The ASSIGN clause assigns a free cursor to the located record.

FETCH OWNER has no effect on free cursors (unless the ASSIGN clause is used). It sets current-of-sct
to the located record in all set types in which the record is an owner or a connected member. It sets
current-of-record to the located record occurrence.

If you include the ERR=-err_opt clause and DG/DBMS returns an error, control passes to err_opt.

093-000288 Licensed Material-Property of Data General Corporation 1 1 = 7

FETCH Positional Statement

Format
D FETCH (|FIRST | LAST I NEXT | PRIOR | OFFSET =posit }
. RECORD =rec_name, SET=set_name
. [\ ASSIGN = fc_name] [[END=end_opt] [ERR=err_opt])

FETCH positional moves you through occurrences of a record type within a given set occurrence. If a
record is successfully found, then FETCH gets the record.

FIRST locates the first occurrence of the record type in the current set occurrence.
LAST locates the last occurrence of the record type in the current set occurrence.

NEXT locates the next occurrence of the record type (relative to the current-of-set) within the set
occurrence.

PRIOR locates the immediately previous occurrence of the record type (relative to the current-of-set)
within the set occurrence.

If you specify a positive posit, DG/DBMS locates the record that is posit occurrences from the
beginning of the set. If you specify a negative posit, DG/DBMS locates the record that is posit
occurrences from the end of the set.

The ASSIGN clause assigns a free cursor to the located record occurrence.

FETCH positional has no effect on free cursors (unless the ASSIGN clause is used). It sets current-of-set
to the located record in all set types in which the record is an owner or a connected member. It sets the
current-of-record to the located record occurrence.

If you include the ERR=err_opt clause and DG/DBMS returns an error, control passes to err_opt.

If you include the END=end_opt clause and DG/DBMS encounters end-of-set, control passes to
end_opt.

1 1 "8 Licensed Material-Property of Data General Corporation 093-000288

FETCH Keyed (SEARCH KEY) Statement

Format
D FETCH ({FIRST | LAST | NEXT | PRIOR},

. RECORD=rec_name, SET=set_name,

. WHERE((usinglist { .EQ.I.GT.I.LT.I.GE.\.LE.} UWA)

. [, ASSIGN=fc_name] [[END=end_opt] [[ERR=err_opt])
D FETCH ({NEXT | PRIOR |, RECORD =rec_.name,

. SET=set_name, WHERE(usinglist .EQ. CUR_SET)

. [, ASSIGN=fc_name] [[END=end_opt] [ERR=err_opt])

Use this statement to find a record occurrence for which you know the contents of one or more specific
fields. If a record is successfully found, FETCH then gets the record.

If you specify UWA, the search will be conducted based on the values in the User Work Area, for the
field(s) specified in usinglist.

If you specify CUR_SET, the search will be conducted based on the values in the record identified by
current-of-set, for the field(s) specified in usinglist.

FIRST locates the first occurrence of the record type in the current set occurrence for which the search
criteria are satisfied.

LAST locates the last occurrence of the record type in the current set occurrence for which the search
criteria are satisfied.

NEXT locates the next occurrence (relative to the current-of-set) of the record type within the set
occurrence, for which the search criteria are satisfied.

PRIOR locates the immediately previous occurrence (relative to the current-of-set) of the record type
within the set occurrence, for which the search criteria are satisfied.

The ASSIGN clause assigns a free cursor to the located record.

This FETCH statement has no effect on free cursors (unless the ASSIGN clause is used). It sets
current-of-set to the located record in all set types in which the record is an owner or a connected
member. It sets current-of-record to the located record occurrence.

If you include the ERR=err_opt clause and DG/DBMS returns an error, control passes to err—opt.

If you include the END=end_opt clause and DG/DBMS returns unsuccessful-keyed-search, control
passes to end_opt.

093-000288 Licensed Material-Property of Data General Corporation 1 1 "9

FETCH Keyed (SORT KEY) Statement

Format
D FETCH (FIRST, RECORD =rec_name, SET=set_name,

. WHERE(SORT KEY {.EQ..GE.| UWA)

. [ASSIGN = fc_name] [, END=end_opt] [[ERR=cerr_opt])
D FETCH (LAST, RECORD =rec_name, SET=set_name,

. WHERE(SORT KEY {.EQ..LE.| UWA)

. [ASSIGN = fc_name] [, END=end_opt] [[ERR=err_opt])
D FETCH ({NEXT | PRIOR |, RECORD=rec_name,

. SET=set_name, WHERE(SORT KEY {.EQ..NE| CUR_SET)

. [ASSIGN = fc_name] [, END=end_opt] [[ERR=-err_opt])

Use this statement to find a record occurrence for which you know the contents of one or more specific
field(s) on which the set is sorted. If a record is successfully found, FETCH then gets the record.

If you specify UWA, the search will be conducted based on the values in the User Work Area, for the
field(s) on which the set is sorted.

If you specify CUR_SET, the search will be conducted based on the values in the record occurrence
indicated by current-of-set, for the field(s) on which the set is sorted.

FIRST locates the first occurrence of the record type in the current set occurrence, for which the search
criteria are satisfied.

LAST locates the last occurrence of the record type in the current set occurrence, for which the search
criteria are satisfied.

NEXT locates the next occurrence (relative to the current-of-set) of the record type within the set
occurrence, for which the search criteria are satisfied.

PRIOR locates the immediately previous occurrence (relative to the current-of-set) of the record type
within the set occurrence, for which the search criteria are satisfied.

The ASSIGN clause assigns a free cursor to the located record.

FETCH has no effect on free cursors (unless the ASSIGN clause is used). It sets current-of-set to the
located record in all set types in which the record is an owner or a connected member. It sets the
current-of-record to the located record occurrence.

If you include the ERR=err_opt clause and DG/DBMS returns an error, control passes to err_opt.

If you include the END=end_opt clause and DG /DBMS returns unsuccessful-keyed-search, control
passes to end_opt.

1 1 = 1 O Licensed Material-Property of Data General Corporation 093-000288

FIND CURRENT Statement

Format

D FIND (CURRENT, {RECORD=reC_nameI
. FREE CURSOR=fc.__name/, /,ASSIGN=fc_name]
. [LERR=err_opt])

D FIND (CURRENT, RECORD=rec_name, SET=set_name
. [LASSIGN =fc_name] [,ERR=-err_opt])

The FIND CURRENT statement is the only FIND that does not locate a new record occurrence. The
statement resets all the system cursors associated with a particular record type to point to the same,
previously known record occurrence. Current-of-record, current-of-set, or a free cursor indicate the
known record occurrence.

If you specify just a record name or free cursor name, DG/DBMS will locate the appropriate
occurrence (provided the cursor is not null.) If you specify a record and set type for the record you want
to locate, the system will compare that record type to the one identified by current-of-set. If they match
and current-of-set is not null, DG/DBMS will perform the find as indicated, otherwise an error
message will be generated and all cursors will remain unchanged.

FIND CURRENT has no effect on free cursors unless the optional ASSIGN clausc is present. In this
case, it will assign a free cursor to the found record.

FIND CURRENT sets current-of-set to the located record in all sets in which the record is an owner
or a connected member. [t also sets current-of-record to the located record occurrence.

If you include the ERR=err_opt clause and DG/DBMS returns an error, control passes to err_opt.

FIND OWNER Statement

Format

D FIND (OWNER, RECORD=rec_name, SET=set_name
. [LASSIGN=fc_name] [, ERR=err_opt])

FIND OWNER locates the owner record occurrence of the set indicated by the current-of-set for
set_name.

The ASSIGN clause assigns a free cursor to the located record.

FIND OWNER has no effect on free cursors (unless the ASSIGN clause is used). It scts current-of-set
to the located record in all set types in which the record is an owner or a connected member. [t sets
current-of-record to the located record occurrence.

If you include the ERR=err_opt clause and DG/DBMS returns an error, control passes to err_opt.

093-000288 Licensed Material-Property of Data General Corporation 1 1 = 1 1

FIND Positional Statement

Format
D FIND (|FIRST | LAST | NEXT | PRIOR | OFFSET=posit},
. RECORD =rec_name, SET=set__name
. [ASSIGN=fc_name] [[END=end_opt] [[ERR=-err_opt])

FIND positional moves you through occurrences of a record type within a given set occurrence.
FIRST locates the first occurrence of the record type in the current set occurrence.
LAST locates the last occurrence of the record type in the current set occurrence.

NEXT locates the next occurrence of the record type (relative to the current-of-set) within the set
occurrence.

PRIOR locates the immediately previous occurrence of the record type (relative to the current-of-set)
within the set occurrence.

If you specify a positive posit, DG/DBMS locates the record that is posit occurrences from the
beginning of the set. If you specify a negative posit, DG/DBMS locates the record that is posit
occurrences from the end of the set.

The ASSIGN clause assigns a free cursor to the located record occurrence.

FIND positional has no effect on free cursors (unless the ASSIGN clause is used). It sets current-of-set
to the located record in all set types in which the record is an owner or a connected member. It sets the
current-of-record to the located record occurrence.

If you include the ERR=err_opt clause and DG/DBMS returns an error, control passes to err_opt.

If you include the END=end_opt clause and DG/DBMS encounters end-of-set, control passes to
end_opt.

1 1 = 1 2 Licensed Material-Property of Data General Corporation 093-000288

FIND Keyed (SEARCH KEY) Statement

Format
D FIND ({FIRST | LAST | NEXT | PRIOR/,

. RECORD=rec_name, SET=set_name,

. WHERE(usinglist { .EQ..GT.LLT..GE..LE.} UWA)

. [LASSIGN=fc_name] [[END=end_opt] [[ERR=err_opt])
D FIND ({NEXT | PRIOR |, RECORD =rec_name,

. SET=set__name, WHERE(usinglist .EQ. CUR_SET)

. [LASSIGN=fc_name] [END=end_opt] [, ERR=err_opt])

Use this statement to find a record occurrence for which you know the contents of one or more specific
fields.

If you specify UWA, the search will be conducted based on the values in the User Work Area, for the
field(s) specified in usinglist.

If you specify CUR_SET, the search will be conducted based on the values in the record identified by
current-of-set, for the field(s) specified in usinglist.

FIRST locates the first occurrence of the record type in the current set occurrence for which the search
criteria are satisfied.

LAST locates the last occurrence of the record type in the current set occurrence for which the search
criteria are satisfied.

NEXT locates the next occurrence (relative to the current-of-set) of the record type within the set
occurrence, for which the search criteria are satisfied.

PRIOR locates the immediately previous occurrence (relative to the current-of-set) of the record type
within the set occurrence, for which the search criteria are satisfied.

The ASSIGN clause assigns a free cursor to the located record.

This FIND statement has no effect on free cursors (unless the ASSIGN clause is used). It sets
current-of-set to the located record in all set types in which the record is an owner or a connected
member. It sets current-of-record to the located record occurrence.

If you include the ERR=err_opt clause and DG/DBMS returns an error, control passes to err_opt.

If you include the END=end_opt clause and DG/DBMS returns unsuccessful-keyed-scarch, control
passes to end_opt.

093-00028¢ Licensed Material-Property of Data General Corporation 1 1 = 1 3

FIND Keyed (SORT KEY) Statement

Format
D FIND (FIRST, RECORD=rec_name, SET=set_name,

. WHERE(SORT KEY {.EQ..GE.} UWA)

. [\ ASSIGN = fc_name] [END=end_opt] [, ERR=err_opt])
D FIND (LAST, RECORD=rec_name, SET=set_name,

. WHERE(SORT KEY {.EQ..LE.| UWA)

. [LASSIGN=fc_name] [[END=end_opt] [[ERR=err_opt])
D FIND ({NEXT | PRIOR}, RECORD=rec_name,

. SET=set_name, WHERE(SORT KEY {.EQ..NE} CUR_SET)

. [ASSIGN=fc_name] [[END=end_opt] [[ERR=err_opt])

Use this statement to find a record occurrence for which you know the contents of one or more specific
fields on which the set is sorted.

If you specify UW A, the search will be conducted based on the values in the User Work Area, for the
field(s) on which the set is sorted.

If you specify CUR_SET, the search will be conducted based on the values in the record occurrence
indicated by current-of-set, for the ficld(s) on which the set is sorted.

FIRST locates the first occurrence of the record type in the current set occurrence, for which the search
criteria are satisfied.

LAST locates the last occurrence of the record type in the current set occurrence, for which the search
criteria are satisfied.

NEXT locates the next occurrence (relative to the current-of-set) of the record type within the set
occurrence, for which the search criteria are satisfied.

PRIOR locates the immediately previous occurrence (relative to the current-of-set) of the record type
within the set occurrence, for which the search criteria are satisfied.

The ASSIGN clause assigns a free cursor to the located record.

FIND has no effect on free cursors (unless the ASSIGN clause is used). It sets current-of-set to the
located record in all set types in which the record is an owner or a connected member. It sets the
current-of-record to the located record occurrence.

If you include the ERR=-err_opt clause and DG/DBMS returns an error, control passes to err_opi.

If you include the END=end_opt clause and DG/DBMS returns unsuccessful-keyed-search, control
passes to end_opt.

1 1 - 1 4 Licensed Material-Property of Data General Corporation 093-000288

FINISH Statement

Format

D FINISH [(ERR=err_opt)]

The FINISH statement closes a database to your program.

If you include the ERR=err_opt clause and DG/DBMS returns an error, control passes to err_opt.

Note that FINISH does not COMMIT an outstanding transaction. An outstanding transaction will be
rolled back.

FREE CURSOR Declarations

Format
D FREE CURSOR fc_name [(n) /] , RECORD=rec_name

The FORTRAN (sub)program that contains the READY DML statement must contain a declaration
for every free cursor. In all other subprograms, only the free cursors that are used in that subprogram
have to be declared. The order of the declarations in any module is arbitrary. Free cursors can also be

one-based, one-dimensional arrays. Furthermore, n can be an integer so that an array of FREE
CURSORS is declared.

Free cursors can be used only in DML statements. Altering their values with FORTRAN 77 statements
can lead to unexpected results.

FREE CURSOR statements are nonexecutable. They are used to declare the necessary data structures
and and to make the association of fc_name with record type rec_name.

FREE CURSOR is a data declaration statement and must precede the READY statement.

093-000288 Licensed Material-Property of Data General Corporation 1 1 - 1 5

GET Statement ‘

Format

D GET ({RECORD=rec_name | FREE CURSOR=fc_name |
. [LERR=err_opt]) [itemlist]

The GET command moves data from the database into the User Work Area.

GET retrieves either an entire record occurrence or a specified list of items within a record occurrence.
The record can be identified through cither a free cursor or by the current-of-record.

The maximum number of items permitted in a partial GET is 15.
If no itemlist is specified, DG/DBMS will GET the entirc record.

GET has no effect on free cursors or set cursors. The current-of-record is set to the retrieved
occurrence.

If you include the ERR=err_opt clause and DG/DBMS returns an error, control passes to err_opt.

DBMS INCLUDE Statement

Format
D INCLUDE “path_name”

The DBMS INCLUDE statement allows code (possibly containing DML statements) to be copied into
the program during the preprocessor step.

FORTRAN 77 %INCLUDE statements are also allowed in programs using the DG/DBMS interface,
but the files that they include must not contain any DML statements.

Files named in FORTRAN 77 INCLUDE statements are copied into the program after the preprocessor
step.

Note that the INCLUDE statement is not used to include the subschema source in your program. The
INVOKE statement does this automatically.

DBMS INCLUDE statements can be nested up to seven levels deep.

1 1 = 1 6 Licensed Material-Property of Data General Corporation 093-000288

INITIATE Statement

Format

D INITIATE (ID=tx_id [/, UPDATE | RETRIEVAL}]
. [LERR=err_opt])

INITIATE starts a transaction in DG/DBMS. DG/DBMS returns a transaction number in tx_.id; the
program may use this number as a backup/recovery aid. Refer to the DG/DBMS Reference Manual
for additional information about backup and recovery.

UPDATE allows the program to modify the database in this transaction. You cannot INITIATE a
transaction in UPDATE mode if you readied your database in RETRIEVAL mode.

RETRIEVAL allows your program to examine, but not modify, the database.
If you include the ERR=-err_opt clause and DG/DBMS returns an error, control passes to err_opt.

INITIATE has no effect on cursors. However, committed transactions of other programs can change
the records to which your cursors point.

The default specification for an INITIATE statement is UPDATE.

INVOKE Statement

Format
D INVOKE (SUBSCHEMA ==“ss_name”,SCHEMA="s_name”)

INVOKE names the subschema to be used by the program. INVOKE also copies the subschema source
code into the program. It is a nonexecutable statement that affects the declaration of the data structure
to be used in accessing the database.

ss_name is any valid FORTRAN 77 subschema that the DBA has defined and bound.
s_name is the AOS/VS pathname of the database directory. It can be a relative pathname.

The INVOKE statement must precede all free cursor declarations and all other DML statements.

093-000288 Licensed Material-Property of Data General Corporation 1 1 = 1 7

MEMBER Function

Format
D togical = [.NOT.] MEMBER (SET=set_name)
D IF ([.NOT.] MEMBER (SET=set_name)) stmt

This function tests to see if the current-of-set is on a member record occurrence.

DML logical functions must not contain any additional logical tests.

stmt may not be a DML statement or a DO statement.

MODIFY Statement

Format

D MODIFY ({RECORD=rec_name | FREE CURSOR=fc_name |
. [LERR=err_opt]) [itemlist]

MODIFY moves the fields specified (or the entire record if no fields are specified) from the UWA into
the record occurrence indicated by either current-of-record or a free cursor. This movement overwrites

the information in the database.
Up to 15 items can be specified in itemlist.

If no itemlist is specified, the entire record is modified.

If you include the ERR=err_opt clause and DG/DBMS returns an error, control passes to err_opt.

MODIFY has no effect on free cursors. The current-of-record is set to the modified occurrence. The
current-of-set is set to the modified record for all sets in which the occurrence is an owner or a

connected member. Note that DG/ DBMS automatically reorders the members in a sorted set occurrence

if you modify the sort key in a connected member.

1 1 = 1 8 Licensed Material-Property of Data General Corporation

093-000288

NULL Function

Format
D logical = [.NOT.] NULL (SET=set_name)
D iIF (/. NOT.] NULL (SET=set_name)) stmt
D logical = [.NOT.] NULL
. ({ RECORD=rec_name | FREE CURSOR=fc_.name })
D IF (/. NOT.] NULL
. ({RECORD=rec_name | FREE CURSOR=fc_name})) stmt

This function tests to see whether or not a current-of-set, current-of-record, or a free cursor is set to null
or not. A cursor that does not identify a specific set occurrence or record occurrence is null.

DML logical functions must not contain any additional logical tests.

stmt cannot be a DML statement or a DO statement.

OWNER Function

Format
D logical = [.NOT.] OWNER (SET=set_name)
D IF (/. NOT.] OWNER (SET=set_name)) stmt

This function tests to sce if the current-of-set is on an owner record occurrence.
DML logical functions must not contain any additional logical tests.

stmt cannot be a DML statement or a DO statement.

093-000288 Licensed Material-Property of Data General Corporation 1 1 = 1 9

READY Statement

Format
D READY [([\ CONCURRENT | EXCLUSIVE|] [\UPDATE | RETRIEVAL}]
. [LERR=<err_opt>]}]

READY opens a database, allowing access to it through the subschema specified in the INVOKE
statement.

CONCURRENT permits other users to access the database while you are accessing it.

EXCLUSIVE prevents any other user from accessing the database while you are accessing it. You
cannot specify an exclusive READY while another user has the database open.

UPDATE permits your program to modify the database (if the subschema permits it).

RETRIEVAL allows your program to examine the database. It does not, however, allow your program
to modify the database.

If you include the ERR==<lerr_opt> clause and DG/DBMS returns an error, control passes to
<err_opt>.

The READY statement sets all cursors to null.
The default specifications for a READY statement are CONCURRENT and UPDATE.

—r
RECONNECT Statement
Format
D RECONNECT (FREE CURSOR=fc_name, SET=set_name
. [LERR=err_opt])
DG/DBMS disconnects the record occurrence marked with free cursor fc_name from set type
set_name and then connects it into the set identified by the current-of-set in set_name.
If you include the ERR=-err_opt clause and DG/DBMS returns an error, control passes to err_opt.
RECONNECT has no effect on free cursors. It sets current-of-record to the reconnected member
occurrence. It sets current-of-set of set_name to the reconnected member occurrence.
In addition to using RECONNECT to change the owner of a member record occurrence, you can use
it to reorder members in a set occurrence.
For example, if the ORDER of the MEMBERS set is NEXT, free cursor FC1 is on MEMBER 1, and
current-of-set is on MEMBER 2, then the statement
)] RECONNECT (FREE CURSOR=FC1, SET =MEMBERS)
will place MEMBER 1 after MEMBER 2.
J
~—r

1 1 '20 Licensed Material-Property of Data General Corporation 093-000288

ROLLBACK Statement

Format
D ROLLBACK [(ERR=-err_opt)]

ROLLBACK discards changes made to the database since the start of the current transaction. You
must INITIATE a new transaction before you can again access the database.

If you include the ERR=err_opt clause and DG/DBMS returns an error, control passes to err_opt.

ROLLBACK resets all cursors to their values at the time the transaction was initiated.

STORE Statement

Format

D STORE (RECORD=rec_name [, ASSIGN= fc_name]
. [LERR=cerr_opt])

STORE creates a new occurrence of the record type rec_name, using the values in the UWA. Only
fields that the subschema includes in rec_name are stored; the rest are left empty.

For each AUTOMATIC set, DG/DBMS connects the occurrence in the position determined by the
set’s ORDER clause (FIRST, LAST, NEXT, PRIOR, KEY). DG /DBMS connects the new record to
the set occurrence defined by current-of-set.

The new record occurrence becomes current-of-record and current-of-set for all sets in which the record
is an owner or AUTOMATIC member. STORE has no effect on free cursors (unless you use the
ASSIGN clause).

If you specify the ASSIGN clause, the free cursor fc_name marks the stored occurrence of the record
type.
If you include the ERR=err_opt clause and DG/DBMS returns an error, control passes to err_opt.

End of Chapter

093-000288 Licensed Material-Property of Data General Corporation 1 1 "2 1

Chapter 12

How to Compile and Link F77 /DBMS
Programs

Using the Preprocessor Under AOS/VS

You execute the preprocessor in much the same way as the FORTRAN 77 compiler, but with a few
additional considerations. Your searchlist must also allow access to the FORTRAN 77 compiler
because the preprocessor invokes this compiler. More specifically, the macro DB.F77.CLI initiates the
preprocessor; then DB.F77.CLI invokes the FORTRAN 77 compiler.

You execute the preprocessor (and then the F77 compiler) via the following command.

DB.F77[function switches] inputpathname

Switches

You may give DB.F77.CLI any F77.CLI switches. DB.F77.CLI passes them intact to F77.CLI. If you
don’t specify the /O switch, DB.F77.CLI will pass the switch /O=inputpathname to F77.CLI.

In addition, DB.F77.CLI interprets the following switches as it directs the preprocessor to process
statements with a “D” in column 1 (and to pass other statements on to the F77 compiler).

/CARDFORMAT Punched card format. All characters after column 72 are ignored (but listed).
If this switch is omitted, the entire input line is considered a part of each
statement.

/E=pathname Error messages go to pathname. If the /E switch is omitted, error messages go

to the file defined by the /L switch. If there is no /L switch, the current
@OUTPUT file is used.

/L Produce a listing on the current CLI LIST file.

/L=pathname Produce a listing on pathname. If this switch is omitted, no listing is produced.
Notice that the preprocessor will produce a listing only if there were errors
that prevent it from invoking F77.

Temporary Files

The preprocessor creates several temporary files for its own use. Their names are as follows, where
<inputpathname>> is the input pathname specified to DB.F77.CL1 and <?pid> is a three digit
process ID number.

e inputpathname.CM

» ?pid. DBF77PP.COM.TMP
e ?pid. DBF77PP.ERR.TMP
« 7pid.DBF77PP.FCF.TMP
e 7pid. DBF77PP.INT.TMP
+ ?pid. DBF77PP.OUT.TMP

Avoid using these names for any files of your own, because the preprocessor will delete them.

093-000288 Licensed Material-Property of Data General Corporation 1 2' 1

Linking Your FORTRAN 77 Program

You must link a successfully preprocessed and compiled FORTRAN 77 program with the DBMS
runtime routines before executing it. You invoke the usual F77LINK macro and specify the two
DBMS files 7DBMS32.0B and DB.F77R32.LB.

For example, suppose your F77/DBMS program TRY_DBMS contains calls to subroutines SUB1 and
SUB?2, and to routines in your library file MY_STUFF.LB. Then the F77LINK command would be

F77LINK TRY_DBMS SUB1.0B SUB2.0B MY_STUFF.LB ?DBMS32.0B DB.F77R32.LB

End of Chapter

1 2'2 Licensed Material-Property of Data General Corporation 093-000288

Chapter 13

Sample FORTRAN 77 Application
Programs

Recall the sample subschema in Figure 8-3 and the data structure in Figure 8-4. Let’s observe
FORTRAN 77 programmer Alice McDonald as she creates, compiles, and tests two programs to
access data in the hospital information system. The assumptions of this chapter are:

¢ Alice’s username is ALICE.

» When she logs on, her CLL.PR’s process identification number (pid) is 024.

* Her working directory is :UDD:$GUEST:ALICE.

* The DG/DBMS database is in :UDD:SGUEST:ALICE:PATIENTS.

* Her searchlist allows access to FORTRAN 77 and the DG/DBMS software shown in Figure 8-2.

Program DEMO1

The FORTRAN 77 program DEMO1 is shown in Figure 13-1. Its purpose is to list all patients under
the care of Dr. Brian Hackenbush.

093-000288 Licensed Material-Property of Data General Corporation 1 3' 1

10

OO OO0

4000

DG-26253

PROGRAM DEMO01
FIND ALL THE PATIENTS UNDER THE CARE OF DR. BRIAN HACKENBUSH.

SET UP A VARIABLE FOR TRANSACTION ID
AND INVOKE THE SUBSCHEMA.
DOUBLE PRECISION TNUM
INVOKE{SUBSCHEMA=“PATIENT —_SEARCH",
SCHEMA=":UDD: $GUEST:ALICE:PATIENTS")}

OPEN THE DATABASE FILE;
IF AN ERROR OCCURS, GO TO 5000.
READY (RETRIEVAL ,ERR=5000)

START A TRANSACTION.
INITIATE(ID=TNUM,RETRIEVAL,ERR=5000)

WE KNOW THE DOCTGR’S NAME, SO
FIND HIS OCCURRENCE IN THE SET.
DOCTOR—LAST__NAME=“HACKENBUSH"
DOCTOR—FIRST—.NAME=“BRIAN"
FIND(FIRST,RECORD=DOCTOR, SET=DOCTORS_BY_NAME,
WHERE(SORT KEY .EQ. UWA),ERR=5000)

FIND THE DOCTOR’'S FIRST TREATMENT.
FIND(FIRST,RECORD=TREATMENTS,SET=DOCTOR_TREATMENTS,
END=4000,ERR=5000)

CONTINUE

NOW FIND AND GET THE PATIENT
WHO IS RECEIVING THE TREATMENT.
FETCH(OWNER ,RECORD=PATIENT,SET=PATIENT_TREATMENTS, ERR=5000)

PRINT *, “Patient name: ", PATIENT..LAST_NAME, “, ~°
PATIENT—FIRST__NAME

NOW THE NEXT TREATMENT
FIND(NEXT,RECORD=TREATMENTS, SET=DOCTOR_TREATMENTS,
END=4000, ERR=5000)

GO TO 10

CONTINUE

PRINT *, “Done: End of Patient List”
COMMIT(ERR=5000)

FINISH

STOP

13-2

Figure 13-1. Program DEMOI (continues)

Licensed Material-Property of Data General Corporation

093-000288

5000 CONTINUE
WRITE (10,5001) DBSTATUS

5001 FORMAT (“DATABASE ERROR ENCOUNTERED - DBSTATUS IS ", 06)
NOTE: SINCE WE ARE NOT MODIFYING THE DATABASE, ROLLBACK IS

NOT REALLY NECESSARY (WE INCLUDE IT FOR ILLUSTRATION).

ROLLBACK
FINISH
sTop

L= B — B o B or]

END

DG-26253

Figure 13-1. Program DEMOI (concluded)

Alice now has to create DEMO1.0B from DEMOI1.F77. This occurs in two steps:
o The preprocessor creates a temporary F77 source program file from DEMO1.F77.
o The F77 compiler creates DEMO1.0B from the temporary F77 source program file.

The name of this temporary file is ?pid. DBF77P.OUT.TMP. The value of <pid> is not 024 because
AOS/VS creates a son process whose father (here, CLLPR) is 024. In Alice’s case, assume that
<pid> is 058.
Her one CLI command is

DB.F77 DEMO1
Recall from the previous chapter that DB.F77.CLI also invokes the F77 compiler.

File 7058.DBF77P.OUT.TMP is in shown Figure 13-2. When the F77 compiler processes it, Alice
might see a warning (severity level 1) message about mixing CHARACTER and nonCHARACTER
data elements in a COMMON block. She ignores such messages, and so should you.

Macro DB.F77.CLI does not save the temporary files it creates (whose names begin with ?<<pid>). If
you interrupt it at the proper time with the CTRL-C CTRL-B sequence you’ll have access to these
files.

093-000288 Licensed Material-Property of Data General Corporation 1 3'3

PROGRAM DEM01

c FIND ALL THE PATIENTS UNDER THE CARE OF DR. BRIAN HACKENBUSH.
c SET UP A VARIABLE FOR TRANSACTION ID
¢ AND INVOKE THE SUBSCHEMA.

DOUBLE PRECISION TNUM
¢ INVOKE (SUBSCHEMA=“PATIENT__SEARCH",
c . SCHEMA=":UDD:$GUEST:ALICE:PATIENTS")

INTEGER*2 DB..SSIG(4)/-23250,8364,-23250,8541/
COMMON/DBSTATUS/DBSTATUS

INTEGER*4 DBSTATUS

INTEGER*4 DBBADDR

EXTERNAL DBBADDR

C SUBSCHEMA NAME IS “PATIENT_—_SEARCH"
c ALLOWS ERASE GET MODIFY STORE

C SET DEFINITION SECTION.

SET = DOCTORS—BY._NAME
ALLOWS RECONNECT
OWNER IS SYSTEM
MEMBER IS DOCTOR
AUTOMATIC MANDATORY
ORDER IS SORTED BY KEY ASCENDING
KEYS ARE:
DOCTOR—LAST_NAME
DOCTORFIRST—NAME
DUPLICATES ALLOWED
MEMBER LIMIT IS NONE

OO OO O™

SET = PATIENTS—_BY_NAME
ALLOWS RECONNECT
OWNER IS SYSTEM
MEMBER IS PATIENT
AUTOMATIC MANDATORY
ORDER IS SORTED BY KEY ASCENDING
KEYS ARE:
PATIENT—LAST__NAME
PATIENT—FIRST_NAME
DUPLICATES ALLOWED
MEMBER LIMIT IS NONE

OO0

DG-25254

Figure 13-2. Temporary F77 Program ?058.DBF77P.OUT.TMP (continues)

1 3‘4 Licensed Material-Property of Data General Corporation 093-000288

SET = PATIENT_TREATMENTS
ALLOWS RECONNECT
OWNER IS PATIENT
MEMBER IS TREATMENTS
AUTOMATIC MANDATORY
ORDER IS NEXT
MEMBER LIMIT IS NONE

[or B or K o B o B ov BN o B o }

SET = DOCTOR_TREATMENTS
ALLOWS RECONNECT
OWNER IS DOCTOR
MEMBER IS TREATMENTS
AUTOMATIC MANDATORY
ORDER IS NEXT
MEMBER LIMIT IS NONE

(o I o B ar B o B ov BN ov BN oo)

C RECORD DEFINITION SECTION.
C RECORD = DOCTOR ALLOWS ERASE GET MODIFY STORE

CHARACTER*1 DOCTOR
COMMON/DOCTOR/DOCTOR—LAST—NAME
CHARACTER*2S5 DOCTOR—LAST—NAME
c CONTENTS: CHAR*25L ALLOWS GET MODIFY

COMMON/DOCTOR/DOCTOR.—FIRST_—NAME
~ CHARACTER*20 DOCTOR—FIRST..NAME
C CONTENTS: CHAR*20L ALLOWS GET MODIFY

COMMON/DOCTOR/SPECIALTY
CHARACTER*15 SPECIALTY

c CONTENTS: CHAR*15L ALLOWS GET MODIFY
COMMON/DOCTOR/INFO
CHARACTER*40 INFO
¢ CONTENTS: CHAR*40L ALLOWS GET MODIFY
COMMON/DOCTOR/BEEPER
INTEGER*2 BEEPER
c CONTENTS: NUMERIC ALLOWS GET MODIFY
c RANGE : -9999 T0 +9999

EQUIVALENCE (DOCTOR,DOCTOR—LASTNAME)

DG-26254

Figure 13-2. Temporary F77 Program ?058.DBF77P.OUT.TMP (continued)

093-000288 Licensed Material-Property of Data General Corporation

13-5

C RECORD = PATIENT ALLOWS ERASE GET MODIFY STORE

CHARACTER*1 PATIENT
COMMON/PATIENT/PATIENT —LAST__NAME
CHARACTER*20 PATIENT_LAST..NAME
c CONTENTS: CHAR*20L ALLOWS GET MODIFY

COMMON/PATIENT/PATIENT —FIRST_NAME
CHARACTER*14 PATIENT—_FIRST_—NAME

c CONTENTS: CHAR*14L ALLOWS GET MODIFY
COMMON/PATIENT/WARD
CHARACTER*4 WARD
C CONTENTS: CHAR*4L ALLOWS GET MODIFY
COMMON/PATIENT/ROOM
INTEGER*2 ROOM
c CONTENTS: NUMERIC ALLOWS GET MODIFY
c RANGE : +0 TO +999

EQUIVALENCE (PATIENT,PATIENT_LAST_NAME)
C RECORD = TREATMENTS ALLOWS ERASE GET MODIFY STORE
CHARACTER*1 TREATMENTS
COMMON/TREATMENTS/DISEASE
CHARACTER*100 DISEASE
c CONTENTS: CHAR*100L ALLOWS GET MODIFY \u—’)

COMMON/TREATMENTS/MEDICATION
CHARACTER*25 MEDICATION (5)

c CONTENTS: CHAR*25L ALLOWS GET MODIFY
COMMON/TREATMENTS/DIET
CHARACTER*200 DIET
c CONTENTS: CHAR*200L ALLOWS GET MODIFY
COMMON/TREATMENTS/SPECIAL_.INSTRUCTIONS
CHARACTER*40 SPECIAL_—INSTRUCTIONS (5)
¢ CONTENTS: CHAR*40L ALLOWS GET MODIFY
EQUIVALENCE (TREATMENTS,DISEASE)

C END OF FORTRAN 77 “PATIENT__SEARCH" SUBSCHEMA.

DG-25254

Figure 13-2. Temporary F77 Program ?058.DBF77P.OUT.TMP (continued)

1 3'6 Licensed Material-Property of Data General Corporation 093-000288

DG-25254

o

(]

(]

o

10

OPEN THE DATABASE FILE;
IF AN ERROR OCCURS, GO TO 5000.
READY(RETRIEVAL,ERR=5000)

CALL DBREADY (2,“:UDD:$GUEST:ALICE:PATIENTS”, “PATIENT_.SEARCH",
DB—-SSI1G6,0,0,0,0)

IF (DBSTATUS .NE. 0) GO TG 5000

START A TRANSACTION.
INITIATE(ID=TNUM,RETRIEVAL,ERR=5000)

CALL DBSTARTX (DB—SSIG,2,0,TNUM)
IF (DBSTATUS .NE. 0) GO TO 5000
NE KNOW THE DOCTOR'S NAME, SO
FIND HIS OCCURRENCE IN THE SET.
DOCTOR—LAST—NAME=“HACKENBUSH"
DOCTOR—FIRST—NAME=“BRIAN"
FIND(FIRST,RECORD=DOCTOR,SET=DOCTORS—BY_NAME,
WHERE(SORT KEY .EQ. UWA),ERR=5000)

CALL DBFSKEY (DB—SSIG,2,0,1,1,DBBADDR(DOCTOR))
IF (DBSTATUS .NE. 0) GO TO 5000
FIND THE DOCTOR'S FIRST TREATMENT.
FIND(FIRST,RECORD=TREATMENTS, SET=DOCTOR—TREATMENTS,
END=4000,ERR=5000)

CALL DBFMSEQN (DB_—SSIG,3,0,3,3,DBBADDR(TREATMENTS))

IF (DBSTATUS .EQ. 017410K) GO TO 4000

IF ({DBSTATUS .NE. 0).AND.(DBSTATUS .NE. 017410K)) GO TO 5000
CONTINUE

NOW FIND AND GET THE PATIENT
NHO IS RECEIVING THE TREATMENT.
FETCH(OWNER,RECORD=PATIENT,SET=PATIENT._TREATMENTS, ERR=5000)
CALL DBFOWNER (DB_SSIG,2,16,2,4,DBBADDR(PATIENT))
IF (DBSTATUS .NE. 0) GO TO 5000

PRINT *, “Patient name: ", PATIENT_LAST_NAME, “, ~,
PATIENT—FIRST_.NAME

NOW THE NEXT TREATMENT
FIND(NEXT,RECORD=TREATMENTS, SET=DOCTOR..TREATMENTS,
END=4000,ERR=5000)

CALL DBFMSEQN (DB_—SSIG,3,8,3,3,DBBADDR(TREATMENTS))

IF (DBSTATUS .EQ. 017410K) GO TO 4000

IF ((DBSTATUS .NE. 0).AND.(DBSTATUS .NE. 017410K)) GO TO 5000
G0 T0 10

093-000288

Figure 13-2. Temporary F77 Program ?058.DBF77P.OUT.TMP (continued)

Licensed Material-Property of Data General Corporation

13-7

4000 CONTINUE

PRINT *, “Done: End of Patient List”
c COMMIT(ERR=5000)

CALL DBSTOPX (DB_SSIG,2)

IF (DBSTATUS .NE. 0) GO TO 5000
¢ FINISH

CALL DBFINISH (DB—SSIG,0)

sToP

5000 CONTINUE
WRITE (10,5001) DBSTATUS
5001 FORMAT (“DATABASE ERROR ENCOUNTERED - DBSTATUS IS ", 06)
c NOTE: SINCE WE ARE NOT MODIFYING THE DATABASE, ROLLBACK IS
NOT REALLY NECESSARY (WE INCLUDE IT FOR ILLUSTRATION).
c ROLLBACK
CALL DBROLLBK (DB—.SSIG,0)
¢ FINISH
CALL DBFINISH (DB—SSIG,0)
sToP

(]

END

DG-25254

Figure 13-2. Temporary F77 Program ?058.DBF77P.OUT.TMP (concluded)
The CLI command Alice gives to create DEMO1.PR from DEMO1.0B, the DG /DBMS libraries, and
the FORTRAN 77 libraries is
F77LINK DEMO1 ?DBMS32.0B DB.F77R32.LB
Alice gives the CLI command

XEQ DEMO1
and sees the following results on her console.
Patient name: MCINTOSH , MARY
Patient name: VERLUCCI , ENRICO
Patient name: KELLEY , JOHN
Done: End of Patient List
STOP

1 3'8 Licensed Material-Property of Data General Corporation 093-000288

Program DEMO2.F77

One way to interpret program DEMOI1.F77 is in terms of Figure 8-4. DEMOI1 uses DOCTOR and
TREATMENTS records to find patients related to a specific doctor. The purpose of program
DEMO2.F77 is to use PATIENT and TREATMENTS records to find doctors related to a specific
patient. The patient’s name is John Kelley. Program DEMO2.F77 is shown in Figure 13-3.

093-000288 Licensed Material-Property of Data General Corporation 1 3-9

10

4000

5000

5001

[— N — B B o]

DG-25265

PROGRAM DEMO2
FIND ALL THE DOCTORS TREATING JOHN KELLEY.

SET UP A VARIABLE FOR TRANSACTION ID
AND INVOKE THE SUBSCHEMA.
DOUBLE PRECISION TNUM
INVOKE(SUBSCHEMA="PATIENT_SEARCH",
SCHEMA=":UDD:$GUEST:ALICE:PATIENTS")

GPEN THE DATABASE FILE;
IF AN ERROR OCCURS GO TO 5000
READY(RETRIEVAL,ERR=5000)

START A TRANSACTION
INITIATE(ID=TNUM,RETRIEVAL,ERR=5000)

WE KNOWN THE PATIENT'S NAME;
FIND HIS OCCURRENCE IN THE SET.
PATIENT—LAST__NAME="KELLEY"
PATIENT—FIRST_—_NAME="JOHN"
FIND(FIRST,RECORD=PATIENT,SET=PATIENTS__BY__NAME,
WHERE(SORT KEY .EQ. UWA), ERR=5000)

FIND THE PATIENT'S FIRST TREATMENT.
FIND(FIRST,RECORD=TREATMENTS,SET=PATIENT__TREATMENTS,
END=4000, ERR=5000)

CONTINUE
NOW FIND AND GET THE DOCTOR
WHO IS GIVING THE TREATMENT.
FETCH(OWNER,RECORD=DOCTOR, SET=DOCTOR—TREATMENTS, ERR=5000)

PRINT *,“Doctor name: " ,DOCTOR—LAST_.NAME,“, " ,DOCTOR.FIRST__NAME

NOW THE NEXT TREATMENT
FIND(NEXT,RECORD=TREATMENTS,SET=PATIENT_TREATMENTS,
END=4000,ERR=5000)
60 T0 10

CONTINUE

PRINT *,“Done: End of Doctor List”
COMMIT(ERR=5000)

FINISH

STOP

CONTINUE
WRITE(10,5001)DBSTATUS
FORMAT(“DATABASE ERROR ENCOUNTERED - DBSTATUS IS ",06)
NOTE: SINCE WE ARE NOT MODIFYING THE DATABASE, ROLLBACK
IS NOT REALLY NECESSARY (WE INCLUDE IT FOR ILLUSTRATION)
ROLLBACK
FINISH
STOP
END

13-10

Figure 13-3. Program DEMO2.F77

Licensed Material-Property of Data General Corporation 093-000288

The CLI commands Alice gives to compile, link, and execute DEMOI1.F77 are

DB.F77 DEMO2
F77LINK DEMO2 ?7DBMS32.0B DB.F77R32.LB
XEQ DEMO2

At runtime, DEMO2.PR displays the following.

Doctor name: ROSENBERG , AARON
Doctor name: HACKENBUSH , BRIAN
Done: End of Doctor List

STOP

End of Chapter

093-000288 Licensed Material-Property of Data General Corporation

13-11

Chapter 14
DBMS Usage Considerations

Character and Bit Strings

When using bit or character data in FORTRAN 77, observe some important rules:

1.

Declaring a character string as right-justified only affects the way the string is manipulated by
DG/DBMS and not the way the string is manipulated by FORTRAN 77. FORTRAN 77 treats
all strings as left-justified. Thus, if a string named TEMPSTR is declared as CHAR*6L in the
schema and CHAR*8R in the subschema, the operations

TEMPSTR = “ABCDEFGHIJ”
STORE record containing TEMPSTR
GET record containing TEMPSTR

will return the value “CDEFGH” to TEMPSTR.

If a data item is declared to be BIT*n in the subschema, and the area allocated for the data item
is larger than the length specified, the extra bit positions are undefined. For example, an item
declared as BIT*4 with a data type of INTEGER*2 will have the 12 rightmost bits left undefined.

Schema bit data that is specified to be NUMERIC in the subschema is treated as a right-justified
string instead of left-justified, as above. The entire data item will always be defined as the (bit)
length is determined by the type of the data item. If the source string is shorter than the
destination, zero bits are used to pad on the left. Notice that this is not a sign extension.

Separate Compilation of Subroutines

Since FORTRAN 77 allows the linking of separately compiled modules, you must follow some simple
conventions to make your program execute correctly:

\\/

There must be an INVOKE statement in every subroutine that uses any DML statements. The
information in the INVOKE statement is required by the preprocessor to make the association of
symbolic names to numeric identifiers.

The INVOKE statements in each separately compiled subroutine must refer to the same schema
and subschema (The exception to this is described in the next section). Each process can operate on
only one database, using one subschema, at a time. Runtime errors will occur if this rule is ignored.

Every subroutine that uses free cursors must specify all the free cursors that it uses. The subroutine
(or main program) that contains the READY statement must specify all free cursors used in any
subroutine. If this is not done, a subroutine using a free cursor not specified in the routine doing the
READY statement will receive an error indication.

Notice that only one READY statement is needed, and that READY is a global operation. Thus, a
program that uses several subroutines to perform DML operations still needs only one READY
staternent to be executed. A READY is not required in each subroutine. If a second READY is to
be executed to change usage or mode or to change databases (see the next section), a FINISH
statement is required to close the database before another READY statement can be executed.

093-000288 Licensed Material-Property of Data Genera! Corporation 1 4‘ 1

Accessing Multiple Databases

As stated in the previous section, a process can access only one database (schema) through one
subschema at a time. This does not preclude one process from using more than one schema and
subschema, as long as it is done correctly. Whether one, or more than one, schema and subschema is
invoived, nesting of READY statements is not allowed.

That is, the following sequence is illegal.
READY ... READY ... FINISH ... FINISH
But, this sequence is legal.
READY ... FINISH ... READY ... FINISH

The INVOKE statements associated with the different READY statements can refer to the same or to
different schemas and subschemas. Therefore, by using separately compiled subroutines that INVOKE
different schemas or subschemas (or both), a single process can legally operate on more than one
schema and subschema. The only restriction is that operation on one subschema must be finished
before another is readied.

Preprocessor-Generated Symbolic Names

The preprocessor generates FORTRAN code, and this code contains various symbolic names. Most of
the names are names of data items and records defined by the subschema. There are, however, several
names that arc generated by the preprocessor and that are not under your control. These names must
not be used in your FORTRAN program. Similarly, they must not be chosen as set, record or data item
names. These generated names are as follows.

o Runtime Routine Names

DBASSIGN
DBBADDR
DBCHECKX
DBCONECT
DBCONMEM
DBDISCON
DBEMPTY
DBERASE
DBFCURSR
DBFDFLDS
DBFDSKEY
DBFFLDS
DBFINISH
DBFMORDN
DBFMSEQN
DBFOWNER
DBFSKEY
DBGETITM
DBGETREC
DBMEMBER
DBMODITM
DBMODREC
DBNULL
DBOWNER
DBPUTREC
DBREADY
DBRECON
DBROLLBK
DBSTARTX
DBSTOPX

1 4'2 Licensed Material-Property of Data General Corporation 093-000288

Local Vectors

DB_FCVEC
DB_ITEM_LIST
DB_SSIG
DB_USING_LIST

External Names in Your Programs

DBERROR
DBSTATUS

Other Restrictions

Observe these restrictions as you create F77 programs that interface with DG/DBMS.

1.

One-dimensioned arrays are permitted for items. Multidimensioned items are not allowed. If
necessary, you can implement them by using EQUIVALENCE statements.

Since the schema has no equivalent data type, COMPLEX data items are not supported. You can
implement them by using EQUIVALENCE statements.

Multitasking is not supported.

Since each DML statement can be translated to more than one FORTRAN statement, labels are
not allowed on DML statements. Use a labeled CONTINUE statement just before any DML
statement you want to label.

Records that have items with CHARACTER data type and items with non-CHARACTER type
will cause a compiler warning to be issued. Allowing mixed data types in the same COMMON
block is an extension to ANSI FORTRAN 77. This message is only a warning and can be
disregarded.

All F77 OPEN statements must appear after all data declarations. This means that the INVOKE
statement must be BEFORE any F77 OPEN statements, since INVOKE inscrts data declarations
into the program.

Only one program module is handled by the preprocessor. This differs from standard FORTRAN
77 which allows multiple program units to be compiled in a single file.

FORTRAN 77 subschemas require all names to be unique within the first eight characters. This
is more restrictive than other F77 names that need to be unique within the first 32 characters. The
DDF enforces this rule.

The preprocessor interface does not process F77 %ZINCLUDE files. Therefore, these %INCLUDE
files must not contain any DML statements. The DBMS “INCLUDE” statement can be used to
include DML statements.

You must declare the variables tx_id and posit as DOUBLE PRECISION, and the variable
status as INTEGER*2. Erroneous results or runtime errors can be obtained by your program if
these requirements are not observed.

FORTRAN 77 currently allows a maximum of 256 external symbols in a single subprogram.
Keep this in mind when designing a subschema or a program. Both records and free cursors are
COMMON blocks, which are external. Other external symbols include DBSTATUS and each
runtime routine called as a result of a DML statement.

093-000288 Licensed Material-Property of Data General Corporation 1 4'3

12. Caution is advised when using bit data items stored in real or double precision variables. When
these data items are used in assignment statements, the destination data item is assigned in
normalized floating-point form. Thus, the statement

BITS.—2 = BITS_-1

could result in BITS_.2 being set to all zero bits, if BITS__1 happens to have all zero bits in the
mantissa portion of the floating-point number. Similarly, in IF statements, FORTRAN 77
considers floating-point numbers to be equal (.EQ.), if they both have all zero bits in the mantissa.
These problems can be avoided by using the FLD function.

13. Because of the way FORTRAN 77 handles character strings as arrays of other variable types, all
character strings are allocated an even number of bytes of storage. This means that odd-length
character strings have a default FORTRAN 77 length, which is 1 byte longer than the schema
length. In records where the schema length of the record plus the number of odd-length character
strings is greater than 1024, the default FORTRAN 77 subschema length will exceed the
maximum record length. In such a subschema, item(s) will have to be either excluded, or explicitly
described to DDF with shorter lengths. (In this case, truncation could become a problem.) This
restriction is an important database design consideration only in the case of very large records
with sufficient numbers of odd-length character strings.

All other DBMS restrictions are listed in the DBMS Reference Manual.

End of Chapter

14-4 Licensed Material-Property of Data General Gorporation 093-000288

Chapter 15
DG/DBMS Error Messages

The preprocessor detects many errors. They report them with one or more of the following error
messages.

A terminal error has occurred, preprocessing abandoned
ASSIGN clause not allowed in this statement
DIRECTION parameter not allowed in this statement
DML statement requires DIRECTION parameter
DML statement requires FREE CURSOR clause
DML statement requires RECORD clause

DML statement requires schema name

DML statement requires SET clause

DML statement requires subschema name

DML statement requires TRANSACTION ID parameter
DML statement requires TRANSACTION STATUS parameter
Data item may not be subscripted

Duplicate ASSIGN parameter

Duplicate DIRECTION parameter

Duplicate END parameter

Duplicate ERR parameter

Duplicate FREE CURSOR definition

Duplicate FREE CURSOR parameter

Duplicate ID parameter

Duplicate MODE parameter

Duplicate RECORD parameter

Duplicate SCHEMA parameter

Duplicate SET parameter

Duplicate SUBSCHEMA parameter

Duplicate USAGE parameter

Duplicate WHERE parameter

END clause not allowed in this statement

ERR clause not allowed in this statement

Error in argument list to preprocessor

Error opening INCLUDE file

Error opening subschema source file

Error while creating temporary file

Error while deleting temporary file

Error while determining existence of source file

Error while determining existence of temporary file
FORTRAN source file not found

FREE CURSOR clause not allowed in this statement
FREE CURSOR dimension must be integer

FREE CURSOR NAME may not be dimensioned
FREE CURSOR name requires subscript

FREE CURSOR not defined

FREE CURSOR specification follows a READY statement

093-000288 Licensed Material-Property of Data General Corporation 1 5' 1

Field does not have GET access
Field does not have MODIFY access

Field name undefined

First character is an underscore
INCLUDE statement requires a file name

INTERNAL ERROR:
INTERNAL ERROR:
INTERNAL ERROR:
INTERNAL ERROR:
INTERNAL ERROR:
INTERNAL ERROR:
INTERNAL ERROR:
INTERNAL ERROR:
INTERNAL ERROR:
INTERNAL ERROR:
INTERNAL ERROR:
INTERNAL ERROR:
INTERNAL ERROR:

BAD PRODUCTION NUMBER

CG_ASSIGN CALL IS UNKNOWN

EMPTY PARSE STACK

HAS_THIS_EXT ROUTINE DETECTS ERROR
INTERNAL METADATA ERROR

INVALID FC NUMBER IN GET_FC_ORD CALL
INVALID MESSAGE NUMBER

INVALID RSE CODE INPUT TO CG_FF

INVALID STMT# INPUT TO CODE_GENERATOR
PARSE STACK OVERFLOW

PARSE STACK UNDERFLOW
UNDECIPHERABLE FIND OR FETCH STATEMENT
UNEXPECTED ERROR DETECTED BY MAIN

ITEM list not allowed in this statement

Illegal character in a token

Iliegal character in col 2-6 of a non-continuation line

Illegal combination of RECORD, SET, and FREE CURSOR clauses

Illegal label format
Illegal number format
Illegal operator

Internal table overflow caused by too many FREE CURSOR NAMES
Invalid direction on FIND or FETCH

Invalid DML statement

Invalid or incomplete WHERE clause
Invalid relational operator on FIND or FETCH
Invalid syntax in this statement

Invalid token format

Keyword or identifier is longer than 32 characters
Maximum nesting of INCLUDE files exceeded
Missing closing quotation mark

MODE parameter not allowed in this statement
More than 255 FREE CURSORS

No FORTRAN statement following IF

No INVOKE statement before this statement
No file name specified for /O switch

Only one INVOKE statement allowed
RECORD clause not allowed in this statement
Record does not have ERASE access

Record does not have GET access

Record does not have MODIFY access

Record does not have STORE access

Record is not a member of set type

Record is not an owner of set type

Record name undefined

SET clause not allowed in this statement
SORT KEY parameter invalid, set is not sorted
Schema name not allowed in this statement

Set does not have CONNECT access

Set does not have DISCONNECT access

Set does not have RECONNECT access

156-2

Licensed Material-Property of Data General Corporation 093-000288

Set name undefined

Source file exists but it cannot be opened

Subschema name not allowed in this statement

Subschema name not found

Token is longer than 128 characters

Too many items in USING/ITEM list

TRANSACTION ID parameter not allowed in this statement
TRANSACTION STATUS parameter not allowed in this statement
Unable to open temporary file which has been created

Unable to reference subschema information

USAGE parameter not allowed in this statement

WHERE clause not allowed in this statement

End of Chapter

093-000288 Licensed Material-Property of Data General Corporation

15-3

Appendix A
Runtime Memory Configuration

This appendix describes changes you can make to the FORTRAN 77 heap and stack organization.

Heap and Stack Organization

There are a number of options available during Link time that provide a way to alter how the runtime
initializer configures memory (i.e., maps additional unshared pages into the program context by issuing
IMEMI system calls to set up the stack and heap). We use the term “map” in this appendix to mean
making ?MEMI calls. This information is useful if your program is linked for a very large address
space and is designed to make ?MEMI system calls.

Unless otherwise stated, the stack we refer to in this section is the stack of the initial (or default) task.

The heap refers to the area in memory from which F77 runtime routines allocate temporary storage
and task stacks.

A fixed stack is a stack with a stack limit that does not change. The stack may grow until reaching this
limit, at which time the program aborts.

A dynamic stack is a stack that uses the top of the unshared address space as the stack limit. The stack
fault handler will issue a ?MEMI system call to map additional pages, and reset the stack limit as the
program’s stack requirements grow.

A fixed heap is a heap organization with a fixed amount of storage available for allocation. This
storage is set aside just for the heap. The system allocates storage from this heap until space runs out,
at which time the program aborts.

A dynamic heap is a heap that uses the top of the unshared address space (highest addresses) for
storage. The heap management runtime routines map additional unshared pages with the ?MEMI call
as the program’s heap requirements grow.

A dynamic stack/heap is a memory organization in which the stack and the heap share the same area
of memory. The heap occupies the higher addresses and grows downward. The stack occupies the lower
addresses. The stack limit is the current bottom of the heap area; it serves as the boundary between the
stack and the heap. The stack limit is adjusted down and up as the heap grows and shrinks. The
program aborts if the stack reaches the stack limit, or if the heap bottom (stack limit) becomes less
than the current stack pointer. F77 multitasking programs cannot use a dynamic stack/heap.

A program requires a heap if it uses F77 multitasking or 1/0 facilities.

N

093-000288 Licensed Material-Property of Data General Corporation A' 1

Memory Configuration Options
The stack and heap are set up by the runtime initializer according to /
* Whether or not the program requires a heap.

* Whether or not the following symbols have been defined (at Link time) to have values other than -1
(which signifies that the symbol is not defined):

.RESERVE
STKSIZE
HPSIZE
STORAGE

The value of .RESERVE (if other than -1) denotes the number of pages (1024. words) the initializer is
to leave unmapped between the unshared and the shared partitions. The program can change the
number of unshared pages by issuing the ?MEMI system call. The address of the unmapped area is
7SBOT-1024.* RESERVE. All addresses below this are mapped as unshared.

The value of STKSIZE (if other than -1) denotes the size of a fixed stack of .STKSIZE words.

The value of .HPSIZE (if other than -1) denotes the size of a fixed heap of .HPSIZE words.

The value of .STORAGE (if other than -1) denotes the size of an area of storage of . STORAGE words
to be used as a dynamic stack/heap. Multitasking programs cannot use a dynamic stack/heap.
Default Values

By default, the FORTRAN 77 runtime routines have the following values for the four heap and stack
specifiers.

No Multitasking Multitasking

(No /TASKS= F77LINK (/TASKS= F77LINK switch) /
switch) ~—r
.RESERVE —1 .RESERVE —1

STKSIZE —1 STKSIZE 100000 (decimal)

.HPSIZE —1 .HPSIZE —1

STORAGE —1 .STORAGE —1

You may override these values if you wish, but do so very carefully.

Assigning Values

You can set the value of these four symbols by assigning values in the F77LINK command, or by
linking with object files (.OBs) produced by the macroassembler (MASM) that define their values. For
example, you can specify .STKSIZE to have a value of 10000 (decimal) in one of two ways.

1. Specify a value for .STKSIZE in a F77LINK command.
F77LINK /switches MAIN_PROGRAM .STKSIZE /VAL = 10000 ...

A'2 Licensed Material-Property of Data General Corporation 093-000288

, 2. Create an assembly language program that gives .STKSIZE its value, assemble it, and then
include it in a F77LINK command.

.TITLE ASGN.STK ; Module to assign stack size
.ENT .STKSIZE
.STKSIZE = 10000.

.END

X MASM ASGN_STK

F77LINK/switches MAIN_PROGRAM ASGN_STK ...

Valid Configuration Combinations

F77 supports only certain combinations of values for the symbols .RESERVE, .STKSIZE, .HPSIZE,
and .STORAGE. For example, you cannot define values other than -1 for .STKSIZE, .HPSIZE, and
.STORAGE all at the same time. This results in an unpredictable initialization.

The following list describes the valid combinations, and the resulting actions by the initializer. Figure
A-1 illustrates these combinations. The description for rone is the default behavior.

<Znone>>

.RESERVE

L STKSIZE

.STORAGE

.HPSIZE

.RESERVE,STKSIZE

.RESERVE, HPSIZE

093-000288

If a heap is required, designate all available pages as unshared with the
?MEMI call, and use as a dynamic stack/heap. (A in Figure A-1)

If no heap is required, use ?MEMI to map just enough pages for an initial
stack. The stack fault handler will map additional unshared pages as
required. (C in Figure A-1)

Map all but .RESERVE pages as unshared and use as a dynamic
stack/heap. .RESERVE pages are available for remapping if the program
issues TMEMI. (A in Figure A-1)

If a heap is required, map just enough pages for a fixed stack of STKSIZE
words and an initial heap. Heap runtimes will map additional unshared
pages as needed for the heap. The program must not map additional
unshared pages. (D in Figure A-1)

If no heap is required, map just enough pages for an initial stack of
STKSIZE words. The stack fault handler will map additional unshared
pages as required. The program must not map additional unshared pages.
(C in Figure A-1)

Map enough pages for a dynamic stack/heap of .STORAGE words.

Remaining pages are available for remapping by the program. (A in
Figure A-1)

Map enough pages for a fixed heap of .HPSIZE words and an initial
stack. The stack fault handler will map additional unshared pages as
required. The program must not map additional unshared pages. (C in
Figure A-1)

Map all but .RESERVE pages. Use .STKSIZE words for fixed stack and
the rest as a fixed heap. .RESERVE pages are available for mapping by
program. (B in Figure A-1)

Map all but .RESERVE pages. Use .HPSIZE words as a fixed heap and
the rest as a fixed stack. .RESERVE pages are available for mapping by
program. (B in Figure A-1)

Licensed Material-Property of Data General Corporation A"3

STKSIZE,.HPSIZE Map just enough pages for a fixed stack of .STKSIZE words and a fixed

heap of .HPSIZE words. Remaining pages are available for mapping by
program. (B in Figure A-1)

Figure A-1 depicts the four basic memory configurations. Each configuration illustrates the portion of
the address space between ?NMAX (the bottom of the figures) and 7SBOT (the top of the figures).

The dotted lines (...) indicate boundaries, which change in the directions indicated during the execution
of the program.

Reserve Reserve Unmapped Unmapped
Heap Stack Stack Heap
Stack Heap Heap Stack

B (of D

A dynamic stack/heap; heap grows and shrinks by moving stack limit.
Multitasking programs cannot use this configuration.

B A fixed size stack, and a fixed size heap.

C A fixed size heap and a dynamic stack; stack fault handler maps additional
pages as required.

D A fixed size stack and a dynamic heap; heap manager maps additional pages
as required.

ID-00220

Figure A-1. Memory Configurations

End of Appendix

A'4 Licensed Material-Property of Data General Corporation 093-000288

Index

Within this index, “f” or “ff” after a page number means
“and the following page” (or “pages”). In addition,
primary page references for each topic are listed first.
Commands, calls, and acronyms are in uppercase letters
(e.g., CREATE); all others are lowercase.

A

Access Control List 3-2

ACL (see Access Control List)

Advanced Operating System (see AOS)

Advanced Operating System/Virtual Storage (see
AOS/VS)

AOS 3-3, 6-16

AOS/VS 1-3, 1-1, 2-2, 2-6, 2-20, 3-1, 3-3, 4-1,
4-3, 4-5, 4-21, 4-25, 4-44, 4-52, 6-9, 7-5

AOS/VS Common Language Library 2-7, 6-21

Assembly Language Subprograms 6-1ff

ASSIGN 11-3, 10-4

ASSIGN free cursor clause 10-3f

BASIC 6-24ff, 6-1, 6-18, 6-20f
binder, metadata 8-3f

Block, VS/ECS Return 6-2
BYTEADDR 3-2f

C

C 6-26ff, 6-18, 6-21, 6-24
call, system 1-3, 4-10
carriage control tape 7-5
CHECK 11-3, 10-2
chi-square 2-16
CLI
(see Command Line Interpreter)
Special subroutine 3-15ff
COBOL 6-29ff, 1-2, 6-1, 6-18, 6-21, 6-24, 8-1
/CODE F77.CLI switch 6-3
Code Generator, Common 6-18, 6-21
code
in-line 1-4
re-entrant 4-19ff, 4-1
Command Line Interpreter 1-3
COMMIT 11-4,10-2, 11-6
Common Code Generator 6-18, 6-21
Common Language Library, AOS/VS 2-7, 6-21
CONNECT 11-4, 10-2
CONNECTED 11-§, 10-4
count, protect 4-44

093-000288

counter, program 2-6, 2-10
current-of-set 11-9f
cursor, free 10-1, 10-3f

D

data definition facility 8-1ff, 9-1
data definition, subschema 9-5ff
data manipulation language 8-2f
data manipulation statements 10-1ff
database administrator 8-1ff, 9-1
database, metadata 8-3f

DATE 2-2

DBA (see database administrator)
DBERROR 10-5

DB.F77.CLI 8-3, 12-1
DB.F77R32.LB 12-2

DBMS INCLUDE 11-16

DBMS runtime routines 12-2
7DBMS32.0B 12-2

DBSTATUS 10-5, 14-3

DDF (see data definition facility)
/DEBUG F77.CLI switch 7-2
/DEBUG F77LINK.CLI switch 1-5
Debugger, SWAT 35-1ff, 1-2
Debugging 5-1ff

DEF macro 6-9f

DEFARGS macro 6-9

definition, subschema data 9-5ff
DEFTMPS macro 6-9f
DG/DBMS introduction 8-1ff
DG/DBMS runtime routines 8-3f
DISCONNECT 11-5f, 10-2
DML (see data manipulation language)
dope vector 6-2, 6-17

dormant task 4-11

/DOTRIP F77.CLI switch 7-2f
.DUSR symbols 3-4

dynamic heap A-1, A-4

dynamic stack A-1

dynamic stack/heap A-1, A-4

E

EMPTY 11-6, 10-4

END macro 6-9

ERASE 11-6, 10-3

:ERMES 2-3, 2-6

ERR.F77.IN 2-3, 2-6, 4-27, 7-1
ERRCODE 2-3ff, 2-7, 4-27, 10-5
ERRTEXT 2-7ff, 2-3

Licensed Material-Property of Data General Corporation

Index-1

EXEC 7-5
executing task 4-11
EXIT 2-11, 4-7, 4-9

F

F77BUILD_SYM 3-4ff

F77.CLI 1-5, 2-6, 2-10, 4-25, 4-63, 5-1, 6-21

F77DGPCT.OB 1-5

F77ENV.LB 1-4f

F77ERMES.SR 4-27

F7710_MT.LB 4-22ff

F77LINK.CLI 1-5f, 2-1, 4-7, 4-9, 4-23ff, 4-38,
4-63, 5-1, 6-21, 12-2, A-2f

F77_DOCUMENTATION 3-2

F77_FMAC.SR 6-9f, 6-16f

FCU (see Forms Control Utility)

FENTRY macro 6-9f

FETCH 10-4

FETCH CURRENT 11-7

FETCH keyed 11-9f

FETCH OWNER 11-7

FETCH positional 11-8

FIND 10-4, 11-1

FIND CURRENT 11-11, 10-3

FIND keyed 11-13f, 10-3

FIND OWNER 11-11, 10-3

FIND positional 11-12, 10-3

FINISH 11-15, 10-2, 14-1

fixed heap A-1, A-4

fixed stack A-1, A-4

FMAC.SR 6-9

Forms Control Utility 7-5

FORTRAN 5 6-9, 6-16, 8-1

FORTRAN 5 multitasking programs 4-24

fp (see frame pointer)

frame pointer 2-6, 2-10

FREE CURSOR 11-15

free cursor 10-1, 10-3f

FRET macro 6-9f

G

Generator, Common Code 6-18, 6-21
GET 11-16, 10-3

H

heap A-1, A-4
dynamic A-1, A-4
fixed A-1, A-4

.HPSIZE A-2ff

in-line code 1-4

INCLUDE, DBMS 11-16

initial task 4-27

INITIATE 11-17, 10-2, 11-4

INVOKE 11-17, 8-3, 10-2, 10-5, 14-1, 14-3
JIOCONFLICT F77LINK.CLI switch 4-26, 4-63
IO_CHAN function 3-20f, 3-1

IndeX'2 Licensed Material-Property of Data General Corporation

ISA.ERR macro 6-17
ISA.NORM macro 6-17

ISYS and multitasking 3-20, 4-25
ISYS function 3-1ff, 4-25

K
KILL 4-7
L

Language Library, AOS/VS Common 2-7, 6-21
LANG_RT.LB 6-21, 1-5, 4-22ff
LANG_RTERMES.SR 4-27
LANG_RT_PARAMS.SR 6-3f, 6-9, 6-16
LCALL 4-22f, 6-2
Library

AOS/VS Common Language 2-7, 6-21

User Runtime 3-1, 4-11
/LINEID F77.CLI switch 2-6, 2-10, 7-2
Link 1-3ff, 1-2, 4-7, 4-26, 5-1, 6-20, 8-3

M

manipulation statements, data 10-1ff
MANUAL set type 11-4

MASM 1-2, 3-5, 3-7, A-2
MASM.PS 6-16

MEMBER 11-18, 10-4

TMEMI system call A-1

metadata binder 8-3f

metadata database 8-3f

metadata, packed 8-3f

MODIFY 11-18, 10-3

multitasking 4-1ff

multitasking and ISYS 3-20, 4-25
multitasking programs, FORTRAN 35 4-24

N

network database 8-13
INMAX A-4
Notice
Release 1-6, 5-13, 7-3
Update 1-6
NULL 11-19, 10-4

o

occurrence, set 8-13
occurrences 8-8

JOPT F77.CLI switch 7-3
OPTIONAL set type 11-4
OWNER 11-19, 10-4

P

packed metadata 8-3f
PARF77.SR 6-9
PARLANG_RT.SR 4-27
PARU.32.LS 3-4ff
PARU.32.SR 3-2f, 4-27
PARU.SR 3-3

093-000288

PASCAL 6-35ff, 6-18, 6-21, 6-24

pc (see program counter)

PL/I 6-38ff, 1-2, 6-18, 6-20f, 6-24
pointer, frame 2-6, 2-10

PMD (see packed metadata)

/PROCID F77.CLI switch 2-6, 2-10, 7-2
Product Support Manual 7-3

program counter 2-6, 2-10

protect count 4-44

Q

QPRINT 7-5
QSYM.F77.IN 3-4ff

RANDOM 2-12ff
re-entrant code 4-19ff, 4-1
READY 11-20, 10-2, 11-1, 14-1
ready-to-run task 4-11
RECONNECT 11-20, 10-2
record type 8-8
Release Notice 1-6, 5-13, 7-3
Report, Software Trouble 5-13
.RESERVE A-2f
Return Block, VS/ECS 6-2
ROLLBACK 11-21, 10-2, 11-3f, 11-6
routines

runtime 1-3ff

specific runtime 2-1ff
Runtime Library, User 3-1, 4-11
runtime routines 1-3ff
runtime routines, specific 2-1ff

S

7SACL 3-2
S?ATTR macro 6-9
/SAVEVARS F77.CLI switch 7-2f
7SBOT A-4
scheduler, task 4-5, 4-11
schema 8-1ff, 9-1ff
SED 3-15, 6-24
SENL (see Systems Engineering Newsletter)
set occurrence 8-13
set type

MANUAL 11-4

OPTIONAL 11-4
Software Trouble Report 5-13
specific runtime routines 2-1ff
SPEED 6-24
stack, dynamic A-1
stack/heap, dynamic A-1, A-4
statements, data manipulation 10-1ff
STKSIZE A-2ff
.STORAGE A-2f
STORE 11-21, 10-3f
STR (see Software Trouble Report)
/SUB F77.CLI switch 7-2
subschema 8-1ff, 9-1ff
subschema data definition 9-5ff

suspended task 4-11

SWAT Debugger 1-2, 1-5, 5-1ff
SWATI.OB 1-5

SYSID.32.LS 3-5ff

SYSID.32.SR 3-1ff

system call 1-3, 4-10

Systems Engineering Newsletter 7-3

T

T?DQTSK 4-23
T?DRSCH 4-23
T?ERSCH 4-23
T?IDKIL 4-22f
T?IDPRI 4-23, 4-25
T?IDRDY 4-23
T?IDSUS 4-23
T?IQTSK 4-23
T?KILAD 4-23
T?KILL 4-23
TIMYTID 4-23
T?PRI 4-23
T?PRKIL 4-23
T?PROT 4-23
T?PRRDY 4-23
T?PRSUS 4-23
T?QTASK 4-23
T?REC 4-23
T?RECNW 4-23
T?STASK 4-23
T?SUS 4-23
T?TIDSTAT 4-23
T?UNPROT 4-23
TIXMT 4-23
T?XMTW 4-23
task
control block 4-19ff, 4-36
dormant 4-11
executing 4-11
initial 4-27
ready-to-run 4-11
scheduler 4-5, 4-11
states 4-7ff
suspended 4-11
/TASKS F77LINK.CLI switch 4-7, 4-9, 4-26, 4-38, 4-63
TCB (see task control block)
temporary files (DG/DBMS) 12-1
TIME 2-20
TITLE macro 6-9
TQDQTSK 4-28ff, 4-21, 4-47
TQDRSCH 4-31, 4-21
TQERSCH 4-32, 4-21
TQIDKIL 4-33, 4-12ff, 4-21, 4-27, 4-44
TQIDPRI 4-34, 4-12f, 4-21f, 4-25
TQIDRDY 4-35, 4-12f, 4-21
TQIDSTAT 4-36, 4-21
TQIDSUS 4-37, 4-12f, 4-21, 4-44
TQIQTSK 4-38, 4-21, 4-28
TQKILAD 4-39, 4-21
TQKILL 4-40, 4-11ff, 4-21, 4-39

093-000288 Licensed Material-Property of Data General Corporation IndeX'3

TQMYTID 4-41, 4-21

TQPRI 4-42, 4-12f, 4-21

TQPRKIL 4-43f, 4-21

TQPROT 4-44, 4-21ff, 4-52
TQPRRDY 4-45, 4-12f, 4-21
TQPRSUS 4-46, 4-12f, 4-21, 4-44
TQQTASK 4-47, 4-12f, 4-21f, 4-27f
TQREC 4-48, 4-12ff, 4-21
TQRECNW 4-49 4-12, 4-21
TQSTASK 4-50, 4-7, 4-9f, 4-12ff, 4-21, 4-27
TQSUS 4-51, 4-12f, 4-21, 4-24
TQUNPROT 4-52, 4-21ff, 4-44
TQXMT 4-53, 4-12, 4-21, 4-24
TQXMTW 4-54, 4-12ff, 4-21
TRACE option 5-1

Trouble Report, Software 5-13

type, record 8-8

U

Update Notice 1-6

URT (see User Runtime Library)
User Runtime Library 3-1, 4-11
user work area 8-9, 11-9f

UWA (see user work area)

A\

vector, dope 6-2, 6-17

vertical forms unit 7-5
VF77SYM.SR 6-9f, 6-16

VFU (see vertical forms unit)
VS/ECS 6-1ff, 6-8, 6-18, 6-21, 6-24
VS/ECS Return Block 6-2

w

W WORDADDR 3-2f, 4-47
X

XLPT.PR 7-5

IndeX'4 Licensed Material-Property of Data General Corporation

093-000288

