Advanced Operating
System/Virtual Storage
(A0S/VS)

Programmer’s Manual

Volume 1

System Concepts

093-000335-00

| For the latest enhancements, cautions, documentation changes, and |
| other information en this product, please see the Release Notice |
| (085-series) supplied with the software. |
| !

Ordering No. 093-000335

© Data General Corporation, 1983

All Rights Reserved

Printed in the United States of America

Revision 00, March 1983

Licensed Material -~ Property of Data General Corporation

NOTICE

DATA GENERAL CORPORATION (DGC) HAS PREPARED THIS DOCUMENT FOR USE BY N~
DGC PERSONNEL, LICENSEES, AND CUSTOMERS. THE INFORMATION CONTAINED

HEREIN IS THE PROPERTY OF DGC AND SHALL NOT BE REPRODUCED IN WHOLE OR

IN PART WITHOUT DGC PRIOR WRITTEN APPROVAL.

DGC reserves the right to make changes in specifications and other
information contained in this document without prior notice and the

reader should in all cases consult DGC to determine whether any such
changes have been made.

THE TERMS AND CONDITIONS GOVERNING THE SALE OF DGC HARDWARE PRODUCTS
AND THE LICENSING OF DGC SOFTWARE CONSIST SOLELY OF THOSE SET FORTH
IN THE WRITTEN CONTRACTS BETWEEN DGC AND ITS CUSTOMERS. NO REPRESEN-
TATION OR OTHER AFFIRMATION OF FACT CONTAINED IN THIS DOCUMENT
INCLUDING BUT NOT LIMITED TO STATEMENTS REGARDING CAPACITY, RESPONSE-
TIME PERFORMANCE, SUITABLITY FOR USE OR PERFORMANCE OF PRODUCTS
DESCRIBED HEREIN SHALL BE DEEMED TO BE A WARRANTY BY DGC FOR ANY
PURPOSE, OR GIVE RISE TO ANY LIABILITY OF DGC WHATSOEVER.

DASHER, DATAPREP, ECLIPSE, ENTERPRISE, INFOS, microNOVA, NOVA, PROXI,
SUPERNOVA, PRESENT, ECLIPSE MV/6000, ECLIPSE MV/8000, TRENDVIEW, and
MANAP are U.S. registered trademarks of Data General Corporation, and
AZ-TEXT, DG/L, ECLIPSE MV/4000, ECLIPSE MV/10000, REV-UP, SWAT,
XODIAC, GENAP, DEFINE, CEO, SLATE, microECLIPSE, BusiPEN, BusiGEN,
and BusiTEXT are U.S. trademarks of Data General Corporation.

o Volume 2, 093-000241-01 (System Calls).

Advanced Operating
System/Virtual Storage
(A0S/VS)
Programmer’s Manual
Volume 1
System Concepts
093-000335
Revision History: . Effective with:
Original Release - March 1983 AOS/VS Rev. 2.00
! I
| A vertical bar in the margin of a page indicates substantive |
| change from the previous revision. Two volumes supersede the |
| “AOS/VS Programmer’s Manual,’ 093-000241-00: [
I I
I o Volume 1, 093-000335-00 (System Concepts); and | - “//
' | ~—
I |
[]

PREFACE

This manual supersedes the ‘Advanced Operating System/Virtual Storage
(A0S/VS) Programmer’s Manual’ (093-000241-00). It is intended for use
by experienced assembly language programmers.

In this revision, we describe new features and enhancements to existing

features of the Advanced Operating System/Virtual Storage (AOS/VS)
software for Release 2.00.

This manual is divided into two volumes:

o Volume 1 contains explanations of basic AOS/VS concepts and how
families of system calls work together.

o Volume 2 contains the A0S/VS system calls. The system calls are
arranged alphabetically for your convenience.

If you are not experienced with assembly language, we suggest that you
read the following manuals before you read this book:

o) ‘Fundamentals of Small Computer Programming’ (093-000090), a
general introduction to Data General computers.

o ‘Advanced Operating System/Virtual Storage (A0S/VS) Macroassembler
(MASM) Reference Manual’ (093-000242), which gives detailed
information about the syntax of AOS/VS assembly language and about
the Macroassembler utility.

The information in Volume 1, System Concepts, is divided into the
following chapters:

Chapter 1 —- Introduces AOS/VS.

Chapter 2 —— Describes virtual memory concepts and memory management.

Chapter 3 -- Describes processes and how to manage them.

Chapter 4 -- Describes files and how to create them.

Chapter 5 —— Describes input/output (1/0) concepts and file I/O.

Chapter 6 -- Describes the interprocess communications (IPC) facility
and how to use it.

Chapter 7 -— Describes tasks and how to manage them in a multitasking

environment.

093~-000335-00 Licensed Material - Property of Data General Corp. 1ii

iv

PREFACE (Cont.)

Chapter 8 —— Describes the connection-management facility and how \~//
to use 1it.

Chapter 9 —— Describes binary synchronous communications (BSC).

Chapter 10 -- Describes how to define user devices under A0S/VS.

Chapter 11 — Describes the functions of various miscellaneous
system calls.

Chapter 12 —— Describes the system calls that are exclusively for

16~bit users.

Certain features of A0S/VS may change from revision to revision.
Therefore, please refer to the current AOS/VS Release Notice for the
most up-to-date information about functional changes and

enhancements. The Release Notice is in the utilities directory
(:UTIL) on your system tape.

Reader Please Note:

< > Angle brackets indicate the paraphrase of an argument or
statement. (You supply the actual argument or statement.)

* One asterisk indicates multiplications. For example, 2%3
means 2 multiplied by 3.

% Two asterisks indicate exponentiation. For example, 2%%*3
means 2 raised to the third power.

Unless the text supplies a specific radix (as it often does), all
memory addresses are octal value and all other numbers are decimal
values. To specify a radix, we use the notation "octal value" to
indicate that the radix is octal.

When we refer to magnetic tape, we means 9-track magnetic tape.

Contacting Data General

If you have comments on this manual, please use the prepaid Remarks
Form that appears after the Index. If you require additional
manuals, please use the enclosed TIPS order form (USA only) or
contact your local Data General sales representative. If you
experience software problems, please notify Data General Systems
Engineering.

End of Preface — /

Licensed Material - Property of Data General Corp. 093-000335-00

CHAPTER 1

CHAPTER 2

CHAPTER 3

TABLE OF CONTENTS

Page

INTRODUCTION TO AOS/VS..o'-ooo0":otocoooooo-ccoooccl_l

Virtual Memory......................................1—2
Ring SETUCEULCeseseossassssssassssssssssssssasasssessel=3
A0S Compatibility...................................1-4
Inner-Ring Management TErmSeeecesssssocscssscssssessl=)
System CALlSeeeoessessesacsscssassssssssascssssassesl=bd

MEMORY..O.....'O.C.‘.C...l..'....O....ll.'....l.....z—l

Ring Structure......................................2—2
Demand Paging.......................................2—4
Shared and Unshared Memory Pages....................2—4
Protected Shared FileSeesossoscasscssssasssacssssseel=]
Coordinated Shared-File Update......................2—8

Dedicated and Undedicated Memory PageSeeccsccsscssss2™9
User Context"..........‘.............‘Q...‘O..O.l..z—g

PROCESSES.!.C.w...Otuo-c.ono"ooooo'oco'o-oooo.tccoc3_1

Memory Scheme.......................................3—3
Process Types.......................................3—5
Priority Numbers....................................3—6
Process Identification..............................3—6
Process Creation....................................3—8

Process Privileges..............................3—9
Process Creation PATrAMEterSeceeccssscsessasesses3—ll
Superuser Mode/Superprocess ModEeeseooessasassesld—12

PrOCGSS States......-..-...............-.....--.-.-.3—13
Process Scheduling..................................3—14

93-000335-00 Licensed Material - Property of Data General Corp.

CHAPTER 3

CHAPTER 4

vi Licensed Material - Property of Data General Corp.

TABLE OF CONTENTS (Cont.)

Page

PROCESSES (Cont.)

Process BlocKkingeeeeeoeceeeeseosssccccssascsassseeneld~14
Changing Process PrioritieS.cicecessscccccansaeoesseeld=15
Process InformatioNecscecccsccscsasscesescssscesssoeeld=15
Execute-Protection StatUSeeescessressassssssscsesessld=lb
Process TrapSecccceseascsesscesccscsnsosscsnssecsscseeald—17
Break Files and Memory DUmMpPSeeseesssccssosccesccecsssed=17
Linking Programs Together with

the ?CHAIN System Calleesseeecessseccessald—19
Inner RINGSeeeeeceocovescccsssessscsscnssssnssssnsees’d=20
Process and Memory Sample ProgramSeecsceccescescseeed=23

SON Subroutinessssceeceeecssseacasscssscssnsaosseld=23
RUNTIME Programesecssceesceccocsocsccsscccssssanasi—27
RINGLOAD PrograMecscscsscsscsscscssssssscsscsnssald—35
INRING Programescecscececessosccsssscsssescoscssscesd—30
GATE.ARRAY ProgrameccccsccscsscasssosccscsoncenesI=43

FILE CREATION AND MANAGEMENT---.oo'ooooo-oooooco.0004_1

Disk File StruCtUreSeececesececesccccvnoossonsoconaeel=?
Directory CreatioNececesecssscccccsasscscannsesossnsasediml
Directory EntrieSeeccececcsceccecsassnossoonacsscnessli=b
File TYPeSeeetesscsssscescecsssssssccscccccnnsasssssh=5
Directory ACCEeSSeseessssecccssssssssecnososssonseseshm?
FilenamesSeeceeeeseseesssssssseccscssonsasosocnnnssnssh=8
PathnamesSeceeesceccceeossssosscasccsssssceansacsoasnsssl=O
Link EnCrieSeeeeecesasssssssssssacecsooccccccoconnssssh=1?2

Use of ?CREATE and ?DELETE System
Calls on Link EntrieSeececcccescoececesadi—=13
File ACCESSeietesenssccassosssssssesvsoncssnssssnnssesliml3d
Access Control LisStSsseeesssssseesasesescsocsecescsssliml5

ACL Templates;..oo.......-.........-...-...-..-.4—16
The Permanent Attributeeeseesceeseesecsasscosassd—17

Logical DiSkS.-...o..-..-.-..........-...o.......o..4—17
Disk Space Controleseeecececseecsansconsssssossconnesad=19
File Creation and Management Sample ProgramS........4-21

FILCREA Programoooocoooo-ooo-'o.o'o.tocoucu-oooo4_21

093-000335~00

CHAPTER 5

CHAPTER 6

R

TABLE OF CONTENTS (Cont.)

Page

FILE INPUT/OUTPUT (I/O).o...-...................-...5—1
File I/O ConceptSoocooo.o-o-uu-oo-oooooooooc--co.cooS_B

Blocks and ReCOTrdSeesesvscscccscssscscsnsssssssasi=3
Channels.ccseeeesrscoscsnsesescsssscssssnsscsssessessr—3
File I/0 Operation SeqUENCEeeeceesceeccoscecsssssed—b
File POInteTeececeescsosaaosscsssssassoscsosncnsasassd=5

BlOCK T/0ceeeececcscsesosossosoossssassansccccsassssi=6
Physical Block I/0ecceeescsscsceoceocescsosccosenaesed=7
ReCOTA T/0ceeeeeecesencassassosusasssssscaceacccnsessd=8
Device NameSecseoseeosssvsoseossseescsssssssosssccancssed=9
Generic FilenameSeescesssesassestssoesconsssssnsesesd0
Multiprocessor Communications AdapterSeceecsceseeess5=12
Character DeviCeSeisceseeeassessssseasssssccassaneasseasd—13

Full_DupleX Modems.'...'.......'......'.........5-15

Card Readers......."‘.....".............O.’.'.5_17
Character Device ASSignmentececesssceceesesssaeei=17

Line-Printer Format Controleceeecsccesocccccososcaner=19
Console Format CONtrOleeeeeseecccccsoccccossasnsansed~19
The IPC Facility as a Communications DeviCe€eseeeese.5-21
Labeled Magnetic TapeSeesseessscssscsscsssccoccsanes’s=22

FormatSooooooooo."ooooctoo'oo.o-oc00000000000005_23
LabEI Types..o.ouoo.uoo.ouoc.oooccoo.t.o-100-00'5—24

File I/0 on Labeled Magnetic TapeS.eceeeeeessesseese5=35
File I/0 on Unlabeled Magnetic TaAp@Sececeseesccsesssi=37
File I/0 Sample ProgramSecececcecescsscscscasssseses3I=39

RITE Program--.....................-...-...-..--5—39
DLIST Program....-....-..............-...--.....5—45

TASKSC...o...o'ol....l.'o...uo..o.000.00'0-.000....06_1

Task CONCEpPLSeessassessscccsssssssssscsasccscssasensb—3
Task~Protection SChemeSeeecsrsesvsecssceccosscscsseessbobi
Task Identifiers and Priority NumberS.ceseeeesseceessb=5
Task InitiatioNecesseeesceacccseccccnoonccscsssseneeebeb

093-000335-00 Licensed Material -~ Property of Data General Corp.

vii

CHAPTER 6

CHAPTER 7

viii Licensed Material - Property of Data General Corp.

TABLE OF CONTENTS (Cont.)

Page

TASKS (Cont.)

Stack Space Allocation and Stack Definition.seceeee..6-7

Inner-Ring StackSecesescocssosscscscesssscsscascesseseh=8

Task Schedulingeeccecescescscssssscsscascsscasesnsssb=l0
Task SuspensioNecssscecrscesscesssssessesssscssssassabd—ll
Task Readyingeeeccscesscescscscscascscssscsasssssnsssscb=l?
Task RedirectioNeceecseccecsesscescossosesscassssassesesb=13
Inner-Ring Task Redirection ProtectioNeeceeesscessessb~13
Task TerminationNeecesseecccsseoscssesvsssesascesasssaesesb=15
Task Creation and Termination DetectiONecesesssseessb-16
Console~to-Task CommunicatioNeecseesscssesccscescesasbdb=17
Task~to~Task CommunicatioNeesseccsssscscsescenscsseasb=l7
Critical Region Locking/Unlockingeeeeceesssssscceeeeb—18
MV/8000 Floating—Point RegiSterSessseceescccessseeseb=19
Multitasking Sample ProgramSeccccscecescesccsscsecssbh=21

NEwTSK Programooooooono'coocoo-occooocooo00000006—21
BOOMER Program..............-...........-..o....6—25

THE INTERPROCESS COMMUNICATIONS (IPC) FACILITY.eeoeso.7-1

Sending Messages Between IPC POrtSesecsescscsecovenes/—2
Typical IPC System Call SequencCee.cececcecccscsessee/~4b
Send and Receive HeaderS:eeseeccssesesscscsocsscssesal=h

System and User FlagSeseeeeevoescscscccsssescassl=7
User Flag Word.........-...................-.-..7‘9

Process Termination Messages in a
Customer/Server Relationshipecsssesseeee7=9

Termination Messages for 16-Bit ProcesseSesseess /=10
Termination Messages for 32-Bit ProcesseS..ssee./=14

?ISEND and ?IREC SyStem Call LOgiC.'oo-'ooooococ-oco7‘14
IPC Sample Programsl’..'..........................’.7_19

HEAR Program..'...'..'.............'......"...'7_19
SPEAK Program.....-.----.....................-..7—25

093-000335-00

CHAPTER 8

CHAPTER 9

CHAPTER 10

CHAPTER 11

TABLE OF CONTENTS (Cont.)

Page

CONNECTION MANAGEMENT....'..................‘.,.....8_1
Connection Creation...--.--.........................8—2
Server PI‘OCGSS-..................-.............-8—4

Connection TerminatioN.cecececesccsossocscsssascsacssd=D
Obituary MeSSagESeecesccsssesscscssscsssascscsssnsesesd D
Inner-Ring Connection Managementeesssseescessccescsss8=b
Fast Interprocess Synchronizationeeiseccscsesceseses8-8

BINARY SYNCHRONOUS COMMUNICATIONS (BSC)ececececcesse9d=1

BSC COnCeptSco.oooc'-oooooooooocoo---too.-00000000009—2
Line ConfigurationSeescscsesssesssscesssccsssocssneeI—3

Multipoint Line Selection and Polling.:sceeceoes9-4
Relative COnsS0leSeeescesscesstssssoscsssccssscsssI—BH

BSC Protocol. ® 9 9 0 5 6 5 68 00O 9O PO OO OGO E OSSOSO EE OO SE e 9—6
BSC Error—Recovery ProcedureSeeecesccccccccscssscsesd=1l
BSC Implementation. ® 0 0 0 6 6 & 0 00 05 GBS C S OE OSSP e TE eSO '9—13

USER DEVICE SUPPORT..'.'.ooooooo-octtoooccootcooco010_1

?IDEF System Call OprionS.ceecessoscscccccsccssasessl0-3
User Interrupt ServiCescccecccecssscscccccccsossssall=7
User StackSeeseesssossocesssscoscssssasssccnsansscssl0-8
Communicating from an

Interrupt Service Routine.eesessceceeeaa10-9
Enabling and Disabling Access to All DeviceSe.e.sese.10-9
LEF MOd@esesoseososcssncesscscssscssscasscsssssesssssneell-10
Power—~Failure/Auto-restart Routine.ceeececesesssseall=11

MISCELLANEOUS SYSTEM CALL FUNCTIONS.eeceesessssaeeall-l

Console INterruptSecssssecssssssessssccssssssvesanaall=2
Clock/Calendar System CallSeeeeeecesescsoscssssccesll=3

093-000335-00 Licensed Material ~ Property of Data General Corp.

CHAPTER 11

CHAPTER 12

CHAPTER 13

X Licensed Material - Property of Data General Corp.

TABLE OF CONTENTS (Cont.)

Page

MISCELLANEOUS SYSTEM CALLS FUNCTIONS (Cont.)

Error Message Fileeeeeeeesssssnsecccccccannosnnsassll—bi
Program Information/Control System CallSeeeeeeeeeesll=5
System Informationeeeeeeeesssesecssecsceesaosssesaall=5
Utility InterfaceS..cesecceeecsosseecnosasconsocnasesll=6
Bias FaClOTSeeeesoseascccenrssvsosssssccsansocconceoasll—7
CLL MeSSageSeeceescesossonrsssccosscssonssncensscnell—7
SYmbolSeeesesreceroeeesssessessseocscoscensenscansell=7
Host Information.eeeceeessssseeesececeooosassnnsaoeell=?
Address/Access Validationeeeeeeeeseeoseeseseoseneesll=8
TIMEOUT Sample Programessessssececscescenccoscsccesaell=9

].6_'BIT PROCESSES.---o.-.............‘...--oo-..-...lz—l

Memory Modification with Disk ImageS.essececseceessl2=2
Overlay ConcCeptSsceececssscsssssscscssssccncsosanseel?=?
Resource System CallSeeeeresesseccoovoccosnnsssnnssel2=t
Procedures EntrieSecececsececssssccesssssossosasccocesl?2=6
Alternate Return from ReSOUTrCESeceseessecscansconssl2=7
System Management of Resource System CallSeeeeseeceel?=7
Runtime Relocatability RequirementSeeeeesessessssssl?2=8
Primitive Overlay System CallS.eeecececesssscecsseesl2~10
Extended State Save Are@cesesscescececssccsseesneesl2=11

SYSTEM CALLS...O.o-lo.o.'.o..'00000.00-...0.0.0..0013-1

ZALLOCATE s eevteeeecsoccsnsssossasnssoascoansssnnselld=7
2ASSIGN e eseetetonsscoccososssasassssnsssssencnssseall=9
?BLKPRucesesossescssesaoosonconsssnsssnscescennesssalld~1l
?BNAME e etscoartosencessanceesssssssnsssacsssssasnsealld=13
?BRRKFLesessvaseseocesscccsosssssssnsansscssscsesenald—15

2CDAY e eueenontenssetscacecsensssoscsasccsssennsnsesalld=19
Z7CGNAMe e voocensesosccnnsossssnssannscssssescansensel3d=21
L0 8 S I X
?CKVOL e eeseoseosonsesaaasssansesssasossconencesssasalld=27
7CLOSEesescvasossososseossoscsosscnssssoscvonseneesl3d=29

?CON...t..-I.O..OOIO.lIOl.t'.000..........0.0.li'..13_33

?CPMAX...uoooo...oooo--oooncooonoo'oooooo.c.oooooool3—37

093-000335-00

SR

TABLE OF CONTENTS (Cont.)

Page

CHAPTER 13 SYSTEM CALLS (Cont.)

P CREATE e ¢ ssosvecacscsssssssssssssnsscssssssncsssssesl3=39
P CRUDA« e e vesessosesscssssnsssscssanssssosssasssssesl3=5l
PCTERMo o e eeeosacescesccscsnsssssssssssssanssassessl3=53
P CTOD o e esonossaassacsssssssssasssncssesscanssassssssl3=55
P CTYPE e eeovvonsasssassesassssssssecsssacssasseassesl3=57

?DACLO.clooo.-ooooonoo.o.oooooo-.oo.too.otoc't.ton013_59
?DADIDO..O.....‘..O..o.u-ouo.oooo00001000000000001013_610
?DCONO.'O.CI..l.'.....O0.0...'..'.0'.'......0.000..13_63
?DDISO.'.!.'O.'...0.....'l..o..‘I....'..‘0.0..O...013—65
?DEASSIGN--..-...oo.o..uooocoo'ooc-o'coacooc-o.ooo.13_67

IDEBL e s oscscsoscsscscscsssssssssssssossscscsssessssl3=71
P DELAY e o oo voescscseavecessscsssssnssassosssscssssssesl3=73
IDELETE e eeesesescacesssssasscasssssssssnscscsssesssl3=75
IDFRSCHe e sesessossasscsosnsssssssassscscsasssascsssel3=77

?DIR..OIO.......C.‘.C....Ql..'...'..O....".IO..00.13—79

PDQTSKe e e eenoosencsssssssssscsssssssnsasnsasnsssnssl3=8l
TDRCON« « oo evvvossanssncsoscecssssassasssssssssssessl3=85
2DRSCHe ¢ ¢ e oo eessosssosasssoscssssssssssssssananssasl3=87
PENBRK e o e s voevvoscssenssssesenssccsssosssssssssasssl3=89
PENQUE+ e sevesnensssosasocnsssncsssassssssssssssasssl3=93

IERMSGe s svavonssossacsossssssesssnscsssssssassssssssl3=97

TERSCH. o eovesosesesnsscssssssssonsasssssassscssssesl3=101
?ESFFeeecocsassssscsessosssssesssssnsscssassssssssesl3-103
PEXECe e veossencsessoscsssssnsssssssssssesasssnssssssl3=105
PEXPO« o eesocosssnssnsncsssasssesassscsacsnssnsasessl3=123

I DAY e e secosoonssveasescsscssssesssacscsscssssanesssl3=127
P FEDFUNC o e 000 seeoscssscssssssssssscsascsssesssessssl3=129
PFEOV e o eeseosnesnesasccsescssssossessscssssnsascssesl3-133
PFLUSH e e o s essnsosssssassscsscasssssevsscssasansssesl3=135
PFSTAT e e s vvsesecosssssssassssssssasscscsasssssssseesl3—137

PFTOD e e o sevoseanencscsssssssvsssssssssssssssssasasesl3=147
P CACL e v oo vosaansssasssosssessssassasscssssssnsassesl3=149
7GBIASeeessossosccsssssssscssssssasssersssssssnssnsel3—=151
PGCHR e oo oo escsossvesssssssossasessosvsssosnsssasesesl3=153
2GCLOSE e o seoeassooscssssssssssssesssssssassssscssssl3=159

093-000335-00 Licensed Material - Property of Data General Corp.

xi

CHAPTER 13

xii Licensed Material - Property of Data General Corp.

TABLE OF CONTENTS (Cont.)

Page

SYSTEM CALLS (Cont.)

TGCPNseeveeseooootossosceassssansssnseansssooaseseelld~161
?GCRBeceteasooooessssocenrosssssssossssnnsssacnssoenel3d=163
ZGDAY e eeesreecsacscvscsonsssssssosscrscsssessensssl3=165
TGECHR e teatencnsscscccnscosasenesssensssscasssenesld—167

?GHRZ....--...-.....o-ooovooo-.o--o.coo0000-000000013_171

?GLINKe ceaseoesoocccosscoasesassasssessscscesasnsaeeld=173
ZGLISTeeeeeeoeacocceerosensssnssssssssssoncsssenseal3d~175
GMEMe o eoneoansacocesoncasecnssasasssosssoacencnsseld=177
?GNAMEseeoeessesosseosoansscenossesssasasnssescsnseel3=179
2GNFNeoeoseeosseoecccosasosssssssssssnscssscosennseld—181

?GOPENeeesseseeesscosvsssossccnssanssssssesaceassnnsesl3—185
?GPORT s s esvesevsossossnsssssasssnsassnsessescasesssl3d—101
2GPOSeeesseesasoscscosssnacsoncssssassoaccnnssasasesl3=193
2GPRNMeteenveeossosocsososssscnenssssnnoacsoasseseel3—197
ZGRNAME ¢ eaeetesenssoeoscencsensssnsssnasesscansonsel3=199

2GSHP T eaeeenvonssesessssssccnosssasassssssansssosssel3d=201
?7GSIDesesesrsasenncessscsscccnsscossessssnsacsscesssl3=203
2GTACPeeaerseonsocassoscanscscaseannsssssnasssscnssessl3=205
?GTMESeeesevvsacersscesscsosocssosssssssssssassasessel3=207
2GTNAMe st veeseevooosecsseoassansansosconsssscnsaseeld=215

?GTODeeesavsssosacsseccocsconsssnsssanssonssosceneselld=217
?GTRUNCATE ¢eeevveaceosssaccsoosssesasnssssssssssessel3=219
2GTSV e eeseeseseocaseasenssssssssnssessaascsnsenseel3=223
7GUNMeoeeeoeesaaoosccosocnsocsnesssnsssosssvssnssonssl3=225
?2GVPIDecsecesasesescsssocscssesssosssnssnscssscnsesl3=227

THNAME e ¢t oeeeoecorccsoosoooasoassssssnsscnsssnsessel3=229
?IDEF ceenseocosccsscassonossessesascsscssnsssscacesl3=233
7IDGOTO s e ssvoevccesooscosonssssessasassnscsscasnseelld=241
ZIDKTILe cessooosooacosoansnssansssssssassoscossensesl3=243
?IDPRIcceecescecocccnseceosseassasssassanscnscensesl3=245

?IDRDY e seresceesscescsoosccessescscasansccnscennseslld=247
2IDSTAT e eeeesoeeecccoocsosscnsssesssassnsssassansesl3-249
?IDSUSeeeesesoceecconcsoosssossassssoesscsncannensasl3d=25]
2IESSeeeesrocasosssssscscossossecssssenssssseenseseel3=253
2IFPUccunessseesocssconoossssesnosssascsssssconsosesel3=255

093-000335-00

CHAPTER 13

093-000335-00 Licensed Material ~ Property of Data General Corp. xiii

TABLE OF CONTENTS (Cont.)

Page

SYSTEM CALLS (Cont.)

?IHIST eeeesosseososaenssososssvsssssssesvoscsscssssessl3d~257
?ILKUPseeeosonsssocsssvscssossssnscsssessvnesscssssesseasl3=261
?IMERGE ceececoacsccsosssssssecsssccsccssnssssseceacelld—263
TIMSGesvecoaosssosossssecssecsrssccsscsssscsssccssseesl3—=265
?INIT eeeeeooscecossasosnsosssocsscsscsessasncosscsansessl3—267

PINTW e evenennnnes R & 0¥ 3|
PIQTSK e e evaeenacensocsnsesnscssscsascassansconceessl3=273
5 1 R B o/ '
TIRMV e e eevaeenncsoocsosscesncanscsoscanscnnsnnssessl3=281
PISEND e e eveeenacensessscenncasnasnnasensasnnnnsaessl3=283

2ISPLIT eeeeceassssosncsssssosvscssoscsnssccscsssasssnssel3—287
7ISeReceecsccossecscseecasssesocsvosasssscsvssesssssel3—289
?ITIME ceceecessoassoccssancosccacsossscsnscssssssssessl3=295
2IXITeeeeses cecserscestssresecsesssrseseesssesvsesnessssl3=297
?IXMTceoeoccsosscsscssvsesssessvceasnscsssasscssssscsscseel3=299

PKCALL v eavesosssesvecoscscscovscscsoscnscsanccncsssseesl3—301
?KHIST eesvessocococccasssssssescssssscososcssscssaesl3d=303
TKILAD¢ oo eossovssosovsavsssosssescssssssscsssssassssssl3—=305
IKILLeeoveovssessosscsasnssosessesosssncsnssssscasscsssl3—307
?KINTReooessosocoosocescanssossscsssscssscssssscsssssl3=309

TKIOFFeetesstessoosssossssoessosesvoesvonsssossassnnsal3—~311
PKIONesoovesossacsososssscssossssvssssccsssssssenssl3=313
TKWAIT e eevoranoeeaeorsoccscscenacsasssassssssssnneasl3—315
2LABELsecteccasccossccssosavsscsnsssscessssssssssenelld-317
ILEFDe s cececonsoscecosasscenossssssoncsssssssssssseell3—321

JLEFE ceeteesrsoscssscososcscsvsesascsstscsssenssvenssseesl3=323
2LEFSeeecsconsoasossvsnssscssesssscsonsssvssassscassssl3=325
2LMAP e erecesecsosccssasscssssasccsssssansssccanssl3—327
?LOGCALLS..... I [s VA
?LOGEV . e eosesesoasccnoscasscnssossocnsosssssesssnnsesll3—333

IMBFCeeenvencenene sesacsesscsncsessntsssacssscescaselld=337
IMBTCeeesececcacaososcccsassscsnsanssnssssssansenseel3=341
TMDUMPoe s s soaessscosecossssssassosaasssssssssaneeneel3—345
IMEMeceeeerenonornonestsonoososoonsooonsscassoseseeel3d—347
IMEMIeeeeeoeeescscooccosasnsonossssscscssosssacssssneseld~349

TABLE OF CONTENTS (Cont.)

Page

CHAPTER 13 SYSTEM CALLS (Cont.)

IMYTIDeesceoceoosaccosesosseossonssnnsansssssnannsel3=351
20DISeeeeseesssocsacncsssossacnsssssscassanscossesssl3d=353
TOEBLeesessocescossencaasessessssssanssnssssescssesl3=355
7OPENc:veoecsavossosscoseassscosssnssssnassscsnsssesl3=357
2OVEXeeoovooonnss cessseee cssressessssctssscscssnesesl3=377

20VKILeoooonsesseecssssssacsasassssssccccnnocnscssnsal3=379
20VLODecesnonoetasscessosascossccsssssssssesnsessssl3=381
ZOVREL ¢ cooenossoccsocnsceosseessssassascssscsscessssl3=385
IPCNX et etonroetoscescsacccesesssssssssssancsenanessl3=387
2P M PFeeeetascenssaseseosssscsnocasssnnassocssosensl3=389

?PNAME..C'.....I....‘..‘..'-...'......"...........13_393
?PRCNX' ® 8 8 0 600 0SSP OE OSSOSO E OIS OO PLBLOL OSSO OEDPNBTROIEBNOETSTES 13_395
?PRDB/?PWRB. ® 0 6 0 00 06 00 SO SO SO L O SIOEEEONELIEEIBSIOSOEOOEES 13_397
?PRI-.... ooooooooo ..00..'0000'.0'..oo'..oo.o"..".13—403
?PRIPR. ® 6 5 0 05 8 20 B8PS0 OO OTOEE L OO EPEEEOSIOENLIOEBIESENIESEES 13—405

PPRKILaseessssscsesesssesesssscssssssssessnsssasassl3=409
?PROCeevsoecosssssasoasssssnsassssssssancssasnassssld~4ll
2PRRDY eeencscosssocessosocssscnessnssossccnnssseasld=425
IPROUSceeoeeosvensssssescoscscccnssssssssseccnsnnealld=427
2P AT ceeenresossssssessssssscnssnsssssssonensssassl3=429

IRCALLcecsovssescesocscsnesssccasssssscsasecssasasesl3=bdl
TRCHAIN. teoenaosccssescsassosssscssosssssssscssasnesesl3—443
?RDB/?7WRBeeesoseasssosacesssecsosesacnsssasenscessel3=445
2RDUDA/ 7WRUDAeeeeeosonnanees sessessssssesssesasseesl3-453
2READ/ TWRITE ¢« e e sensesoersossssoacacsnocseosssensoseeld=455

?REC.'00"O'..l..‘.'..'O.C‘.l.."......O..'.l'..'..13_473

?RECNW.C"...O00000.0.o..'.no.onn".'o0000000'0100013-475
?RECREATE...ooooovc-oool'ooouoooccnoo-ucoo-vocoo-0013“477

?RELEASE.O'..O.....!..C....l'....l.Ol..o‘.l.......‘13_479
?RENAMEC.'I...CO'.C...O.........!0'0..'000..."'..013_481

7RESCHED s s s ssuescassasosseoncsosnnsssssssessonssessl3-483
?RESIGNeeeserenssoseasccovsssssasnosssscssaseosssessl3=485
ZRETURN: e teeeescoacoosccncsssonsssascoscnscossonsesl 3-487
ZRINGLD e s eesovesssosssasosssscscnnsssssnssssensossel3=491
TRNAME o svvoossrstosesoscnncassssasssssseseocnssessasl3=493

xiv Licensed Material - Property of Data General Corp. 093-000335-00

CHAPTER 13

TABLE OF CONTENTS (Cont.)

Page

SYSTEM CALLS (Cont.)
?RNGPResesescosssacssssscsssssossssonsssscassansessl3d=495
L A I AT
ZRPAGE e s eoetevteeesvecosssssssssssssssssscnsenensesl3d=501
?RUNTMe e s evonsneoonesnsocacansssssnsscscacasennasesld=503
?SACLecesoensocasossscnsscnsessssnssssssccscsnsssesl3=507

?8ATReesseeensosoceosscsssaassecossssscssannocnsaseel3=500
?SBIASeeeteeeocecsaasesacsscssnstssssccascsnenesneal3d=511
?SCHReeeesnetsostsoseacesnccssssssssessssscnansasssld=513
?SCLOSE s eeotosocessenosssessssssssssesssancsasssesel3=519
2 DAY e ttttectcescesenccnssescnscessssssssnsensesseslld=521

?SDBL.‘...CO..‘.'.'.'l....!"...'.....'.0.0...'.0..13-523
?SDLM-ooooooaoco-ocoooovcooc-oooo'..ooc0000-0010'0013_525

?SDPOL'O.....l.O.C......'.O..l00'.'....l.'...l...0013_529
?SDRT/?SERT0.0.I..C.!.Ql.'..000..‘0.0..0.00!."‘...13—533
?SEBL......O..O..t..0..t.'...i‘t'....ol....00000'0013—535

?SECHR e eseeesusessocosascssnsssssssossnnncnnsonseasld=545
?SENDeeseseaesnscoccososnscosssesonssssssansonneesesl3=549
?SERMSGessnsessessescoccnssessnssasensssosacssassssl3d=553
?SERVE eeeeveesessasosnsasscsssssssssscsacassesssesl3d=555
?SGESeecnteococecancsnssnssssscrssssssscssascnsesanslld=557

?SIGNLeeseesesensesseocccsnososssacsscsssascansosasl3=561
2 IGWT e evtenseeeacecanassscsssasssscnsossnseesonseslld=563
?SINFOeoteesoaessesasssoasoscsssscssnscscscacncaeeel3=565
2 LIS T eeeseasoseoceesosssscsssssssscscnsonnnsoseessl3=569
?S0PENececteececocosesssssssssssssessossacscacassessl3=571

?SOPPF.......-o-'cooo‘oooo-oooo.cco.oo-.00000-0-0'013_573
?SPAGE..O0‘.0.......l.....lQ.‘.'.l....0...0.0'..0'.13_577

?SPOS......OOQ..Q.O.'0..COI....l'....ll.ll....'.'0.13_581
?SRCV...O..O........l........."...0....Q.'..Il..'.l3_585
?SSHPTOO..-..oooooooonoanooo.oooc.oo-cuo.ooo-onool013_597

?SSID.....ll.'.c‘.o."toc...o...o..oo-ooc'o..co.t0013_599
?SSND. oooooo eecses 000000 ssceensne 000.900000100'00013-601

?STMAP‘OQ0.00..'.l.‘0.0QO...O..........'OC...COIOOD13—611
?STOM....-o-co-oooconc-oo.oooono.oooooo.oooo.oovoool3—6l7

?SUPROCIQ.OOO'OOQ...o.....0.0..'io..I.c.....'.....013_619

093-000335-00 Licensed Material - Property of Data General Corp.

XV

TABLE OF CONTENTS (Cont.)

Page

CHAPTER 13 SYSTEM CALLS (Cont.)
?SUS oooooooo '!.o.'.cc..oo.'o'n.ooo...n.c'0.0000000013—621

7OUSEReecsestvsecssesssscsscassssssscsnccsssoasssseslld=623
TSYLOGeesesesnsacscsesasvssorsssesessssssssoscssscssssel3=625
TTASKe ettt oeassnsnssocessosesssasasssscoacsssssosnsssl3—627
?TERMecescscenne esecescesssnssesssenssssesessnessssl3=637

?TIDSTAT eeeececesececescossasanssnsnscnssnsssnssseel3=64]
?TLOCKe eeeeescecsoscsssasnsosssasossnnssssssssassssl3d—643
?TPIDeeeeccccsssascscsssssscacsossssssasossssssssssl3—047
T PORT covvsnsssnassossassosscnsscscosasasssscssnnnssl3—649
?TRCONw eevoseassssssssssassssssssssssssassnsonsssssl3d=651

2TRUNCATE e ceeeeccecosocsssaccscassosssssessosansssssssl3—655
TTUNLOCK e e cvessassooccsscsoscesassossasscssssssssssesl3=657
TUBLPReetvstocecsccsssscsssasssscncasssssenasssssssl3=659
TUIDSTAT et vesssssssssssasssonssssassasssoasssnsssssll—661
?UNWINDeeeoss cessesresssrcsnsecsncsecsvsassassesnssssl3=663

TUNWIRE ceerenoassecsssosscscsssssaccssssessannnnsssl3—665
2UPDATE e eeecccsscsccssssoosnossssosscscssoscssssssesl3~667
2VALAD ceveennoeensesocacsnssasnnnnsns secscssvssanessl3~-669
TVCUST eennonsssasceccsnssnsssssassssssssscsannsseeeld=671
2VRCUST e eesveonnsosscnscvososcscncsssssssssansssseneld=673

?WALKBACK..--..........-..................-...-...-13‘675
?wDELAY.-..oooc.aoo..o..t-oooo.o-oo-000-..0..0.000013_677

?WHISTOOQOOoo.ccoooooooo.oooocoQucuco00-0-00000000013_679
?WIRE.......-.....................-...-..........o-13—683
?WTSIGQCCOQC.CCl"...‘...........l..0000.00000000.013-691

?XMTI'.!.l..!.'..........l.l.!..l.l.l..!‘.....000'013—693
?XMTW.......CO.QQI'..Q......0..'0..-...0.........'.13—695

APPENDIX A ERROR CODES-.-..oo..-ooo.o.ooo..ooa.oooooocc-.'oo.olA?l

xvi Licensed Material - Property of Data General Corp. 093-000335-00

5-1

\PT ~ o~
ERNVC I

LIST OF ILLUSTRATIONS

Page

Segments and Their Protection RingSe.eceeesssessesvesee?2=3
Working Sets in MemOTrYeeceessossssevocsssassssnceessl=D
Memory COnteXt.’.......lll...OO.........‘CO‘....Q...Z—IO

Working Sets in MemoOryeeeeeeeccescssccccsssssaccseeeld=l
Process NameSeeeeoessosccscscescssccccsssasossassesal—/
Process Hierarchyseeeeeseesecsscscascescsccssssnnsssssli—9
Sample Process TreCeeceeecssssesssccscecssscssancocssed—12
Ring Structure@eeccececesccsccssscsccosscacsnssosseanssse’d—2]

File Growth SEageSescesescscsesscscscascasnsssnsssoascsld—3
Sample Directory TreCecesssessecsccescsscscssssessash=h
Directory StruCLUTEecsscescessssssossoasossesscsssesd—ll
Initializing a Logical Diskeesssescecccosscossssssaecd—18
Control Point Directories (CPDS)essssessasccscescessd=20

Labels and Data on a Labeled Magnetic Tap€eecsecesse5-26

TaSk StateS|oo"oooonoootoooooo-c-ooocoo-.ooocoo.lco6—11

Structure of IPC Send and Receive HeaderS.cececseses /=6
Structure of Offset ?UIFLcccsescccessscsscscscccsasnesl/—10

?ISEND Logic FlOWChart.....'........................7—17
?IREC LogiC FlOWChart.o..-...................-......7—18

093-000335-00 Licensed Material - Property of Data General Corp.

xvii

LIST OF ILLUSTRATIONS (Cont.)

Figure Page

8-1 Model Customer/Server ConfigurationNe.iiecscecsceenss8=2
8-2 Multilevel Customer/Server Configuration.ceeeeeess..8=3
8 3 Double Connection.......---..-..-...................8—3

9-1 Point-to~Point/Multipoint
Line ConfigurationSeeesesesccesccsssscnsaasad—b

9-2 ?SSND System Call, Initial, Point-to-Point.ceeeecee..9-14
9-3 ?SSND System Call, Continue, Point—-to~Point.eeceee..9-15
9-4 ?SRCV System Call, Initial

and Continue, Point—to=Point.cecsceccccceassd-16
9-5 ?SSND System Call, Multipoint Control Stationess....9-17
9-6 ?SRCV System Call, Multipoint Control Stationeeces..9-18
9-7 ?SRCV System Call, Multipoint

Tributary StatioNeeseccsecsssecsossosssesoessd—19
9-8 ?SEBL System Call, Point—to-Pointesesssssvecossssessd=20
10-1 Device Control Table (DCT)eeeessocescecsosscanseseelO=2
10-2 Structure of Map Definition TableesceesoersescscseeslO=5
12-1 Basic Overlay Area

Equals Size of Largest Overlayeecssseessssesl2=3
12-2 Multiple Overlay Area

(total area = basic Size * 2)ieeeeeeesnsesal2=4
12-3 Passing a Procedure Entry

Descriptor via the StacKessessesesessesscesel2—6
12-4 Resource System Call Stack

after ?RSAVE System Calleeeececoescesccosesel?2=8
12-5 Invalid Returan Address

from ?RCALL System Callucessecesssesecveessl2~9
13-1 Parametric Coding ExXamplececescecssccssassccesncsssslld—4
13-2 Structure of ?7CLOSE Packet.eseescosssccsscessesesssl3=30
13-3 Structure of ?CREATE TPC PacKketeeesessososessosesesll—4l
13-4 Structure of ?CREATE Time BlocKeeeeeoeoossooessoeeslld=43
13-5 Structure of ?CREATE Directory Packel.esececsceceseal3=44
13-6 Structure of ?CREATE Packet for Other

File Types.-.--..................-...o-...-13—46

xviii Licensed Material - Property of Data General Corp. 093-000335-00

LIST OF ILLUSTRATIONS (Cont.)

Figure Page
13-7 Extended Task Definition Packeleeeeeeceeesssceessssl3—82
13-8 Structure of ?ENBRK PacKet.sesseseeeoosnsssesseecseelld=-01
13-9 Error Code Structure in ERMES Fileeeeeeeeeocaeonsssl3-98
13-10 Structure of ?EXEC Packet for Unlabeled

Mount Function ?XFMUNesesssessscoossscnasaeld=107
13~-11 Structure of ?EXEC Extended Packet for

Unlabeled MOUﬂt Function ?XFXUN. s s 00 es e 13"107

13-12 Structure of ?EXEC Packet for Labeled

Mount Function 2XFMLTeceseocssecccsceeassesel3d—108
13-13 Structure of ?EXEC Extended Packet for

Labeled Mount Function ?XFXML.eeeecceossessl3—108
13-14 Structure of ?EXEC Packet for Dismounting

a Tape, ?XFDUNeesceoesocsosncssssasensacessl3d~109
13-15 Structure of ?EXEC Packet for Queue RequestSeeeee..13-111
13-16 Structure of ?EXEC Packet for Holding,

Unholding, or Canceling Queue RequestS.s...13-118
13-17 Structure of ?EXEC Packet

for Status InformatioNeseessessesseescessssal3=119
13-18 Structure of ?FEDFUNC Packet to Change RadiXesesoeosol13-129
13-19 Structure of ?FEDFUNC Packet

to Open Symbol Table Fileueeeeeoeasoaceseeesl3d=130
13-20 Structure of ?FEDFUNC Packet

to Evaluate FED Stringececeesccsssssscsssssl3-130
13-21 Structure of ?FSTAT Unit File Packet.veseesacsceseol3-139
13-22 Structure of ?FSTAT IPC File Packeteessssescssessesl3d—140
13-23 Structure of ?FSTAT Directory File Packetecsssesses13-141
13-24 Structure of ?FSTAT Other File Types Packeteesesess13-142
13-25 ?7SSTS SErUCLUrCeeeseessssescscesvsesssscennssosseseelI=143
13-26 Structure of ?GNFN Packetesceescsescococscassssesealld—182
13-27 Structure of ?GOPEN Packet for IPC FileSeeeeeeesses13-186
13-28 Structure of Standard ?GOPEN Packeteeeessceessseessl3—187
13-29 Standard I/0 Packet for ?READ, ?WRITE,

?0PEN, and 7CLOSE.cccesssessosscasossessessalld—194
13-30 Structure of ?GTMES PacKketececeescessocecacscsosaseselld-208
13-31 Structure of ?GTRUNCATE PacKketeeeeeoescssscsascsocssssl3d=220
13~32 Structure of Device Control Table (DCT)

for 32-Bit ProCESSE€Sescssesccsssssssnsseessl3=234
13-33 Structure of Device Control Table (DCT)

for 16-Bit ProcCesSSeSecesesccesccsscsccasssssesl3=235
13-34 Structure of Map Definition Table..eeessscvsessssesaal3-236

093-000335~-00 Licensed Material - Property of Data General Corp. xix

XX

Licensed Material - Property of Data General Corp.

LIST OF ILLUSTRATIONS (Cont.)

Page

Structure Of ?IHIST Packet.......-..............---13"258
Structure Of ?IREC Headero-nooa'aoco‘o.'o.ooooto--ol3—276

Structure of Offset ?IUFL (User Flag Word)eeeese...13-278
Structure of ?ISEND HeadeTeeseoeesoesvesocnsnsnessel3—284
Structure of 7IS.R HeadeTeseeeceoesesrsososcocsessesel3I=290
Structure of ?LABEL Packeteesosssesscsccoscecsceseseal3—318
?LOGEV Event Logging FOrmatesseesseesssvescesocasesl3=334

Structure of 7MBFC Packetessssscsosscasecssssssssesl3=338
Structure of 7?MBTC Packetsesssssceessssssasscsseensl3=342
Structure of ?0PEN Packeteseesseesesscscssesessonsssl3=359
Sample Delimiter Tableescesesesecacssscccassseeeeeslld=367
Structure of Labeled Magnetic

Tape Packet ExtensSioNeeecesseesecssssssasesl3=370

Structure of ?PMTPF Packetesseescesescccsecscasssesel’=390
Structure of ?PRDB/?PWRB PacKketleeesseseoossocosesssl3=398
Structure of ?PROC Packeteseessesoscsscscoscesesesseel3d=4l3
Structure of ?7PSTAT Packeteeeessccssscosssceccssesesl3=430
Structure of ?PSTAT Memory Descriplolecsccecsssscessl3—-434

Structure of ?RDB/?WRB Packeteeeeeesesseossecesssesl3I=bb6
Structure of ?READ/?WRITE Packeteeescescescseceessslld=456
Structure of Screen Management

Packet EXtensioNesseesssesssccsccesscsossesl3I=463
Structure of Selected Field

Translation Packet ExXtensSioNececesceessecsesl3=467
Selected Field Translation

Packet Sample Listingeeececeseossssossssnceeesl3—469
Structure of ?RNGPR PacKkeleseesessesscsscscsocssaeselld=496
Structure of ?RUNTM PacketeceseessssssssoscsesssssslI=504
Polling List Defined by a Control StatiofNeecesses.ss13-531
Poll and Select Addresses

Defined by a Tributaryececeessesssssseseeesl3d—531
Structure Of ?SEBL Packeleesccesescassssacssssasessl3d=536
Structure of ?SERMSG PacKke€leseecossessocescsnseseasesesll=554
Structure of ?SGES Packeteesesvessessevscessssesesel3=558
Structure of ?7SINFO PacKketesecscecassssscscsscssssselld~566
Structure o0f ?SOPPF Packetleseecscsescessocscsesseeslld=574
Structure of ?SPAGE Packeteevesveseecessssseacscossesl3~578
Structure of ?SRCV Packetececeseeossscsccsssnssssasl3=586
ITB Receive buffer FoOrmatecececssocessescssocsssssesl3~594
Structure of ?SSND Packetaeecssesscovesevssscsscssesl3~602
Structure of Standard Task Definition Packeteeee...13-628

093-000335-00

LIST OF ILLUSTRATIONS (Cont.)

Figure Page
13-71 Stack Parameters for

Initiating One or More TaskSeesesessoeessssl3=631
13-72 Extended Task Definition Packeteeeseescsccesoccensel3d=632
13-73 Structure of ?UIDSTAT Packeteecscscesesascacscscsesl3—662
13-74 Structure of ?WHIST Packeleecieseecesssscessocncseecel3~680

093-000335-00 Licensed Material - Property of Data General Corp. =xxi

LIST OF TABLES

Table Page
2-1 Memory-Management System CallSeeesseoeesansessncesee?2=10
3_1 Process Privileges. S 8 0060000000000 0000t 00TO ® 08 00000 '3_10

4-1 File TypeSeteceeceeeeseorsosssssessscocscnssonscesesshimb
4-2 Filename ConventionSeeeeeeseescoscecsecvosascscnsessl=0
43 Valid Pathname PrefiXeSecsesessscccccceccosssnneeeesdi=l0
4~4 File Access PrivilegeS.escececesccocccecnscnnsnneesohimlb
4-5 Valid ACL TemplateSeeeesesssssccccacscascessseecessoslim16

5-1 File I/0 Operation SeqUeNCesecsseeeseecsssesnnsosses=b
5-2 File Types You Can Create
with the ?0PEN System Calleseeeeseeooecessese5=5

5_3 AOS/‘\,S DEViceS and DeVice NameS.......-......-...o.-s—lo
5—4 Generic Filenames.-...-................-..-..o...-..s-ll
5_5 MOdem FlagSo-.....-.......................--....--.o.5—15

5-6 Control Characters and Their FuncCtionS...eeesssssess5-20
5-7 Control Sequences and Theitr FunctionSeeesecesesescees5=21
5-8 Label Formats and Levels; Files

per Volume Set, Record TypeSeeceecseceesssseser=23

5-9 Types 0f Labels.eeeeeeseceveecnsccconnnnnsossscnssoeed=27
5-10 Contents of VOL1 Volume LabelsSeeeeeeeesossescnsasecesr—28
5-11 Contents of User volume Labels (UVLS)eeeeesvsoocessssd=29
5-12 Contents of HDR]l File Header LabelSeececescescocssss5=30
5-13 Contents of HDR2 File Header LabelSeeeseccesceosssse5=32
5-14 Contents of UHL and UTL User LabelSeeseececscanssesssi=34

093-000335-00 Licensed Material - Property of Data General Corp. xxiii

9-2

10-1
10-2

13-1
13-2
13-3
13~4

13-6
13-7
13-8
13-9

13-10

13-11

13-12
13~13

xxiv

Licensed Material - Property of Data General Corp.

LIST OF TABLES (Cont.)

Page

Structure of IPC Send and Receive Headers.ceseeesees /=7
Contents of System Flag Word (Offset 7ISFL)ceesessss?—8
Process Termination Codes in Offset ?IUFL

for ?7IREC and ?ISEND HeaderSeesessessesssess/—~11
Termination Codes for 16=Bit ProcesseSessesccccsesse/—12
?7TRAP Termination Messages

for 16=Bit ProcessSeSeecsssescscossssscscscsel~13

?7TEXT Code Termination Messages
Sent on 32-Bit Process User Trapescssecsseses /=15

BSC Protocol Data—Link
Control Characters (DLCC)esessooasensassossed=7
BSC Error—Recovel‘y Procedures...- e e ev e s eo st 009""11

Contents of Map Definition Table EntrVeeesoseeeeeses10-6
LEF Mode and Device Access
System Call Functions Summaryeeeccesessessssl0-10

Valid ?CREATE File TypeSecsccsscscscccscssscescseeslld~40
Contents of ?CREATE TIPC Packetleesvscssscessossssosslld=42
Contents of ?CREATE Directory Packet.eecesesseeeesal3d=45
Contents of ?CREATE Packet

for Other File TypeSesseocscesascscssescecsaselld—47
Contents of ?ENBRK Packeteeescseseoeesssscsssccsesel3d~91

Switches for ?ENQUE Specifications String..ceceesees13-94
Flags for EXEC Functions ?XFXUN and ?XFXMLeecoecsssel3~109
Contents of ?EXEC Packet for Queue RequestS.eeeeee.13-112
Contents of ?EXEC Packet for Holding,

Unholding, or Canceling Queue RequestS.¢...13-118
Contents of ?EXEC Packet

for Status InformatioNeecsseccesscesscssseesl3l—=120

Contents of ?FEDFUNC Packet

to Evaluate a FED Stringeccessssesssessesesl3~131
Flags Returned in Offset ?5STSececcecscccesssenncesl3~143
Character Device characteristics WordSeeeseeeeeseesl3=154

093-000335-00

LIST OF TABLES (Cont.)

Table Page
13-14 Commonly Used Device CharacteristicCSesseccssescssssl3d=156
13-15 Contents of 7GNFN Packeteeeeesesesescsasscsencassssl3—182
13-16 Contents of ?GOPEN Packet for IPC FileS.eseeeeseeesl3-186
13-17 Contents of Standard ?GOPEN Packeticececssesssesessl3-187
13-18 Positioning the file Pointer.ceecececsscscssesnseeseasl3—-195
13-19 Contents of ?7GTMES PacKketeeeessseccscscsssessssasssl3=209
13-20 Input Parameters for Offset

?7GREQ (RequesSt TYPES)sesececcccccecosasssssl3=210
13-21 Output from ?GTMES RequeStSeecscesessessssccccsacsssl3=212
13-22 Contents of ?GTRUNCATE Packeteseessesccsessoescssesell—=220
13-23 Contents of Map Definition Tablesceeesseecssesseessl3-237
13-24 Structure of ?IHIST Arrayeceecsesccascsessscccscesal3—259
13-25 Contents of ?7INIT Packeleeesesesessoscscsesossesosesl3~268
13-26 Contents of ?IREC Headereeeeessessessscesssecnsssesl3~277
13-27 Contents of 7ISEND Headereeceesesesescecscscscsnssesl3—284
13-28 Contents of ?TS.R Headereeeessessesosssessossssascessl3=201
13-29 Contents of ?7LABEL Packeteecsesesscssosscscesssasessl3=319
13-30 Contents of ?0PEN Packeteeesesesescevscscossasssessessl3—360
13-31 File Creation Options for Offset 7ISTIesececesssessl13-364
13-32 File Types You Can Create with 70PEN...ccececccessal3=365
13-33 Contents of Labeled Magnetic

Tape Packet ExtensioNeeececesccesseecenssesl3=371
13-34 Contents of ?PMTPF Packeteeescsscescesssvseassssssssssl3-391
13-35 Contents of ?PRDB/?PWRB Packeleesososesosocosssessassl3-399
13-36 ?PRDB/?PWRB Packet: Controller Status WordS.......13-400
13-37 Error Reports Returned in ?PRDB/?PWRB Offsets......13-401
13-38 Contents of ?PROC Packet.eesecscececesasnssssassssslld—4ld
13-39 Privilege bits in Offset ?PPRVecceccesscossosacasesl3=419
13-40 Contents of ?PSTAT Packeleeseecsssssssccccsnsssssesl3~431
13-41 Contents of ?RDB/?WRB Packeleeesccsssesececcsossssssl3—447
13-42 Contents of ?READ/?WRITE Packetesseseoesssevsssasesssl13—-458
13-43 Contents of Screen—-Management Packet Extension.....13-464
13-44 Contents of Selected Field Translation

Packet EXLENSiONeceeseosassscscessssssocssssl3—468
13-45 Contents of ?RNGPR Packetessscsscesssessossscocsssssl3—496
13-46 Character Device Characteristics WordS.eceseeseesessl3-515
13~47 Contents of 7SEBL Packeteececscssesscccsscssssscssssel3—537
13-48 BSC Protocol Data-Link Control

CharaCtErS (DLCC)O!...IO'..l....‘.‘.....00013_539

093-000335-00 Licensed Material ~ Property of Data General Corp. XXV

LIST OF TABLES (Cont.)

Table Page
13-49 Contents of ?SERMSG PacCKelessesessessessccocaesessel3=554
13-50 Contents of ?SGES Packeteeeessesessessescssecsosnesel3~558
13-51 COntentS Of ?SOPPF Packet................-..-...o--13—574
13—52 Contents of ?SPAGE Packet.'...'.........“..‘......13—578
13""53 File—‘POintEr POSition..............................13-582
13_54 Contents of ?SRCV Packet..'....'...................13_587
13—55 Masks Returned on ?SRCV System Calls..n..aoooooaco-13—593
13-56 Contents of ?SSND PacKeteesssescessessosecaneasnsesel3=603
13—57 ?SSND Call Types.....................'............-13—607
13-58 Contents of Standard Task Definition Packet..oes...13-629
13-59 Contents of Extended Task Definition Packete.eeoe...13-633
13"'60 Histogram At‘ray Structure..........-...-.-..-..-...13—681

xxvi Licensed Material - Property of Data General Corp. 093-000335-00

GLOSSARY

Access control list (ACL)
A system-maintained list for each file and directory (for
example, logical disk) that contains the names of users who can

access that file or directory and the types of access to which
they are entitled.

Access privilege
The basis of A0S/VS file access protection. You can be assigned
up to four types of access privileges for files: Execute, Read,

Write, and Owner. for directories, you can be assigned Execute,
Read, Write, Owner, and Append access privileges.

ACL (See "Access control list (ACL)".)

Address space (See "Logical address space".)

Batch job

One or more programs submitted as a unit to batch.

Block

A logical grouping of contiguous words of code in main memory or
on a peripheral storage device. Except for disk blocks, the size
can vary.

Blocked process
One of three process states, in which a process is waiting for a

specific external event to occur so that it can gain control of

the central processor. A process can block itself or become
blocked involuntarily.

093-000335-00 Licensed Material-Property of Data General Corp. Gloss-l

GLOSSARY

Block I/0
One of two input/output modes in which you can access a file.
Information is transferred in 512-byte disk blocks, magnetic tape
blocks, MCA blocks.
A0S/VS always performs I/0 in block units, whether you employ
block or record I/0.

Block length

The number of bytes per block. (See also, "Block".)

Break file

A status file in which A0S/VS, under certain conditions, saves
the state of a terminated process.

Character device
A device that performs I/0 in byte units. CRT consoles and
hard-copy terminals are typical character devices.

CLI (See "Command line interpreter (CLI)".)

Command line interpreter (CLI)
A utility that is the main interface between you and the system.
The CLI accepts your command lines and (among other functions)
translates this input into commands for other utilities, or into
commands that directly perform functions such as file
maintenance.

Connection table

A table in which AOS/VS writes an entry to manage exchanges
between customers and servers.

Control character

A keyboard character that you type while you press the CTRL key.

Gloss~2 Licensed Material-Property of Data General Corp. 093-000335-00

GLOSSARY

Control point directory (CPD)

A directory in an LD that contains two variables: CS, the amount
of space currently allocated; and MS, the maximum amount of space
available in the directory. CPDs allow you to control the
system’s disk space allocation.

Control sequence

A CTRL-C followed by any control character. (See also, "Control
character".)

CPD (See "Control point directory (CPD)".)

Critical region

A procedure or databased shared by all tasks, but available to
only one task at a time.

CS (current space)

The amount of space currently allocated in a CPD. (See also,
"Control point directory (CPD)".)

Data-link control character

A synchronization character mutually recognized by sending and
receiving BSC stations.

Data-sensitive record type

A record type whose records consist of character strings
terminated by one of the default delimiters, NEW LINE, carriage

return, null, or form feed, or terminated by a user—-defined
delimiter.

Dedicated line

A communications line that continuously connects two or more
stations, regardless of the amount of time the line is actually
in use.

093-000335-00 Licensed Material-Property of Data General Corp. Gloss—~3

GLOSSARY

Dedicated pages

Memory pages that AOS/VS reserves for specific purposes,

including physical pages occupied by the resident portion of the
operating system and pages wired to a resident process.

Demand paging

Moving logical pages from the disk to memory as a proces refers
to (demands) those pages.

Device

A hardware peripheral component; each type of device has unique
operating characteristics. Devices are either character-oriented
(send or receive single bytes of data) or block-oriented (send or
receive data in multibyte blocks).

Device independence

The ability of a process to communicate with a device without
regard to the unique nature of the device.

Directory

A file that catalogs files and allows qualified users to access

them. Directories are connected in a structure that resembles an
inverted tree. On this tree, the lower directories are inferior

to the higher directories. Each directory contains an entry for
any directory that is immediately inferior to itself.

Directory entry

A unit of information contained in a directory; a directory can

contain multiple entries. A common type of entry is that which
lists certain information about a file in the directory.

Examples of other types of entries are IPC entries and links.
(See also, "File status".

Disk

A magnetic recording medium (for example, disk pack, disk
cartridge, diskette, fixed-head disk).

Gloss-4 Licensed Material-Property of Data General Corp. 093-000335-00

GLOSSARY

Disk address

The location of a block on a disk. (See also, "Disk block".)

Disk block

The smallest allocatable unit of disk memory, standardized as 512
bytes.

Disk controller

A mechanism that directs the operator of one or more disk units.,.
A program can direct the operation of a disk controller.

Disk controller name

The name of a disk controller, consisting of three letters and
possibly one decimal digit; for example, DPE and DPEl.

Disk drive (See '"Disk unit".

Disk unit

A mechanism that physically reads from and writes to disk.

Disk unit name
The name of a disk unit, consisting of the name of a disk
controller followed by a decimal digit; for example, DPEQ and
DPE1O.

Dormant state

One of four task states, in which a task exists that has not yet
been initiated (made known to the operating system) or that has
terminated execution.

Double connection

A connection in which each process can act as either the customer
or the server of the other, depending on the action to be
performed.

093-000335~-00 Licensed Material~Property of Data General Corp. Gloss-5

GLOSSARY

Dynamic record type

A record type in which you specify the record length when you
read or write.

Eligible process

A process that has been allocated main memory, which allows it to
compete for control of the CPU with other such processes, based

on its proces type and its priority. (This is oue of three
process states.)

Error code

A 32-bit unsigned value that AOS/VS returns in ACO to indicate an
exceptional condition. (This exceptional condition may or may
not indicate an actual error.) Each error code has a text string
associated with it. (See the description of the ?ERMSG system
call for information on getting the text string associated with a
particular error code.)

Exceptional condition code (See "Error code".

Executable file
A binary memory-image file that you can read into main memory
from a peripheral storage device for exection; a program that can
run,

Executable task
A task that has control of the CPU. Only one task at a time can
be executing. (This is one of four task states.)

File
A collection of related data treated as a unit. A file can

contain up to 2**32 bytes of data. Disk and magnetic tape can
contain one or more files.

Gloss-6 Licensed Material-Property of Data General Corp. 093-000335-00

GLOSSARY

File element
The basic unit of storage in the A0S/VS disk file organization.
Each file element consists of one or more contiguous blocks. You
specify file element size when a file is first created. 1If a
file grows, it grows in units of the file element size.

File status
A collection of information about each file. This information
includes the file size, time of creation, and other details.

File system (See "Hierarchical file system".)

Filename
An alphanumeric file identifier. All filenames in a single

directory must be unique, and each can contain no more than 31
characters.

Fixed-length record type
A record type in which you specify a predefined, common record
length.

Form name
The name of a file in the :UTIL:FORMS directory, which was

created with the CLI Forms Control Utility (FCU). The form name
must contain from 1 through 31 legal filename characters.

Gate

An entry point to code in an inner ring.

Global port number

A number made up of a port’s PID, ring number, and local port
number, which uniquely identifies that port systemwide.

093-000335-00 Licensed Material-Property of Data General Corp. Gloss—7

GLOSSARY

Global server
A separate process that performs functions on behalf of a
customer process. (The servers that are described in Chapter 8
are global servers.)

Hierarchical file system
The inverted tree structure in which A0S/VS organizes files and
directories. The highest directory in the hierarchy is the
system root, which points to inferior directories; these, in

turn, point to inferior directories. Any process with proper
privileges can access any file within any directory.

High-order bits

The 16 most significant bits in a 32-bit value; that is, Bits 0
through 15.

Histogram

A data array that provides a global view of CPU activity.

Index

A single block that lists the address of each file element.

Ineligible process

An process that has not been allocated main memory, but in all
other ways is ready to run. (This is one of thre process
states.)

Initial task

The first task that executes in a process. A0S/VS assigns the
initial task TID 1, priority 0.

Interprocess communication facility (IPC)
A generalized AOS/VS facility that sends free-format messages of

any length between any two processes. IPC messages are sent
between ports (See also, "Port".)

Gloss—-8 Licensed Material-Property of Data General Corp. 093-000335-00

GLOSSARY

IPC (See "Interprocess communication facility (IPC)".)

Jobname

A name that identifies a batch job. A jobname must contain from
1 through 31 legal filename characters.

An abbreviation for the decimal number 1024. Thus, 32K bytes of
memory are 32,768 bytes.

Keyword switch

A two—part switch of the following form: /keyword=value. TFor
example, /L=filename is a keyword switch.

Kill-processing routine

A user—-defined routine that guarantees an orderly release of a
task’s user—related resources.

LD (See "Logical disk (LD)".)

LEF mode
The CPU state that protects the system’s I/0 devices from
unauthorized access. 1I/0 instructions and LEF instructions use
the same bit patterns. A0S/VS determines how to interpret these

instructions by checking the state of LEF mode and the state of
I1/0 mode. (LEF mode and I/0 mode are mutually exclusive states.)

Link entry

A file that contains a pathname to another file.

Link-to-link reference

A link entry that is another link entry.

Load effective address mode (See "LEF mode".

093-000335-00 Licensed Material-Property of Data General Corp. Gloss-9

GLOSSARY

Local root
A single directory that acts as the foundation for a directory
structure on a logical disk.

Local server

A server that shares the same logical address space as its
customer. (Local servers caan be loaded into the inner rings of

your process.)
Locality of reference

Clustering instructions and data by writing code in modular
pieces.

Logical address space
The entire range of locations that a process can address. A

process’s user-visible logical address space can be up to 512
megabytes for each ring.

Logical context

The total pages available to you (the user), including shared,
unshared, and unused pages.

Logical disk (LD)

One or more physical disk units that you want to consider as a
single logical unit.

Logical disk address

The location of a logical block on a logical disk. The address
must include a disk pointer and a disk address to access the
block.

Logical disk name

The filename of a logical disk’s root directory.

Gloss~10 Licensed Material-Property of Data General Corp. 093-000335-00

GLOSSARY

Low-order bits
The 16 least significant bits in a 32-bit value; that is, Bits 16
through 31.

LRU chain
A list of released shared pages arranged in least recently used
(LRU) order.

Main memory (physical)
Core or semiconductor storage, which contains computer
instructions or data.

Master LD
A logical disk (LD) whose root becomes the system root
(identified by a colon (:)). You must select the master LD.

MCA (See '"Multiprocessor communications adaptor (MCA)".)

Modem
A communications device that translates analog signals to digital
signals, and vice versa, over telephone lines.

MS (maximum space)
The maximum amount of space avilable in a CPD. (See also,
"Control point directory (CPD)".)

Multidrop line

See Multipoint line.
Multilevel connection

A process that acts as both a server and a customer in a
customer/server relationship.

093-000335-00 Licensed Material-Property of Data General Corp. Gloss-11

GLOSSARY

Multipoint line

One of the two types of BSC line configurations (the other type
is point-to-point). There is no contention between stations on a
multipoint line.

Multiprocessor communications adaptor (MCA)

A device that permits communcation between two Data General
central processors using the processors’ data channels.

Multiprogramming
The ability to run an arbitrary number of independent processes.
The system allocates its resources among these processes based on
their priorities, types, or certain software events.

Multitasking process

A process in which more than one task is currently active.

Obituary message

A zero-length IPC message that is sent when a customer or a
server disconnects. (Obituary messages use the IPC system
calls.) (See also, "Obituary notice".

Obituary notice
A signal that is sent when a customer or a server disconnects.
(Obituary notices use the ?SIGNL, ?WISIG, and SIGWT system
calls.) (See also, "Obituary message".)

Objecf code

Code, counsisting of 32-bit instruction words and data words,
which has been assembled or compiled from a source code file but

not yet bound with other modules by the Link utility to make an
executable program.

Object code file
A file containing object code, usually created by the

Macroassembler or one of several high-level language compilers
and having a filename ending in ".0B".

Gloss-12 Licensed Material-Property of Data General Corp. 093-000335-00

oA

GLOSSARY

Overlay (Not used by AOS/VS)

A portion of a larger program that can be brought into main
memory when it is needed.

Overlay area (Not used by A0S/VS)

A fixed-length storage area in a program in which different

overlays can be read at different times while a program is
executing.

Packet

A group of words in your address space that A0S/VS uses to get
your input specifications and/or return output values. Many
system calls require a packet.

Page

Memory storage area of 2K (2048) bytes, starting on a 2K-byte
boundary.

Page fault

A reference to a page that is not currently in the working set.

Parameter packet (See "Packet".)

Parametric code
Code in which system call packet offsets are cited by their
mnemonic names, regardless of how the offsets are ordered in the
packet figures.

Pathname
A name that identifies the location of a file within the system’s
files. A pathname may be a filename, or an optional list of
directories followed by the file’s name.

Physical disk

Same as disk.,

093-000335-00 Licensed Material-Property of Data General Corp. Gloss~13

GLOSSARY

PID (See "Process identifier (PID)".)

PID 2
The initial operator process (See also, "Process identifier
(PID)".)

PID/ring tandem
Process identifier (PID)/ring~within-PID ordered pair. The

connection management facility uses PID/ring tandems to identify
all connectioans.

Point-to-point line
One of the two types of BSC line configurations (the other type
is multipoint). Each station must bid for a point-to-point line.

Polling list
A series of contiguous words that contains each BSC tributary’s
poll address and device address.

Port
A data path to or from a process. The IPC facility sends
messages between ports, which are full-duplex and can therefore
send and receive data simultaneously. Each port is assigned a
unique number (see also, "Interprocess communication facility
(Iec)".)

Port numbers
The identification mechanism that allows two processes to send
and receive messages via the IPC facility. The system maintains
a directory of process numbers and associated port numbers.

Pre-emptible process

A process that the scheduler treats as a high-priority swappable
process. (See also, '"Swappable process".)

Gloss~14 Licensed Material-Property of Data General Corp. 093-000335-00

GLOSSARY

Priority numbers
Values in the range from O (the highest priority) to 255 (the
lowest priority) that determine the order in which tasks or
processes execute.

Process
An executing set of segment images, plus all of the system
resources that the process image needs to execute. (A process 1is
a dynamic eantity.) (See the definition of "Process image"
below.)

Process identifier (PID)

A number from 1 through 32 that you assign to identify each
process.

Process image
A union of user segment images and of system segment images. (A
process image is a static entity.) (See also, "Segment image".

Process name
A character string consisting of a username and a simple process
name, with a colon (:) separating the two elements. AOS/VS uses
process names and PIDs to identify each process.

Process priority
One of the factors that governs how the system allocates CPU time
to a process. More than one process can have the same priority.
(See also, "Priority number".

Process state
One of the factors that A0S/VS considers to determine the order
in which it executes processes.

Process type

Process type governs when and for how long a process acquires
main memory. The three process types are: resident,
pre~emptible, and swappable.

093-000335-00 Licensed Material-Property of Data General Corp. Gloss-15

GLOSSARY

Program

The current executable contents of a process’s address space. A
program contains the code paths executed by tasks. A process

contains only one program at any given time; but during the
execution of a process the current program may change many times.

Program file

A segment image linked for any one ring. (See also, "Segment
image".

Resident process

A process that always remains in memory somewhere. (See also,
"Swappable process'" and "Pre-emptible process".)

Ring maximization

A protection scheme in which AOS/VS considers a task that is
executing in a user ring to be less privileged than another task
that is executing in a lower user ring. AOS/VS uses ring
maximization to validate user-supplied channels, word pointers,
or byte pointers for system calls. (See also, "Ring
specification.")

Ring specification
A protection scheme in which AOS/VS protects tasks executing in
one user ring from interference by tasks executing in any other
user rings. The connection management and IPC facilities use
ring specification as their protection scheme.
Root process
The most superior process in the system hierarchy. All system
processes and the initial process are sons of the root process.
Scalar notation
A time or date notation in which the current time equals the
number of biseconds that have elapsed since midnight, and in

which the date equal the number of days that have elapsed since
31 December 1967.

Gloss-16 Licensed Material-Property of Data General Corp. 093-000335-00

GLOSSARY

Search list

A list of directories that AOS/VS searches if it fails to find a
specified file in your working directory. Each process has its
own search list.

Segment
One of eight independent 512-megabyte units connected by strict
protocols that make up your logical address space (See also,
"Logical address space".

Segment image
A .PR file that AOS/VS has made part of a process’s logical
address space. (A segment image is a static entity.)

Shared library (See '"Shared routine facility".)

Shared page
A page in your logical address space that more than one process
can access. Shared pages are usually write-protected to prevent
overwriting.

Shared routine facility
The facility whereby A0S/VS implicitly calls one or more library
routines on disk into main memory areas in page iancrements;
processes share these.

Source code
Code, consisting of byte-packed words of ASCII characters, which
can be converted by an assembler or compiler into object code.
Usually, you compose source code.

Source code file

A file that contains source code. Usually you use the CLI or a
text editor under AOS/VS to create source code.

093-000335~-00 Licensed Material-Property of Data General Corp. Gloss-=17

GLOSSARY

Stack
A block of consecutive memory locations set aside for

task-specific information. (Every task that uses system calls
must have a unique stack.) (See also, "Wide stack".)

Stack base

The starting address of a stack.

Stack fault handler

A routine that gains control when there is a stack error.

Station

The origin (sender) or destination (receiver) of data over a BSC
line.

Swappable process
A process that is swapped into memory and written out to disk at
the discretion of the scheduler. Swappable processes have the

lowest priority of the three process types; they acquire memory

only after the scheduler has satisfied all resident and
pre—emptible processes.

Swapping
A procedure whereby AOS(VS writes a process out to disk and then
reassigns the main memory occupied by that process to another

process that is waiting to run. This procedure is invisible to
the process.

Switched line

A communications line on which you use a dialing procedure to
establish a connection between local and remote stations.

System call

A request to the operating system to act on your behalf.

Gloss—~18 Licensed Material-Property of Data General Corp. 093-000335-00

GLOSSARY

System generation

The process of tailoring A0S/VS to the particular hardware
configuration and application environment at your installation.

Task
A path through a process. A task is an asynchronously
controllable entity to which the CPU is allocated for a specific

time. A task can only execute code within the bounds of the
address space allocated to its process.

Task call (See "System call'.)

Task control block (TCB)
A block of data maintained by AOS/VS that coatains a memory image
of the CPU registers and other context data for each task.

Task identifier (TID)
A user-specified number in the range from 1 through 32 that
identifies a task within a particular process. (See also,
"Unique task identifier (TID)".)

Task priority
Governs which is the executing task within a process. The
executing task is always the highest priority task ready to run
in the process with control of the central processor.

Task states
A task in a process exists in one of four states: dormant,
ready, suspended, or executing.

TCB (See "Task control block (TCB)".)

Template
Certain charaters to be matched, plus one or more expansion

operator characters that allow specified parts of the template to
accept any character as legal.

093-000335-00 Licensed Material-Property of Data General Corp. Gloss-~19

GLOSSARY

Tick

A real-time clock pulse.

TID (See "Task identifier (TID).")

Time-out value
The length of time AOS/VS will wait for a response from the
target device before it takes an error return or begins
error-recovery procedures. The shortest possible time-out value
is 2 seconds.

Timesharing
A multiprogramming scheme in which processes share the CPU on a
timed basis; that is, a process takes control of the CPU for a
unit of time called a time slice. When this time slice expires,
control goes to the next process that is waiting. 1In this way,
no process monopolizes the CPU.

Trapping

Encountering a hardware fault.

Undedicated pages

Pages that AOS/VS can assign to a process as it requires them.

Unique task identifier (TID)

A system—assigned number that uniquely identifies each task,
system-wide. (See also, "Task identifier (TID)".)

Unshared page

A page in your logical address space that oaly one process can
access. Unshared pages cannot be write-protected.

Gloss-20 Licensed Material-Property of Data General Corp. 093-000335-00

GLOSSARY

Unused page
A page in your logical addres space that is neither shared nor
unshared. (See Chapter 3 for information on the relationships

among shared, unshared, and unused pages in a typical logical
context.)

Variable-length record type
A record type whose records have a 4-byte ASCII header that

specifies their byte length. Files that contains records of
varying lengths have the variable-length record type.

Wide stack

A 32-bit stack. (See also, "Stack".)

Wired pages

Pages that are permanently bound to the working set.

Word

A 32-bit (2-byte) location of memory.

Working directory

A process’s reference point in the overall directory structure
and its starting point for file access. Any directory can be a
working directory, as long as you have proper access to it.

Working set

The subset of each process’s logical address space that is memory
resident. The working set of a process changes in size and
content as the process references pages and then stops
referencing them.

093-000335-00 Licensed Material-Property of Data General Corp. Gloss-21

CHAPTER 1
INTRODUCTION TO AOS/VS

A0OS/VS (Advanced Operating System/Virtual Storage) is a 32-bit,
demand-paged, virtual-memory operating system that runs on Data
General’s ECLIPSE® Mv/Family of machines.

A0S/VS combines the flexibility and coanvenience of minicomputer
architecture with the processing power of a large mainframe computer.
Because of its 32-bit addressing capability, its multiuser and
multiprogramming support, and its compatibility with existing Data
General software, AOS/VS is uniquely suited to both commercial and
scientific applications. Specifically, A0OS/VS provides you with the
following:

o A logical address space of up to 2048 megabytes per process

o Virtual memory management

o Sophisticated process~protection schemes

o Support for concurrent 16— and 32-bit programs

o Compatibility with the Advanced Operating System (AO0S)

o A wide range of system and applications utilities

o) High-level language support

o Full functional support for inner rings

Full functional support for the inner rings allows you to write

multitasked programs that will execute in more than one user ring

(the user rings are Rings 4 through 7). Specifically, full

functional support for the inner rings provides you with the

following advantages:

o Improved software performance
You can take better advantage of the large logical address space
of the MV-series hardware by using the inner user rings to create
local servers. (Local servers are servers that share the same

logical address space as their customers. You can load a local
server into the inner rings of a process.)

093-000335-00 Licensed Material - Property of Data General Corp.

1-1

CHAPTER 1 - INTRODUCTION TO AOS/VS

Local servers are faster than global servers because they do not ~\4/
need to use the interprocess communications (IPC) facility system

calls or the ?MFBC and ?MIBC system calls to move data between

customer and server. Instead, because a local server resides in

the same logical address space as its customer, local servers can

use MV-series hardware instructions to perform identical

synchronization and data movement.

0 Improved accounting

When you use the inner rings to implement local servers, the
server becomes part of the logical address space of the process
that uses it. Therefore, the server is no longer a separate
process. A local server’s use of resources is accounted for by
A0S/VS as part of the resources used by the customer’s process.

o Larger logical address space

By using the inner rings, you can expand your logical address
space from 512 megabytes (the capacity of one user ring) to 2048
megabytes (the capacity of the four user rings).

Virtual Memory

Virtual memory allows you to run programs that are larger than the
physical memory configuration of your system. With virtual memory,
A0S/VS can move the active portions of a program from disk to
memory while the program is executing. Then, when the system needs
more memory, AOS/VS returns the inactive portions of the program to

disk. This process of moving portions of the program in and out of
memory is called demand paging.

The portion of an executing program (called a process) that is in
physical memory at any given time is its working set. The size of
each process’s working set changes as the demands of the process
change. A0S/VS determines the working set size by examining the
number of pages the process currently needs as well as its history of
page faults.

Page faults are references to memory locations that are not currently
in physical memory. When a page fault occurs, the A0S/VS demand-

paging mechanism moves the page that is needed from disk into
physical memory.

A0S/VS allocates a large working set to a process that has a history

of many page faults. Therefore, to run your system as efficiently as
possible, you must reduce the number of page faults. To do this,

1-2 Licensed Material - Property of Data General Corp. 093-000335-00

CHAPTER 1 - INTRODUCTION TO AOS/VS

write your code in modules that cluster the instructions and data
together as closely as possible. (See Chapter 13 for information on
writing modular code.) The fewer page faults your process causes,
the smaller and more stable is its working set. However, some page
faults are unavoidable.

Ring Structure

The entire range of memory locations that a process can address is
called its logical address space. The logical address space is
divided into eight 512-megabyte units called segments. Although
these segments are connected by strict protocols, they are
independent of one another. Therefore, A0S/VS can use each segment
for a different function. This makes your virtual memory system very
efficient and reliable.

Each segment is protected by a ring that is permanently bound to that
segment. Thus, Ring 0 (the innermost ring) protects Segment 0, Ring
1 protects Segment 1, and so forth through Ring 7 (the outermost
ring) and Segment 7.

These rings prevent segments from interfering with one another, even
though each segment may be performing a different function. If a
program that is executing in one segment needs to change or access
the contents of another segment, it must follow strict protocols
established by the rings. (The system follows these protocols
without your knowledge.)

The eight segments (and their rings) are arranged hierarchically.
Segment 0 has the greatest ability to change or access the contents
of other segments, and Segment 7 has the least. Similarly, Ring 0
gives Segment 0 the greatest protection from interference by other
segments, and Ring 7 gives Segment 7 the least protection.

Segments O through 3 contain the AOS/VS operating system. Segments 4
through 7 contain user programs. Because the user programs and the
AOS/VS operating system share the single large logical address space,
context switching is unnecessary. 1In fact, system calls and calls to
routines that are in another segment become subroutine calls. This
means that when you issue a system call, there is no need for AOS/VS
to change contexts. AOS/VS does take part, however, in the execution
of most system calls.

Ordinarily, a segment can only change or access the contents of
segments whose segment and ring numbers are higher than or equal to
its own segment and ring number. For example, the rings will not
allow a program that is executing in Segment 4 to access the contents
of Segments O through 3, but they would allow that same process to
access Segments 4 through 7.

093-000335-00 Licensed Material - Property of Data General Corp. 1-3

CHAPTER 1 - INTRODUCTION TO A0S/VS

With a subroutine call, however, a segment whose segment number is
higher than or equal to the target segment can access the segment in
which the subroutine actually resides. In this case, the ring that
protects the target segment allows the subroutine call to pass
through a gate. This gate points to the starting location of the
subroutine.

Although you cannot make a cross-ring subroutine call directly to the
starting location of the subroutine, you can return directly from the
subroutine. Subroutine returns do not have to pass through gates.

In fact, the only restriction on subroutine returns is that they must

originate from a segment whose number is lower than or equal to the
target segment.

Refer to the “Principles of Operation ECLIPSE 32-Bit Systems’ manual
for information on the hardware instructions that allow you to define
gates and reference code in the outer rings.

AOS Compatibility

You can execute both 32-bit and 16-bit programs concurrently under
AOS/VS. 1In addition, AOS/VS is compatible with AOS. In most cases,
you need only relink AOS-written programs to execute them under
A0S/VS; however, you may also need to reassemble or recompile,
depending on your program.

Your AOS/VS system’s compatibility with AOS extends to the file
structure, magnetic-tape formats, and peripheral devices. You can
transport disk files and tapes developed under A0S to A0S/VS without
rewriting them. In addition, 16-bit device drivers written under
AOS/VS can coexist with their 32-bit counterparts.

Overlays are not necessary for 32-bit programs, and therefore, are
not supported for them. However, AOS/VS does support overlays for
16~-bit programs.

Certain system databases, such as task control blocks (TCBs) and the
user status table (UST) are in the system’s address space. Thus, AOS
programs that manipulate these databases without using task system

calls need modification. AOS/VS does provide each program with a
copy of the program’s UST, but for reading purposes only.

The A0S/VS system calls use 32-bit packets. If your AOS assembly
language program uses the appropriate mnemonics for the packet
offsets, you need only reassemble them with the new 16-bit parameter
file (PARU.16) and relink them to run under AOS/VS.

1-4 Licensed Material - Property of Data General Corp. 093-000335-00

CHAPTER 1 - INTRODUCTION TO AQS/VS

Previously, this manual defined a process as: "A program file
executing under the operating system, plus all of that program’s
system resources." For the purposes of inner-ring management ,
however, the term 'process'" is not precise enough, nor are some of
the other common AOS/VS terms. Therefore, in this manual, we use the
following terms:

o Segment image

A .PR file that AOS/VS has made part of a process’s logical
address space. (A segment image is a static entity.)

o Process image

A union of user segment images and of system segment images.
(A process image is a static entity.)

o Program file
A segment image linked for any one ring.

o] Process
An executing set of segment images, plus all of the system
resources that the process image needs to execute. (A
process is a dynamic entity.)

o Task

An asynchronous flow of control within a process. (A task is
a dynamic entity.)

o) Global server

A separate process that performs functions on behalf of a
customer process.

o Local server
A server that shares the same logical address space as its
customer. (Local servers can be loaded into the inner rings

of your process.)

For a complete list of AOS/VS definitions, see the "Glossary" in this
manual.

093-000335-00 Licensed Material - Property of Data General Corp. 1-5

CHAPTER 1 - INTRODUCTION TO AOS/VS

System Calls

AOS/VS supports a wide variety of system calls. System calls are
command macros that call on predefined system routines. There are

various categories of system calls, which allow you to do the
following:

o) Create and manage processes.

o} Manage the logical address space.

o] Establish interprocess communications.

o Create and maintain disk files and directories.

o} Perform file input and output.

o Create and manage a multitasking environment.

o) Define and access user devices.

o Establish binary synchronous communications.

o Establish customer/server connections between processes.

o Perform input and output in blocks, rather than in records or
lines.

This manual groups the system calls into functional categories, with

a chapter that describes each category. The individual system call
descriptions are arranged alphabetically in Chapter 13.

End of Chapter

1-6 Licensed Material - Property of Data General Corp. 093-000335-00

CHAPTER 2
MEMORY

?ESFF
?7GMEM
?GSHPT

?LMAP
7MEM

MEMI

?PMTPF
?RPAGE

?SCLOSE
?SOPEN

?SOPPF

?SPAGE
?SSHPT

The memory-management system calls are:

Flushes shared file memory pages to disk.

Returns the curreat number of undedicated pages.
Lists the current size of the shared partition.
Maps a lower ring.

Lists the current unshared memory parameters.
Changes the number of unshared memory pages.
Permits access to an open, protected shared file,
Releases a shared page and decrements its use
count.

Closes a shared file.
Opens a shared file.

Opens a protected shared file.
Reads a shared page and incremeats its use count.
Establishes a new shared partition size.

This chapter describes how memory is organized under AOS/VS and how

each process can manipulate its own logical context.

To understand this chapter, you must be familiar with the following

terms and what they mean to A0S/VS:

o Logical context

Logical context refers to the total pages available to you (the

user), including shared, unshared, and unused pages.

o Logical address space

Logical address space is the entire range of locations that a

process can address. A process’s user-visible logical address

space can be up to 512 megabytes for each user ring.

093-000335-00

Licensed Material - Property of Data General Corp.

CHAPTER 2 - MEMORY

o Shared page

A shared page is a memory-resident page in your logical address
space that more than one process can access. Shared pages are
usually write-protected to prevent overwriting. (See "Shared
Pages" in this chapter for more information on shared pages.)

o Unshared page

An unshared page is a page in your logical address space that
only one process can access. Unshared pages cannot be
write-protected. (See "User Context" in this chapter for more
information on the relationships among shared, unshared, and
unused pages in a typical logical context.)

o Unused page

An unused page is a page in your logical address space that is
neither shared nor unshared. (See "User Context" in this chapter
for more information on the relationships among shared, unshared,
and unused pages in a typical logical context.)

o Working set

Working set is the subset of each process’s logical address space
that is memory resident. The working set of a process changes in
size and content as the process references pages and then stops
referencing them.

Ring Structure

The system’s logical address space is divided into eight units of 512
megabytes each, which are called segments. Although these segments
are independent, they are connected by clearly defined protocols that
allow AO0S/VS to use each segment for a differeat function.

The software modularity that the segments provide means that there
must be protection mechanisms. To this end, A0S/VS provides hardware
protection rings, which maintain the necessary independence or
interdependence of the different software modules. If a program that
is executing in one segment needs to alter or access the coatents of
another segment, the program must follow protocols established by the
rings.

2-2 Licensed Material - Property of Data General Corp. 093-000335~-00

CHAPTER 2 - MEMORY

There are eight rings, Ring 0 (the innermost ring) through Ring 7
(the outermost ring), which surround and protect each segment. 1In
turn, each segment is permanently bound to a particular ring. Thus,
Ring 0 is bound to and protects Segment 0. Similarly, Ring 1 is
bound to and protects Segment 1, and so forth through Ring 7 and
Segment 7. (See Figure 2-1.)

The eight segments (with their associated rings) are hierarchically
arranged: Segment 0 has the greatest ability to alter or access

the contents of other segments and is afforded the greatest
protection by Ring O. Segment 7 has the least ability to alter or
access other segments and is afforded the least protection by Ring 7.

Therefore, Segment 0 contains the kernel of the AOS/VS operating
system, while Segment 7 is reserved for user programs. AO0S/VS uses

the other segments for various system or user functions. Rings 0
through 3 are the system rings, while Rings 4 through 7 are the user
rings. (In the future, however, Rings 4 and 5 may contain Data |
General-supplied software.) |

[11111111111111/Segment 3////11/1/1111111]

l '// '::::::;::::::::Rlng 2============= //l I
VWL v/l111111717Segment 2///////////II i
11// 11/ |=========Ring l========| /[/|]| [//]]
VYRRV II//////Segment v/ ey 1
11/ 11/ 1t/] 1====Ring O===1| //1| //11 //1]

LU/ 0/l e/l vl nn i vy v e 10
[W// 1177 117/ 11/Segment O/11 /71 /111 /]t
/7 vi/lonl/l ||///////////|| /v v

L/ 1V N m=ss==s======] [[1| [[1] /]]]
etc. |1// II/////////////////////II /111 etc.
II// I=======================‘ //'I

Figure 2-1. Segments and Their Protection Rings

Ring 7, which has a maximum logical size of 512 megabytes, is the
default user ring. However, you can load a program file into one of
the other user rings by issuing the ?RINGLD system call. (See
Chapter 3 for more information on rings and the ?RINGLD system call.)

093-000335-00 Licensed Material - Property of Data General Corp. 2=-3

CHAPTER 2 ~ MEMORY

2-4

If you are a privileged user, you can use the ?LMAP system call to
monitor the kernel in Ring 0, provided the caller is a resident
process and Superprocess mode is turned on. (See Chapter 3 for
information on process types and Superprocess mode.)

Demand Paging

AOS/VS is a demand-paged, virtual-memory operating system. Demand
paging is the AOS/VS method of moving logical pages from the disk to
memory as the process '"demands" (refers to) those pages. As A0OS/VS
moves pages into memory, it can free memory pages to accommodate the
new entries.

At any given time, only a subset of each process’s logical address
space is in memory. This subset, which is called the working set,
changes in size and content as the process references pages.

Every process starts with a working set large enough to accommodate
Page O (the first 2K bytes of the logical address space) and the
program counter (PC) page. The PC points to the current control
point in a program.

The rest of the logical address space -- the pages outside the
working set -— is virtual address space. Figure 2-2 shows the
working sets and virtual address space of several processes.

Shared and Unshared Memory Pages

There are two kinds of memory pages:
o Shared pages

Shared pages are memory-resident pages that may or may not be
initialized. When the use count of an initialized
memory-resident shared page is 0, the shared page stays in
memory. However, when the use count of a non—initialized

memory-resident shared page is 0, AOS/VS releases the shared page
from memory to the free memory chain.

o Unshared Pages (See "User Context" in this chapter.)

Unshared pages are pages in your logical address space that only
one process can access. You cannot write-protect uanshared pages.

Licensed Material - Property of Data General Corp. 093-000335-00

CHAPTER 2 - MEMORY

Initial Working Set for Process A | Process A |
| I
! i
| |
| Physical] | |
| Memory AN |
I I\ !
| \
! I\
[I\

Working Set

Working Set after Process A demands pages | Process A |
I I
I I
I I
| Physical | |]
| Memory ! A
I I \]
I \
I '\
! I\

Working Set

Working Sets for Processes A, B, and C ! Proc A |
I |
I \
Shared Pages] \ |
\ | Physical | Y
\ Memory i ! \
I\ i I N
| | N I \
| ! AN | | Virtual
| | |1 [| Address
|/ I I Space
1/ I i /
/ Proc B | | |
/1 |___| Proc C|
/ I |

/

Virtual Address Space

Figure 2-2. Working Sets in Memory

093-000335-00 Licensed Material - Property of Data General Corp. 2-5

CHAPTER 2 - MEMORY

You can conserve memory by using shared pages, because they allow
more than one process to use the same re-entrant code or data. Also,
shared pages reduce disk I/0, because AOS/VS does not immediately
swap them to disk when a process releases them. Instead, it retains
shared pages in a cache-like collection in memory for other processes
to use.

If a shared page is not currently in use, AOS/VS places it on an LRU
chain. An LRU chain is a list of released shared pages, which is
arranged in least recently used (LRU) order. The shared pages on the
LRU chain are candidates for re-use by a process of any type (that
is, resident, pre-emptible, and swappable).

The ?SPAGE system call reads one or more contiguous pages of a disk
file into the shared area of the caller’s logical address space. Its
complement, the ?RPAGE system call, releases one or more shared pages
from the caller’s logical address space, but may retain them in
memory.

When you issue the ?RPAGE system call, A0S/VS does not immediately
release the shared page from memory. If you modified the page and,
therefore, want to release and update it immediately, you must issue
either a ?FLUSH system call or a modified version of the ?RPAGE
system call, which implies a ?FLUSH system call. The ?FLUSH system
call writes the updated contents of a shared page or pages to disk.

Before you can use the ?SPAGE, ?RPAGE, or ?FLUSH system calls, you
must use the ?SOPEN system call to open the target file for shared
access. A file opened this way is called a shared file. The ?SOPEN
system call gives you the option of opening your shared file for

Read-only access. To close a shared file, you must issue the ?SCLOSE
system call.

There are three ways to use shared memory pages:

o Explicitly, by using the shared-page system calls, such as
?SSHPT, ?SOPEN, ?SPAGE, and so forth

o} Implicitly, by defining a shared area with assembly language
pseudo—-ops

o By opening a file for shared access with a special form of the
?0PEN system call

The .NREL and .PART pseudo-ops allow you to define shared areas in an
assembly language program. The .NREL pseudo-op directs the
macroassembler (MASM) to place the code or data that comes after it
into one of the predefined NREL (normal relocatable) memory
partitions. To specify which partition you want, use the appropriate
nonzero argument with the pseudo-op.

2-6 Licensed Material - Property of Data General Corp. 093-000335-090

CHAPTER 2 - MEMORY

For example, the statement .NREL 5 tells MASM to place all subsequent
source statements in the predefined shared-data partition. The
statements .NREL 1 and .NREL 7 tell MASM to place all subsequent
source statements in the predefined shared~code partition.

To define your own partitions in NREL memory, use the .PART
pseudo—-op. This pseudo-op allows you to define a variety of
attributes (characteristics) for the partition, including whether it
is part of shared or unshared memory.

When you link your source code, the Link utility uses your .NREL and
.PART specifications to create shared (and unshared) partitions in
the final program file. The shared areas become part of the logical
address space of any process that uses the program file.

For information on using the ?0PEN system call for page sharing, see
Chapter 5.

A set of common local servers can use shared memory files to coordinate
access to a common resource. Each local server that wants to share the

memory must first open and then read from or write to the same shared
file.

Inner-ring servers may need to limit access to their shared files.
They may not want any segments other than themselves to have access
to their shared memory. However, the access control list (ACL)
protection mechanism cannot protect a local server, because all
segments within a process share the same username. The ?SOPPF and
the ?PMTPF system calls permit a more private form of protecting
shared files.

You can use the ?S0PPF system call to open a shared file in a
protected manner. Once a shared file has been opened in a protected
manner, the opener can issue the usual shared-page system calls, just
as if the channel were opened by a ?SOPEN system call. To close a
shared file, whether or not it was opened in a protected manner, you
can use the ?SCLOSE system call.

The first ?SOPPF system call behaves differently than subsequent
?SOPPF system call opens of the same shared file that you want to
open in a shared manner. (See the individual system call description

of the ?SOPPF system call for more information on the difference
between first and subsequent opens.)

093-000335~00 Licensed Material - Property of Data General Corp. 2-7

CHAPTER 2 - MEMORY

After a segment image uses the ?SOPPF system call to open a protected
shared file for the first time, that segment image is called the
"first opener" of the file. The first opener of a protected shared
file can use the ?PMTPF system call to permit other segment images to
access the file. The ?PMIPF caller also ianforms AOS/VS of the type
of file access privileges that the caller wants to pass to another
segment image.

Only the first opener of a protected shared file can issue a ?7PMIPF

system call against that file. Also, there must be a valid
connection between the PID/ring tandem from which the ?PMIPF systen

call is issued (the server) and the PID/ring tandem of the target
(the customer).

A first opener that issues the ?PMTPF system call cannot pass access

privileges it does not have itself. 1In addition, access privileges
are not cumulative.

An access grant remains active until one of the following events
occurs:

o The coanection between the first opener of the protected
shared file and the target segment image is broken.

o The first opener closes the file.

o The first opener revokes the access grant.

This means that a segment image possesses only the access privileges
specified by the most recent ?PMIPF system call that addressed that

segment image. Thus, a ?PMTPF system call that specifies no
privileges can revoke a segment image’s access privileges.

Coordinated Shared-File Update

Periodically, inner-ring servers may need to checkpoint the updated
status of a set of shared memory pages. Such checkpointing may be
critical for recovery from system failure.

The ?ESFF system call helps checkpoint shared memory by flushing to
disk all modified pages associated with a specified shared file, no
matter where they are in system memory. A0S/VS tries to flush all
modified shared pages, even if it encounters an I/0 error while it is
flushing the pages.

2-8 Licensed Material - Property of Data General Corp. 093-000335-00

CHAPTER 2 - MEMORY

The ?ESFF system call makes only one pass through the pages in a
shared file. Therefore,.if another process -— or other tasks within
the same process ~— concurrently updates the shared file, the
checkpoint state will be uncertain.

Dedicated and Undedicated Memory Pages

Just as AOS/VS distinguishes between shared and unshared pages, it
also distinguishes between dedicated and undedicated memory pages:

o Dedicated pages are memory pages that AO0S/VS reserves for
specific purposes. They include physical pages occupied by the
resident portion of A0S/VS and pages wired to a resident process
by the ?WIRE system call.

o Undedicated pages are pages that AOS/VS can assign to any process

as the process needs them. Undedicated pages are not necessarily
"unused" pages; they are simply available for reassignment. The
?GMEM system call returuns the curreat number of undedicated pages
available to the calling process.

User Context

The user’s unshared area starts at the first word of the logical
address space in the curreat ring, and expands toward numerically
higher addresses. The shared page area occupies the numerically
highest portion of the address space and expands upward and downward.

Between the shared and unshared portions of the logical context,
there can be an "unused" area. You can allocate this area with the
system calls ?MEMI and ?SSHPT. The ?MEMI system call modifies the
unshared area’s upper boundary, while the ?SSHPT system call modifies

the number of shared pages in the logical address space and the
position of the shared area in your user address space.

Figure 2-3 shows the relationship among the unshared, unused, and

shared areas in a typical user context. Table 2-1 lists the system
calls that are available for managing a process’s logical context.

093-000335-00 Licensed Material - Property of Data General Corp. 2-9

CHAPTER 2 -~ MEMORY

I |
[0 - - !
| | Unshared I |
] | I v _ [
I ASSRANRNRRRNNANNY I !
| AR I I
I ASSRSSRRRRNNNNNNY > Unused Area I
! ASARRRRRRRRRNNNNY: I I
{ [~ o e o |
I | o I
| (1 MB) |~—=~~ Shared-——--- | |
] ! [

| 7777777171777 | Y :
I |
| [

Figure 2-3. Memory Context

Table 2-1. Context-Management System Calls

] System Call Function]

|
|

| 7ESFF | Flushes shared file memory pages to disk (shared

] | pages oaly). I
I I [
| ?GSHPT | Lists shared-partition information for this context |
| | (shared pages only). i
! ! I
| ?MEM | Lists the maximum number of unshared pages |
| | available, the number of unshared pages used, and |
| | the highest curreantly used unshared address in]
| | Ring 7 (unshared pages only). I
I I |
| ?MEMI | Increases or decreases the number of unshared pages |
] | in Ring 7 (unshared pages only). |
| ! I
| 7PMTPF | Permits access to an open, protected shared file |
| | (shared pages only). |
| I |
| 7RPAGE | Releases a shared page (shared pages only). !
I | !
| ?SCLOSE | Closes a shared file (shared pages only). [
| I !
| ?SOPEN | Opens a file for shared access (shared pages only). |
! I |
| ?SOPPF | Opens a protected shared file (shared pages only). |
I I |
! I I

N
|

10 Licensed Material —~ Property of Data General Corp. 093-000335-00

CHAPTER 2 - MEMORY

Table 2-1. Context-Management System Calls (Cont.)
[System Call | Function |
| ====:=======:l=============:==:==‘:::=: e e N - T I
| ?SPAGE | Reads a shared page (shared pages only). |
| I I
| ?SSHPT | Establishes a new shared-partition size (shared }
! | pages only). l
[I |
End of Chapter
.

093-000335-00 Licensed Material -~ Property of Data General Corp. 2-11

——p
g

CHAPTER 3
PROCESSES

The process-management system calls are:

?BLKPR
?BRKFL
?7CHAIN

?CTYPE
?DADID

?ENBRK
?EXPO

?GUNM
?KHIST
7MDUMP

?PNAME
?PRIPR

?7PROC

?PSTAT
?7RESCHED

?RETURN
?RINGLD
?RNGPR
?RNGST

?RUNTM
?SUPROC

?SUSER

?TERM
?UBLPR

?UNWIRE

?WHIST
?WIRE

Blocks a process.

Terminates a process and creates a break file.

Passes control to a new program.

Changes a process’s type.

Gets the PID of a process’s father.

Enables a break file.

Sets, clears, or examines execute-protection
status.

Gets the username of a process.

Kills a histogram.

Dumps the memory image from a specified ring to a

file.

Gets a process name.

Changes the priority of a process.
Creates a process.

Returns status information on a process.
Schedules another process for execution.

Terminates the calling process.

Loads a program file into a specified ring.
Returns the .PR filename for a ring.

Stops lower rings from being ringloaded.
Gets runtime statistics on a process.

Enters, leaves, or examines Supetrprocess Mode.

Enters, leaves, or examines Superuser Mode.

Terminates a process.
Unblocks a process.

Unwires pages previously wired.
Starts a histogram.
Wires pages to the working set.

093-000335-00

Licensed Material - Property of Data General

Corp.

CHAPTER 3 - PROCESSES

s,¥;J‘II!;i;

This chapter defines processes and how AOS/VS uses them. Also, this
chapter describes the system calls that allow you to manage
processes.

To understand this chapter, you must be familiar with the following
terms and what they mean to AOS/VS:

o] Program g

A program is user code that all tasks within a particular process .
execute. A program file contains user code and control
information that is supplied by the Link utility.

o Process)

] A process is made up of a program file for each segment, with a
set of constraints on the use of resources, such as memory and
1/0 channels, and a set of resources that are currently in use.
(In addition,to user code, a program file contains status
information supplied by the Link utility.)

o Task

A task is a path through a program file. It is an asynchronously
controllable entity to which the CPU is allocated for a specific
time. A task can only execute code within the bounds of the

address space allocated to its process. A task 1s the basic
element of a process. ?

Each process is made up of one or more tasks, which execute

asynchronously. You can design your code so that several tasks .
execute a single re-entrant sequence of instructions, or you can
create a different instruction path for each task. Control always
goes to the highest priority ready process, and within that process,
to the highest priority ready task. (For more information on tasks,

see Chapter 6.)

When you create a process, it exists until one of the following
events occurs:

o The process traps. (See "Process Trapping" in this chapter.)

o The process terminates voluntarily. (See the description of the
?TERM system call in Chapter 13.)

3-2 Licensed Material - Property of Data General Corp. 093~000335-00

CHAPTER 3 - PROCESSES

o Another process terminates the process. (See the description of
the ?TERM system call in Chapter 13.)

o The process’s father terminates.

Memory Scheme

Each process competes independently for system resources, such as
memory and CPU time. When AOS/VS has allocated main memory to a
process, that process is eligible for CPU time. AOS/VS allocates
memory and CPU to each process based on its process type and
priority.

The entire range of locations addressed by a process is its logical
address space. Under AOS/VS, a process’s user-visible address space
can consist of up to 512 megabytes for each of the four user rings]
(Rings 4 through 7). (See Chapter 2 for information on memory, how

it is organized, and what protections are available to you.)

At any given time, only a subset of each process’s logical address
space is in memory. This subset, which is called the working set,
changes in size and content as the process references pages and then
returns them to disk.

Every process starts with a working set large enough to accommodate
Page 0 (the first 2K bytes of the logical address space) and the
program counter (PC) page. The program counter points to the current
control point in a program.

The rest of the logical address space —- the pages outside the
working set —— is virtual address space. Figure 3~1 depicts the
working sets and virtual address space of several processes.

The size of a process’s working set directly relates to the number of
memory pages the process currently needs or is likely to need. When
a process refers to a page or set of pages outside its working set,
the hardware signals a page—fault coandition. AOS/VS responds by
adjusting the size of the working set. The ?WIRE and ?UNWIRE system
calls give a process with sufficient privileges control over its
working set. The ?WIRE system call wires (that is, permanently
binds) pages to the working set. The ?UNWIRE system call releases
previously wired pages.

093-000335-00 Licensed Material - Property of Data General Corp. 3-3

CHAPTER 3 - PROCESSES

3-4

Initial Working Set for Process A

Process A

| Physical
| Memory

!
I
I

I
\
\
\
I\
I\

Working Set after Process A demands pages

Working Set

Process A

] Physical |
| Memory \ |
| N
! \
I A
I I\
Working Set
Working Sets for Processes A, B, and C | Proc A]
! |
I \
Shared Pages ! \ |
\ | Physical | I\
\ Memory | [\
| | ! I\
! | \ | \
[[I\ | | Virtual
] | I | | Address
|/ [I Space
1/ | - /
/ Proc B | | [
/1 | | Proc C|
/ I I

/
Virtual Address Space

Figure 3-1. Working Sets in Memory

Licensed Material - Property of Data General Corp. 093-000335~00

CHAPTER 3 - PROCESSES

Process Types

To manage the multiprocess enviroanment, A0S/VS allocates main memory
to processes based on their types and priorities. There are three
process types:

o Resident

A resident process is always in memory somewhere. 1In general,
only the most critical processes in your system environment
should be resident.

o Swappable

A swappable process is swapped into memory and written out to
disk at the discretion of the scheduler. Swappable processes
have the lowest priority of the three process types; they acquire
memory only after the scheduler has satisfied all resident and
pre—emptible processes.

o Pre-emptible

A pre-emptible process is a hybrid of the other two types of
processes in that the scheduler treats it as a high-priority
swappable process.

When you create a process with the ?PROC system call, you can define
it as one of these three process types. (By default, a newly created
process has the same process type as the ?PROC caller.)

All three types of processes can issue the ?WIRE system call to wire I
pages. However, although A0S/VS can write wired pages out to disk |
for a swappable process, it cannot do so for a resident process. |
Therefore, a resident process, whose wired and unwired pages remain

in memory, is capable of wiring enough pages to degrade the system.
This means that you can run out of memory if you create one or more
resident processes with a large number of wired pages. Therefore,

you should avoid creating resident processes whenever possible.

As a general rule, AOS/VS keeps interactive swappable processes in

memory longer than non-interactive swappable processes. You can
change this, however, by setting the bias factors. (Refer to Chapter
8 and to the "Managing AOS/VS’ manual for information on bias
factors.)

093-000335-00 Licensed Material - Property of Data General Corp. 3-5

CHAPTER 3 - PROCESSES

AOS/VS treats a pre—emptible process as a high-priority swappable
process. However, when a resident process or a higher priority
pre~emptible process requires memory, AO0S/VS swaps the pre-emptible
process out to disk. Also, when another process explicitly blocks a
pre-emptible process (with the ?BLKPR system call), AOS/VS can swap
the pre—emptible process out to disk if it needs more memory.

Priority Numbers

Eligible pre—emptible and eligible resident processes compete with
each other for CPU time, based on their individual priority numbers.
(See "Process States" in this chapter for a definition of eligible
processes.)

Priority numbers are values AOS/VS uses to determine each process’s
priority, relative to other processes of the same type. By using
priority numbers and other factors, such as each process’s past
behavior, A0S/VS determines which processes of a specific type should
run before others of that same type. When you create a process, you
can assign it a priority number as well as a process type.

The priority numbers for resident and pre—emptible processes range
from 1 (the highest priority) through 255 (the lowest priority). The
priority numbers for swappable processes are 1 (high priority), 2
(normal priority), and 3 (low priority).

Process Identification

A process identifier and a process name identify each process. When

you create a process, A0S/VS assigns it a unique process identifier
(PID) in the range from 1 through 255. At the same time, you must
assign a process name to that process.

A full process name is a character string that consists of a username
and a simple process name, with a colon (:) between the two elements.

Each element can contain up to 15 valid filename characters. The
valid filename characters are:

o Letters A through Z. (AOS/VS treats uppercase and lowercase
letters the same.)

o Numbers O through 9.

o Period (.), dollar sign ($), question mark (?), and underscore

-

3-6 Licensed Material - Property of Data General Corp. 093-000335-00

CHAPTER 3 - PROCESSES

A username functions like a family surname. AOS/VS uses this part of
the process name to determine the process’s geneology and its access
rights to files. By default, each son process bears its father’s
username. A father process can assign its sons a different username
only if the father was created (by issuing the ?PROC system call)
with the privilege to do so.

You can use either a full process name or a simple process name as
input to the system calls. When you supply a simple process name,
A0S/VS expands it. (See Figure 3-2.)

| [
| |
| / \ [
| / \ |
] FAY PROCI SAM PROC! |
| /\ /\ |
i / \ / \ I
| FAY PROC2 FAY PROC3 SAM PROC2 SAM PROC3 1
| |
| FAY PROC1 SAM PROC1 |
I FAY PROC2 SAM PROC2 i
| FAY PROC3 SAM PROC3 |
| l
l l

Figure 3-2. Process Names

Figure 3~2 shows a process with the full process name SAM:PROC2,
where SAM is the username and PROC2 is the simple process name. If
you issue a system call from SAM:PROC1 with the simple process name
PROC2 as an input parameter, AOS/VS recognizes the target process as
SAM:PROC2.

You cannot assign the same simple process name to processes that
have the same username. If you do, A0S/VS returns error code ERPNU

(process name already in use).

Depending on your input specifications, the following system calls
return the process name and/or PID of a target process:

o ?7PNAME returns the full process name or PID of either the calling
process or another target process

093-000335-00 Licensed Material - Property of Data General Corp. 3~7

CHAPTER 3 - PROCESSES

o} ?GUNM returns the username associated with a specific simple
process uname or PID

o] ?DADID returns the PID of a father process (the father of either
the calling process or of another process)

Process Creation

To create a process, define its privileges, and define its
characteristics, issue the ?PROC system call.

The antecedent of every other process is a process called the system
root. AOS/VS creates the system root when you initialize the system.
From the system root, AOS/VS creates certain system processes, such
as the peripheral manager (PMGR), which manages character I/0. Also,
A0S/VS creates at least one user process, called the initial
(operator) process. The initial process can create subordinate
processes, or sons, and assign them a process type and priority
number.

AOS/VS manages processes by organizing them into a hierarchical tree
structure, where processes on the lower branches are subordinate to
their relatives on the higher branches. (See Figure 3-3.)

The system root is the highest process in the system hierarchy; every
other process is a son of the system root. User processes are sons
of the initial process.

Once a process has been created, it continues to exist until one of
the following events occurs:

0o The process traps. (See "Process Trapping" in this chapter.)

o The process terminates voluntarily. (See the descriptions of the
?TERM and the ?RETURN system calls in Chapter 13.)

o] Another process terminates the process. (See the description of
the ?TERM system call in Chapter 13.)

o] The process’s father terminates.

3-8 Licensed Material - Property of Data General Corp. 093-000335-00

L ——

CHAPTER 3 - PROCESSES

System Root

|]
| I
|]
| I
] / 1 I
! !] |
| | | PMGR ! |
| |1 | Initial (Operator) Process |
| !]
| T 71]
[/ I e e e \ |
I / I\ \ \ I
I /1 I\ N\ |
I I ! I I | o I I
[o (I 1 |
| | 1 \ / [
| User | | | .System Processes |
[Processes | / T \ |
[| / | \ |
| l 1 A\ !
|] |] ! | ! |
] I |1 |1 |
] \ !
| I

Figure 3-3. Process Hierarchy

Process Privileges

Within the ?PROC packet, you can define a number of privileges for a
newly created process; for example, the right to create sons and to
assign those sons minimum and maximum working-set parameters, and the

right to override the usual file access controls. However, you
cannot assign the new process privileges that the ?PROC caller does

not have,

Table 3-1 lists the bit masks in offset ?PPRV of the ?PROC packet
that define process privileges.

093-000335-00 Licensed Material — Property of Data General Corp.

3-9

CHAPTER 3 - PROCESSES

Table 3-1. Process Privileges

turn on Superuser mode. (See "Superuser Mode/
Superprocess Mode" in this chapter.)

| Privilege | Meaning]
! ====S===s== I E=mso s mmmmas I mISsSIEIsIsaE e e e L e I
| ?PVPC | The new process can create an unlimited number of |
I | sons. |
| I I
| ?PVWS | The new process can create sons of a different |
] | program file type (that is, 16-bit or 32-bit program |
| | files). I
| I]
| ?PVEX | The new process can remain unblocked while one of its |
] | sons executes. |
| [|
] ?7PVWM | The new process can define working~set parameters for |
| | its sons. |
] I |
| ?PVPR | The new process can use the ?PRIPR system call to]
| | change its own priority or to assign its sons higher |
] | priorities than its own.]
! | |
| ?PVTY { The new process can use the ?CTYPE system call to]
] | change its process type or to create sons of any |
] | process type. |
| | I
| ?PVIP | The new process can issue the ?ISEND and ?IS.R j
| | primitive IPC system calls. (See Chapter 7 for |
] | information on IPC system calls.)]
I I !
| ?7PVUIL | The new process can create sons that have usernames |
| | different from its own.]
i I |
| ?PVDV | The new process can define and access user devices.]
| | (See Chapter 10 for information on devices.) |
I I I
[?PVSP | The new process can issue the ?SUPROC system call to |
[| turn on Superprocess mode. (See "Superuser Mode/ !
| | Superprocess Mode" in this chapter.) |
[! |
| ?PVSU | The new process can issue the ?SUSER system call to |
I | I
| I I
| ! 1

3-10 Licensed Material - Property of Data General Corp. 093-000335-00

CHAPTER 3 - PROCESSES

Process Creation Parameters

A0S/VS determines the number of offspring a process can create by
checking its ?PROC packet for:

o] The ?PVPC privilege, which specifies that the new process can
?PROC an unlimited number of sons.

This privilege overrides every other creation parameter in the
?7PROC packet. When a process that does not have the ?PVPC
privilege tries to create a son, AOS/VS performs the following
steps to check the other creation parameters:

1. Does the number of sons and their combined ?PPCR count exceed

the caller’s ?PPCR value? 1If yes, signal an error. If no,
perform Step 2.

2. 1Is bit ?PVEX set? 1If yes, allow the caller to create the
son. If no, perform Step 3.

3. Does the caller have the ?PVEX privilege? 1If yes, allow the
caller to create the son. If no, do not allow the caller to
create the son.

o The ?PVEX privilege, which specifies that the new process can
remain unblocked while one of its sons executes.

o The presence of offset ?PPCR, which specifies the maximum number
of offspring.

Offset ?PPCR is a cumulative value. That is, if a process with a
?PPCR value of 10 creates 2 sons, each with a ?PPCR value of 4,
the original process cannot create any other sons, because 2 sons
plus 2*4 (8 potential grandsons) equals 10.

o The presence of the ?PFEX mask within offset ?PLFG, which
determines whether the new process blocks while its sons execute.

You can use ?PROC system calls in your program if you want to create
son processes, which, in turn, can create other sons. Figure 3-4
shows a process tree of this kind: process A created processes B, C,

and D; process B created process F; and process D created processes
G and E.

093-000335-00 Licensed Material - Property of Data General Corp. 3-11

CHAPTER 3 - PROCESSES

| |
! Father I
| | A | |
[[(. [I
| I - o |
| | B | | C | | D Sons of A |
] 1 1 l__]
| . 1\ |
] F G |
| [
[[
[|

Figure 3-4. Sample Process Tree

Superuser Mode/Superprocess Mode

By default, a process can issue certain system calls only against its
subordinates, and can use only those files for which it has the
proper access privileges. You can override these restrictions,
however, by assigning a process Superuser and Superprocess privileges
when you create it.

A process that is in Superuser mode can access any file, regardless
of the file’s access control list, and can also determine any other
process’s access to any file. To assign the Superuser privilege to a

process, set ?PVSU in offset ?PPRV of the ?PROC packet. The ?SUSER
system call turns on Superuser mode.

A0S/VS allows processes that have the Superuser privilege to pass it
on to their sons. Moreover, sons created with the Superuser
privilege are in Superuser mode at their inception. FEach process in
Superuser mode remains in that state until it issues a complementary
?SUSER system call to turn off Superuser mode.

A process in Superprocess mode can change the state of any process,
not just its subordinate processes, by issuing one of the following
system calls:

o ?BLKPR, which blocks a process.

o ?7UBLPR, which unblocks a process.

3-12 Licensed Material - Property of Data General Corp. 093-000335~00

CHAPTER 3 - PROCESSES

o) ?BRKFL, which terminates a process and creates a break file.
(See "Break Files" in this chapter for more information on break
files.)

o] ?CTYPE, which changes a process’s type.

o} ?GTACP, which gets access control privileges. (See Chapter 4.)
o] ?PRIPR, which changes a process’s priority.

o ?TERM, which terminates a process.

(See the individual system call descriptions in Chapter 13 for more
information on these system calls.)

To assign the Superprocess privilege to a process, set mask ?PVSP in
offset ?PPRV of the ?PROC packet. The ?SUPROC system call turns on
Superprocess mode for the calling process.

A process with the Superprocess privilege can also pass that
privilege to its sons, although sons created with this privilege are
not in Superprocess mode initially. A process remains in
Superprocess mode until it issues a complementary ?SUPROC system call
to explicitly turn off Superprocess mode.

You should restrict the right to enter Superuser and Superprocess
modes, because a process in Superuser mode can delete any file, and a
process in Superprocess mode can terminate any process.

Process States

When a process has gained memory, it competes for CPU time. At this
point, AOS/VS looks at both the priority and state of a process to
determine its order of execution. A process is always in one of the
following three states:

o} Eligible

A process is eligible for CPU time when it has acquired memory
and is ready to run.

o Ineligible
A process is ineligible when it has not acquired memory, even if

it is otherwise ready to run. Every process is ineligible at its
inception.

093-000335-00 Licensed Material - Property of Data General Corp. 3-13

CHAPTER 3 - PROCESSES

o) Blocked

A process is blocked if its execution is suspended to wait for a

specific event that may or may not occur. A process can block
voluntarily, another process can block it (generally via the

?BLKPR system call), or AOS/VS can block it. (See "Blocking
Rules" in this chapter for information on blocking rules.)

Process Scheduling

A0S/VS schedules eligible processes based on their process types and
individual priority numbers. To schedule processes, A0S/VS performs
the following steps in round-robin fashion:

1. AO0S/VS executes the highest priority eligible resident process or
eligible pre-emptible process. If there are no processes in
these categories, AOS/VS performs Step 2.

2. AOS/VS executes other eligible resident and eligible pre-emptible

processes, according to their individual priorities. If there
are no processes in these categories, AO0S/VS performs Step 3.

3. AOS/VS executes eligible swappable processes according to their
individual priorities.

If an executing process cannot proceed, you can issue the ?RESCHED
system call, which allows the calling process to give up the
remainder of its time slice and force A0S/VS to immediately schedule
another process for execution.

Process Blocking

A0S/VS blocks a process uunder the following conditions:

o When another process explicitly blocks it, using the ?BLKPR
system call.

o When the process creates a subordinate process, called a son, and

voluntarily blocks itself until the son terminates. (See
"Process Creation" in this chapter for information on the process
hierarchy.)

o} When the process issues a system call that suspends its only
active task.

3-14 Licensed Material - Property of Data General Corp. 093-000335-00

CHAPTER 3 - PROCESSES

The last condition implies that the process has only one task or that
all of its other tasks are suspended. ?IREC and ?WDELAY are two
examples of system calls that can cause a process to block. (See
Chapter 13 for more information on the ?IREC and ?WDELAY system calls
and see Chapter 6 for more information on tasks.)

A0S/VS unblocks a process under the following conditions:

o When the process previously blocked with ?BLKPR is explicitly

unblocked with ?UBLPR. (?BLKPR and ?UBLPR work as a pair; ?UBLPR
unblocks only those processes that were previously blocked with
?BLKPR.)

o] When a son created by the process terminates (provided the father
voluntarily blocked to wait for the son to terminate)

o When a task within the process becomes ready to run (A0S/VS
blocked the process because it had no ready task)

When memory contention occurs, A0S/VS is more likely to swap blocked
processes or to remove pages from them. The processes that have been
blocked the longest are the prime candidates for these actioans.

Keep in mind that resident processes cannot be explicitly blocked.

Changing Process Priorities

To change a process’s own priority, you can issue the ?PRIPR system
call. However, if you want to change the priority of another
process, the calling process must be in Superprocess mode. (See
"Superuser Mode/Superprocess Mode" in this chapter.)

Process Information

You can get information about a process’s use of system resources by
issuing the ?PNAME, ?RUNTM, ?WHIST, or ?PSTAT system calls.

If you want to know the PID or process name of a process, issue the

?PNAME system call. Often, other system calls require this
information as input. '

093-000335-00 Licensed Material -~ Property of Data General Corp. 3-15

CHAPTER 3 — PROCESSES

The ?RUNTM system call returns the following information:

o The real time that has elapsed since process creation (in
seconds, within the range 0 through (2%%32)-1).

o The CPU time that the process used (in milliseconds).
o] The number of blocks read or written.

o The page usage over a period of time (in page-seconds). AOS/VS
calculates page-seconds by multiplying CPU usage by main memory
usage.

The ?WHIST system call generates a histogram. A histogram is a data
array that provides a global view of CPU activity. To issue the
?WHIST system call, a process must be resident. Also, you can
activate one histogram at a time. To terminate a histogram, the
process msut issue the ?KHIST system call.

Each histogram shows how often CPU control passes to the target
process and, optionally, at what points. It also shows how often
control passed to other processes, including system processes. In
addition, a histogram records the amount of time the system remained
idle, waiting for a process to become eligible for execution.

A0S/VS updates the histogram statistics after each "tick," or
real-time clock pulse.

Note that the ?WHIST system call does not zero out existing
histograms in a data array. This allows you to stop a histogram and
restart it without losing data. Thus, unless you want to aggregate
data, you should explicitly reset the array to zero before you use it
for another histogram.

The ?PSTAT system call returns internal statistics about a process
and performance information about all programs that are currently
executing.

Execute-Protection Status

To make it easier to find errors in your code, you may want to
prevent your program from executing certain logical pages, such as
pages that contain data. Therefore, A0S/VS provides execute
protection. The ?EXPO system call allows you to set, clear, or
examine a process’s execute-protection status.

3-16 Licensed Material - Property of Data General Corp. 093-000335-00

CHAPTER 3 - PROCESSES

Process Traps

A process trap is a hardware error. Each process exists until it
terminates voluntarily, becomes terminated by another process, or
encounters a process trap (that is, "traps'). Any one of the
following conditions can cause a process to trap:

o The process tries to reference an address that is outside its

logical address space or refers to an invalid address within
Ring 7.

o The process tries to use more than 16 levels of indirection in a
memory reference instruction,.

o The process tries to read, write, or execute code that is
protected against any of these actions (for example, it attempts
to write to the write-protected shared area of its logical
address space).

o The process uses 1/0 instructions while LEF is disabled and 1/0
protection is enabled.

o A process tries to execute a privileged instruction in a user]
ring. |

When a process traps or terminates voluntarily, A0S/VS uses the IPC
facility to send that process’s father a termination message. If the
process terminated on a trap, the IPC message describes the cause.
(See Chapter 7 for more information on termination messages.)

Break Files and Memory Dumps |

When a process terminates, you can save the state of certain memory
parameters and tables (for example, the process’s UST and TCBs) in

two ways:
o You can create a break file.
A break file is a status file in the terminated process’s working

directory that contains this information. You must be logged on
to examine a break file.

093-000335-00 Licensed Material -~ Property of Data General Corp. 3-17

CHAPTER 3 - PROCESSES

0 You can dump the contents of a particular ring to a dump file.

A dump file contains all of the information that a break file

I
I
I
] contains, plus a copy of the memory image. Also, you do not
] have to be logged on to examine a dump file.
I
I
I

To perform a dump, issue the ?MDUMP system call, which creates
a dump file wherever you specify.

There are two ways to terminate a process and explicitly create a
break file:

o Issue the ?BRKFL system call.

0 Type a CTRL-C CTRL-E sequence from the process console. (See

Chapter 5 for a full description of console control characters
and control sequences.)

To create a break file every time a process traps, set bit ?PBRK in
offset ?PFLG of the process’s ?PROC packet. (See the description of
the ?PROC system call in Chapter 13 for more information on the ?PROC
packet.)

AOS/VS copies the following words to the break file:

]

I

| Status Word Contents

I ___________________

[

| ?BRACO Value of ACO

] ?BRACI Value of ACl

| ?BRAC2 Value of AC2

| ?BRAC3 Value of AC3

{ ?BRPC Value of the program counter (PC)
] ?BRTID TID

] ?BRFP Value of the stack frame pointer
i ?BRSP Value of the stack pointer

| ?BRSL Value of the stack limit

| ?7BRSB Value of the stack base

(Refer to the current AOS/VS Release Notice for more information on
the contents of a break file.)

3-18 Licensed Material - Property of Data General Corp. 093-000335-00

CHAPTER 3 - PROCESSES

Unless you specify another pathname, AOS/VS assigns the break file
the default pathname:

?pid.time.BRK

where:
o pid is the 3-digit PID of the terminated process

o time is the time of the termination, in the form
hours_minutes_ seconds

AOS/VS only creates a break file if the terminated process has Write
or Append access to its working directory and if the working
directory has enough disk space for the break file.

The ?ENBRK system call, unlike the ?BRKFL system call, which
terminates a process and creates a break file, does not terminate
the process. Instead, if the process traps, issues a CTRL-C CTRL-E,
or is the target of a TERM/BREAK, the ?ENBRK system call allows
A0S/VS to create a break file of whatever user ring you specified as
its target ring. The ?ENBRK system call allows AO0S/VS to create a
break file, it does not explicitly direct it to do so.

The ?CHAIN system call allows you to link together several steps of a
long, complex program set, where each program is a separate progranm
file. The ?CHAIN system call actually releases the system resources
that one process is using, and then executes a new program. In
addition, the ?CHAIN system call transfers the following attributes
to the new program:

o The username, process name, PID, console, search list, default]
ACL, and working directory of the calling process.]

o] The generic file associations of the calling process (for

example, the filenames associated with the generic files @INPUT,
@oUTPUT, @LIST, and @GDATA).

o) The privileges, process type, and priority of the calling
process.

093-000335-00 Licensed Material - Property of Data General Corp. 3-19

CHAPTER 3 -~ PROCESSES

When a process chains to a new program, AOS/VS performs the following
steps:

l. Unloads all of the process’s inner user rings.

2. Terminates all son processes that were previously created by
?PROC system calls issued from the inner user rings.

3. Breaks the connection, which, in turn, causes A0S/VS to revoke
access privileges to protected shared files.

Inner Rings

To load program files into a specific rings, you can issue the
?RINGLD system call. Then, to find out what program was loaded into
the ring, you can issue the ?RNGPR system call. If you want to
prevent the ?RINGLD system call from loading a runtime routine into
a particular ring, you can issue the ?RINGST sytem call. (See
Chapter 2 for more information on the ring structure.)

To cross from an outer ring to an inner ring, a program must have
access to the proper gates; that is, entry points to the code in the
inner ring. When you write a program to execute in Rings 4, 5, or 6,
you must define an array of the legal entry points (gates).

In the module in which you define your gate array, you must declare
the gate entry points as .EXTG (external gate). Also, in your source
module, you must declare your gate euntry points as .ENT (entry
point). (See the GATE.ARRAY sample program in Chapter 5 for an
example of using the .EXTG pseudo-op.) The ’‘Principles of Operation
ECLIPSE 32-Bit Systems’ manual explains how to reference gates and
how to set up gate arrays.

Figure 3-5 shows how a process can span rings. For the purpose of the

figure, assume that the main program has used the ?RINGLD system call
to load a program file into Ring 6.

3-20 Licensed Material - Property of Data General Corp. 093-000335-00

</

CHAPTER 3 - PROCESSES

Main Program Access from
——————— Mo et e e e Ring 6 through
| Program loaded with ?RINGLD gate in Ring 6
"

L S — Full access from
| —————————— inner rings to
1= 0 outer rings

|

093~000335-00

Figure 3-5. Ring Structure

Licensed Material - Property of Data General Corp.

3-21

Process and Memory Sample Programs

CHAPTER 3 - PROCESSES

The following subroutine, SON, creates a swappable son process. The
son process runs program SPEAK.PR which is an IPC sample program.

(See Chapter 7.)

To use the SON subroutine, you must have the Create Without Block

privilege in your user profile.

.TITLE SON
.ENT SON
.NREL

;Get program name to ?PROC:

SON: WSSVS 0
XLEFB 0,PRGNM*2

XWSTA 0, PKT+?PSNM

?PROC PKT
WBR ERROR
WRTN
PRGNM: .TXT "SPEAK.PR"

ERROR: WLDAT ?RFEC! ?7RFCF! ?RFER, 2

?RETURN
WBR ERROR

; 7PROC packet:
PKT: .BLK ?PLTH

.LOC PXT+?PFLG
«WORD 0

.LOC PKT+?PPRI
«WORD -1

;Default partition 4.

;Save return from XJSR.
;Byte pointer to the program
;name. '

yPut in ?PROC packet.
;Create process.

sReport error and quit.
sReturn to caller.

;Error flags: Error code is in
3ACO (?RFEC), message is in
;CLI format (?RFCF), and
;father should handle this as
san error {(?RFER).

sReturn to CLI.

;Report error and quit.

;Allocate enough space for
;packet.

;Default process creation
;specifications. (See the
;description of ?PROC in
;Chapter 13.)

;Default priority of son
;process to same as father.

093-000335-00 Licensed Material -~ Property of Data General Corp. 3-23

CHAPTER 3 - PROCESSES

SON Subroutine (Cont.)

.LOC
- DWORD

.LOC
«DWORD

.LOC
«DWORD

.LOC
«DWORD

.LOC
- DWORD

.LOC
«DWORD

.LOC
«WORD

.LOC
«WORD

.LOC

«DWORD

.LOC
«WORD

.LOC
«WORD

PKT+?PSNM
PRGNM*2

PKT+?PIPC
-1

PKT+?PNM
-1

PKT+?PMEM
-1

PKXT+?PDIR
-1

PKT+?PCON
0

PKT+?PCAL
-1

PKT+?PWSS
-1

PKT+?PUNM

-1

PKT+?PPRV
PVIP

PKT+?PPCR
0

;Byte pointer to pathname of
;program file for son to
;execute.

;No IPC message header to
;send to son (default is -1).

;Default son’s simple process
sname to ASCII representation
;of its PID.

;Default maximum number of

;son’s logical pages to same
;as father.

;Default name of son’s working
;directory to same as father

;Default name of son’s
;@CONSOLE device to same as
;father

sDefault number of system
;calls son can issue
;concurreatly is two.

;Default son’s maximum working
;set size to no limit.

;Byte pointer to son’s
;username.,

;Default son’s username to
;same as father.

;Son’s privileges.

;Son can issue ?ISEND and
; 7IS.R.

;Son can create no sons.

3-24 Licensed Material - Property of Data General Corp. 093-000335-00

.LOC
«WORD

.LOC

« DWORD

.LOC
«DWORD

.LOC
« DWORD

.LOC
« DWORD

.LOC
« DWORD

. LOC

+END

093-000335-00

PKT+?PWMI
-1

PKT+?PIPF

0

PKT+?POFP
0

PKT+?PLFP
0

PKT+?PDFP
0

PKT+?SMCH
-1

PKT+?PLTH

SON

CHAPTER 3 - PROCESSES

SON Subroutine (Cont.)

;Default son’s minimum working
;set size to no minimum.

;Son

;Son

;Son

;Son

has

has

has

has

no

no

no

no

@INPUT file.

@UTPUT file.

@LIST file.

@DATA file.

;Default maximum CPU time
;allotted for sou to remainder
;of father’s time limit.

sEnd of packet.

;End of SON program.

Licensed Material -~ Property of Data General Corp. 3-25

CHAPTER 3 - PROCESSES

The following program, RUNTIME, gets its own runtime statistics and
displays these statistics on the console.

First, RUNTIME opens the console, then it issues the ?RUNTM system
call, and finally, it converts the runtime statistics to ASCII decimal

values and displays them on the console.

Although RUNTIME gets its

own runtime statistics, you can use it to get any process’s runtime
statistics by passing the process’s filename.PR or the process’s PID.
To use RUNTIME as a subroutine, start with a proper save and end with

a proper return,

.TITLE RUNTIME
RUNTIME, CONVERT

«ENT
«NREL

;0pen console for I/0.

RUNT IME: ?0PEN
WBR

?WRITE
WBR

;Call ?RUNTM to

WLDATI
?RUNTM
WBR
XWLDA

1L.OOP:

XLEFB

XJSR

XLEFB

XWSTA

?WRITE

WBR

093-000335-00

CON
ERROR

CON
ERROR

get statistics.

-1,0
RPKT
ERROR
1,MSECS

2 ,MSECMSG*2

CONVERT

0,MSECMSG*2

0, CON+? IBAD

CON

ERROR

;0pen console (CON) for I/0.
;Report error and quit.,

s;Display message on console.
;Report error and quit.

;Check self.
;Get statistics in RPKT.
;Report error and quit.

;Get time in milliseconds from

;RPKT.

;Byte address of message that

;describes milliseconds
;elapsed.

;Convert milliseconds elapsed

;to ASCII decimal and put
;converted value in

;jmilliseconds elapsed message.

;Get byte pointer to

;milliseconds elapsed message.

;Put milliseconds elapsed
;message in I/0 packet.

;Display milliseconds elapsed

;message on console.
;Report error and quit.

Licensed Material -~ Property of Data General Corp.

3-27

CHAPTER 3 ~ PROCESSES

RUNTIME Program (Cont.)

XWLDA 1,PSECS ;Get page-seconds from RPKT.

XLEFB 2,PSECMSG*2 ;Byte address of message that
;describes page—seconds
;elapsed.

XJSR CONVERT ;Convert page—seconds elapsed

;to ASCII decimal and put

jconverted value in

;page—seconds elapsed message.
XLEFB 0, PSECMSG*2 ;Get byte pointer to

;page—-seconds elapsed message.

XWSTA 0,CON+?1IBAD ;Put page-seconds elapsed
;jmessage in I/0 packet.

?WRITE CON ;Display page-seconds elapsed
;jmessage on console.

WBR ERROR ;Report error and quit.

;See if user wants to stop.

XLEFB 0,BUF*2 ;Get byte pointer to I/0
;buffer.

XWSTA 0,CON+?IBAD sPut in I/0 packet.

7READ CON ;Look for terminator.

WBR ERROR sReport error and quit.

NLDAI "ST’,0 ;Put ST in ACO.

XNLDA 1,BUF ;Put first word of buffer in
;ACl.

WSNE 0,1 ;Skip next if first word is
ynot ST.

WBR BYE ;If first word is ST, go to
; BYE.

WBR LOOP ;If first word is not ST, do

;LOOP again.
;Error handler and return.

ERROR: NLDAI ?RFEC! ?RFCF! ?RFER, 2 ;Error flags: Error code is
;in ACO (?RFEC), message is in
;CLI format (?RFCF), and
;father should handle this
;as an error (?RFER).

3-28 Licensed Material - Property of Data General Corp. 093-000335-00

BYE: WSUB

?RETURN

WBR

CHAPTER 3 - PROCESSES

RUNTIME Program (Cont.)

2,2 3Good return flags.
sReturn to father.
ERROR 3 7RETURN error return.

;0pen and I/0 packet for console.

CON: .BLK

.L.OC
«WORD

.LOC
«WORD

.LOC
«DWORD

.LOC
« WORD

.LOC
«DWORD

.LOC
+DWORD

.LOC

?1IBLT ;Allocate enough space for
;packet.,

CON+?1ISTI ;File specifications.

?ICRF!?RTDS! ?70F10 ;Change format to data-

s;sensitive records and open
;for input and output.

CON+?IMRS

-1 ;Default physical block size
;to 2K bytes.

CON+?1BAD

ITEXT*2 ;Byte pointer to record I/0
;buffer.

CON+?IRCL

120. ;Record length is 120
;jcharacters.

CON+?1FNP

CONS*2 ;Byte pointer to pathname.

CON+?1DEL ;Delimiter table address.

-1 ;Use default delimiters: null,
;NEW LINE, form feed, and
;carriage return (default is
;"'1)0

CON+? IBLT ;End of packet.

;Filename, start message, and buffer. A .NOLOC 1 follows.

CONS: .TXT

ITEXT: .TXT

BUF: «BLK

«NOLOC

093-000335-00

""@CONSOLE" ;Use generic name.

"I give runtime statistics on a process.
Type ST[NL] to return to father.<212><12>"

(BUF-CONS)*2) ;Use number of bytes in
;message.
0 ;Resume listing all.

Licensed Material - Property of Data General Corp. 3-29

CHAPTER 3 - PROCESSES

RUNTIME Program (Cont.)
;Messages to include converted statistics. .NOLOC here.

MSECMSG: .TXT " milliseconds elapsed.<12>"
PSECMSG: .TXT " page—seconds elapsed. Type
ST[NL] to stop, type another character to loop.<212><12>"

«NOLOC O
; 7RUNTM packet.

RPKT: « BLK ?GRLTH ;Allocate enough space for
;packet.

SECS: .LOC RPKT+?GRRH
.DWORD 0 ;A0S/VS returns elapsed time
;in seconds.

MSECS: .LOC RPKT+?GRCH
.DWORD 0 ;A0S/VS returns elapsed CPU
;time in milliseconds.
;See if user wants to stop.

XLEFB 0,BUF*2 ;Get byte pointer to I/O
;buffer.

XWSTA 0, CON+?IBAD ;Put in I/0 packet.

?READ CON ;Look for terminator.

WBR ERROR ;Report error aand quit.

NLDAI "ST’,0 ;Put ST in ACO.

XNLDA 1,BUF ;Put first word of buffer in
;ACl.

WSNE 0,1 ;Skip next if first word is
;ynot ST.

WBR BYE ;If first word is ST, go to
s BYE.

WBR LOoP ;If first word is not ST, do

;LOOP again.
;Error handler and return.

ERROR: NLDAI ?RFEC! ?RFCF! 7RFER, 2 sError flags: Error code is
;in ACO (?RFEC), message is in
;CLI format (?RFCF), and
;father should handle this
;as an error (?RFER).

3-30 Licensed Material - Property of Data General Corp. 093-000335-00

BYE: WSUB 2,2
?RETURN
WBR ERROR

;0pen and I/0 packet for console.

CON: .BLK ?IBLT

.LOC CON+?ISTI
« WORD ?ICRF!?RTDS! ?0FI0

.LOC CON+? IMRS
+WORD -1

.LOC CON+?IBAD
.DWORD ITEXT#*2

.LOC CON+? IRCL
. WORD 120.

.1LoC CON+? IFNP
.DWORD CONS*2

.LOC CON+?IDEL
.DWORD -1

.LOC CON+? IBLT

;Filename, start message, and buffer.

CONS: «TXT "@CONSOLE"

ITEXT: .TXT

CHAPTER 3 - PROCESSES

RUNTIME Program (Cont.)

;Good return flags.
;Return to father.
s 7RETURN error return.

sAllocate enough space for
;packet.

;File specifications.
;Change format to data-
;sensitive records and open

;for input and output.

;Default physical block size
;to 2K bytes.

;Byte pointer to record I/0
sbuffer.

sRecord length is 120
;characters.

;Byte pointer to pathname.

;Delimiter table address.
;Use default delimiters: null,

;NEW LINE, form feed, and
scarriage return (default is

s=1).

;End of packet.

A .NOLOC 1 follows.

;Use generic name.

"I give runtime statistics on a process.

Type ST[NL] to return to father.<212><12>"

BUF: «BLK (BUF-CONS)*2)

+NOLOC O

;Use number of bytes in
;message.
sResume listing all.

093-000335-00 Licensed Material - Property of Data General Corp. 3-31

CHAPTER 3 - PROCESSES

RUNTIME Program (Cont.)

;Messages to include converted statistics. .NOLOC here.

MSECMSG:
PSECMSG:

3 7RUNTM

RPKT:

SECS:

MSECS:

10:

PSECS:

+TXT

+TXT

ST[NL]
«NOLOC
packet.
«BLK

.LOC
«DWORD

.LOC
. DWORD

.L0C
«DWORD

.LOC

«DWORD

.LOC

" milliseconds elapsed.<12>"

page-seconds elapsed. Type
to stop, type another character to loop.<212><12>"

0

?GRLTH ;Allocate enough space for
;packet.

RPKT+?GRRH

0 ;A0S/VS returns elapsed time
;in seconds.

RPKT+?GRCH

0 ;A0S/VS returns elapsed CPU
;time in milliseconds.

RPXT+?GRIH

0 ;A0S8/VS returns number of
;blocks read or written.

RPKT+?GRPH sPage usage over elapsed CPU
s time.

0 ;A0S/VS returns page usage
;over elapsed CPU time in
;page—seconds.

CON+?GRLTH ;End of packet.

; CONVERT routine converts binary value into its decimal equivalent and
;puts it in a text string. ACl contains the value and AC2 contains
; the byte address of the text message.

CONVERT:

WSSVS
WMOV

WADI 3,3
NLDAI 10.

0 ;Save return.
2,3 ;Use AC3 to shift byte pointer.

;Add integer 3 to byte address.
s 2 sPut 10 in AC2

3-32 Licensed Material — Property of Data General Corp. 093-000335-00

DLOOP: WSUB

WDIVS

IORI
WSTB

WSBI
MoV
WRTN

WBR

«.END

093-000335-00

CHAPTER 3 - PROCESSES

RUNTIME Program (Cont.)

0,0 s;Zero ACO (high-order portion

;of dividend). AC1 still

scontains low-order portion of

ydividend.

;Divide by 10, put quotient in
3ACl, and put remainder in ACO.

60,0 ;OR in 60 for ASCII number.
3,0 ;Store ACO byte in byte
;address of AC3.
1,3 ;Decrement byte address.
1,1,SNR ;Is quotient 07
s If quotient is 0, return to
;caller.
DLOOP ;If quotient is not 0, do

janother digit.

RUNT IME ;End of RUNTIME program.

Licensed Material ~ Property of Data General Corp.

3-33

CHAPTER 3 - PROCESSES

The following program, RINGLOAD, loads program INRING into an inner
ring. Then, RINGLOAD uses an LCALL instruction to call INRING.

RINGLOAD assumes that file INRING.PR, which was linked from INRING
and GATE.ARRAY exists. (GATE.ARRAY is at the end of this section.)

+TITLE RINGLOAD
«ENT RINGLOAD
«NREL

;0pen console for I/0 and issue ?RINGLD to load program into inner
;ring.

RINGLOAD: ?0PEN CON ;Open CON (console) for I/0.

WBR ERROR ; 70PEN error return.

?WRITE CON ;Display message on console.

WBR ERROR s 7WRITE error return.

XLEFB 0, PNAME*2 ;Get byte pointer to INRING
jname.

?7RINGLD ;Load INRING.

WBR ERROR 3 7RINGLD error return.

LCALL INRING,O0,0 ;Call INRING and set the index
;and argument count to O.

WBR INERROR ;sReport INRING error.

;Back from INRING. Depart with message for CLI.

XLEFB 0,MES2%2 ;Get byte pointer to farewell
;message.

XWSTA 0,CON+?IBAD ;Put in I/0 packet.

?WRITE CON ;Display message on console.

WBR ERROR ; 7WRITE error return.

WSUB 2,2 ;Set return flags for normal
;return.

WBR BYE ;Done. Give message and
;depart.

;Inner-ring program and current program error handlers.

INERROR: LLDFB 0,INMES ;Get inner-ring program error
;message.
LWSTA 0,CON+?IBAD ;Put in I/0 packet.
?7WRITE CON ;Display message on console.
WBR ERROR ;s 7WRITE error message.

093-000335-00 Licensed Material - Property of Data General Corp. 3-35

CHAPTER 3 - PROCESSES

RINGLOAD Program (Cout.)

ERROR: WLDAI ?RFEC! ?RFCF! ?7RFER, 2 ;Error flags: Error code is in
3ACO (?RFEC), message is in
;CLI format (?RFCF), and
;father should handle this as
san error (?RFER).

BYE: ?RETURN sReturn to CLI.
WBR ERROR s 7RETURN error return.

;Definition of inner-ring program ring bracket and gate. AOS/VS uses
;this, instead of the program name (INRING) to access gate and
;inner-ring program messages. A .NOLOC 1 follows.

INRING = 5S3+0 ;Ring 5 + first gate.
PNAME: .TXT "INRING.PR" ;Program name is INRING.
MES1: .TXT "I’m RINGLOAD. I am about to ?RINGLOAD program
INRING.<12>"
MES2: «TXT "¢212>T‘m RINGLOAD. I’m back from INRING, and I'm
terminating.<12>"
INMES: .TXT "¢212>ERROR IN INNER-RING PROGRAM.<12>"
.NOLOC O ;Resume listing all.

;Open and I/0 packet. (You need this packet for I/0.)

CON: «BLK ?IBLT ;Allocate enough space for
;packet.
.LOC CON+?1ISTI ;File specifications.
.WORD ?ICRF!?RTDS! ?0FI0 ;Change format to data=-

;sensitive records and open
;for input and output.

.LOC CON+? IMRS

.WORD -1 ;Default physical block size
;to 2K bytes.

.LOC CON+?1IBAD
.DWORD MES1%*2 ;Byte pointer to record I/0
sbuffer.

.LOC CON+?IRCL
+WORD 120. sRecord length is 120.
;characters.

3-36 Licensed Material - Property of Data General Corp. 093-000335-00

CHAPTER 3 - PROCESSES

RINGLOAD Program {(Cont.)

. LOC CONS+?IFNP

.DWORD CONS*2 ;Byte pointer to pathname.
. LOC CON+?IDEL ;Delimiter table address.
«DWORD -1 ;Use default delimiters: null,

sNEW LINE, form feed, and
;jcarriage return (default is

=1).
.L0C CON+?1BLT sEnd of packet.
CONS: .TXT "@CONSOLE" ;Use generic name.
.END RINGLOAD ;End of RINGLOAD program.

093-000335-00 Licensed Material - Property of Data General Corp. 3-37

CHAPTER 3 - PROCESSES

Program RINGLOAD loads the following program, INRING, into Ring 5.
Then, RINGLOAD uses an LCALL instruction to call INRING.

INRING saves the return address, opens the console, writes messages,
and invokes the Debugger (so you can explore the inner ring). To
return to RINGLOAD in Ring 7, type ESC R.

Except for the I/0O packet, all code in INRING is shared.

You must link INRING with GATE.ARRAY (the last program in this
section). Depending on the LCALL name definition in GATE.ARRAY, the
link that the gate defines in GATE.ARRAY, and the Link switch that
you use, you can execute INRING in Rings 4, 5, or 6. 1In this case,
RINGLOAD defined the LCALL name as Gate 5 (553), GATE.ARRAY defined
Gate 5, and the Link command line was X LINK/RING=5 INRING GATE.ARRAY.

.TITLE INRING
«ENT INRING
«NREL 1
+EXTL GATE.ARRAY

sDefine a 2-word pointer to the gate array.

.L0C 34 ;Locations 34 and 35.
«DWORD GATE.ARRAY ;Pointer.

;Save the return, open the console, write the message, and enter the
;debugger,

INRING: WSAVR O ;Save frame (ACs, PC in AC3).
70PEN CON ;Open console (CON) for 1I/0.
WBR ERTN 3 70PEN error return.

?WRITE CON ;Display message from Ring 5
;on console.

WBR ERTN sReport error and quit.

?DEBUG ;Enter debugger.

WBR ERTN sReport error aand quit.

LLEFB 0,MES2%*2 ;Get byte pointer to return
;message.

LWSTA 0,CON+?IBAD ;Put in I/0 packet.

?WRITE CON ;Display another message on
;console.

WBR ERTN ; 7WRITE error return,

093-000335-00 Licensed Material - Property of Data General Corp. 3-39

CHAPTER 3 - PROCESSES

INRING Program (Cont.)

;Done.

;Get frame pointer in AC3.
;Increment return address for
;jnormal return to LCALLer.

Ready for good return to caller.
LDAFP 3

XWisz 0,3

WRTN

; INRING error handler. Returns e

ERTN: LDAFP 3

LWSTA 0,70ACO,3

WRTN

;Text messages. «NOLOC 1 follows

MES1: «TXT "I’m INRING. I‘m
Type ESC R to proceed.<212><12>"

;Return to caller.
rror to outer-ring caller, not CLI.
;Get frame pointer in AC3.
;Put error code (ACO) in saved
;frame’s ACO.
sReturn to LCALLer’s error return.

in the inner ring. I'm about to debug.

MES2: .TXT "<212><212>From INRING. I’m about to WRTN.<L12>"

.NOLOC O

«NREL

;0pen 1/0 packet for QCONSOLE.

CON:

3-40

«BLK ?IBLT

.LOC CON+?ISTIL
+WORD ?ICRF!?RTDS! ?IFI0

.LOC CON+? IMRS
+WORD -1

.LOC CON+?IBAD
.DWORD MES1%*2

.LOC CON+?IRCL
«WORD 120.

Licensed Material - Property

;Resume listing all.

;Use unshared code for packet,
;because program and AOS/VS
;write into it.

sAllocate enough space for
;packet.

;File specifications.
;Change format to data-

;sensitive records and open
;for input and output.

;Default physical block size
;to 2K bytes.

;Byte pointer to record I/0
;buffer.

;Record length is 120
;characters.

of Data General Corp. 093-000335-00

CHAPTER 3 - PROCESSES

INRING Program (Cont.)

.LOC CON+?IFNP

.DWORD CONS*2 ;Byte pointer to pathname.
.LoC CON+? IDEL ;Delimiter table address.
.DWORD -1 ;Use default delimiters: null,

;NEW LINE, form feed, and
;carriage return (default is

;=1).
.L0C CON+? IBLT ;End of packet.
;Filename. A .NOLOC 1 follows:
CON: . TXT "@CONSOLE" ;Use generic name.
+NOLOC O ;Resume listing all.
. END INRING ;End of INRING program.

093-000335-00 Licensed Material - Property of Data General Corp. 3-41

CHAPTER 3 - PROCESSES

The following program, GATE.ARRAY, defines the gate arrav. Generally,
you must define the gate array in a separate module. A gate array
module must contain .EXTG PROG-ENTRY-NAME, where PROG-ENTRY-NAME is
the start eatry name in the program that will be accessed through the
gate. Also, you must link the gate array module with the inner-ring
program. In this case, the Link command line is:

X LINK/RING=5 INRING GATE.ARRAY

.TITLE GATE.ARRAY
«EXTG INRING
«ENT GATE.ARRAY

+NREL 1 ;Shared code for general use.
.ENABLE ABS

GATE.ARRAY: .DWORD 1 ;Gate array, one gate.
.DWORD (RING7-RING5)!INRING ;sLINK will determine the
;address. A program in any
;ring can access the gate.

RING7 = 783 3yBits 1 3 specify Gate 7.
RING5 = 583 ;Bits 1 3 specify Gate 5.
.END GATE .ARRAY ;Ead of GATE.ARRAY program.

End of Chapter

093-000335-00 Licensed Material - Property of Data General Corp. 3-43

-

CHAPTER 4
FILE CREATION AND MANAGEMENT

The file creation and management system calls are:

i

]

1

| ?CGNAM Gets a complete pathname from a channel number.
| ?CPMAX Sets maximum size for a coatrol point directory
| (CPD).

| ?CREATE Create a file or directory.

| ?DACL Sets, clears, or examines a default access control
] list.

| ?DELETE Deletes a file entry.

| ?DIR Changes the working directory.

| ?FSTAT Gets file status information.

| ?GACL Gets a file entry’s access control list.

| ?GLINK Gets the contents of a line entry.

| ?GLIST Gets the contents of a search list.

| ?GNAME Gets a complete pathname.

| ?GRNAME Returns complete pathname of generic file.

| 7GNFN Lists a particular directory’s entries.

| ?GTACP Gets access control privileges.

| ?INIT Initializes a logical disk.

| ?RECREATE Recreates a file.

| ?RELEASE Releases an initialized logical disk (LD).

| ?RENAME Renames a file.

| ?SACL Sets a new access control list.,.

| 7SATR Sets or removes attributes for a file or directory.
| ?SLIST Sets the search list.

|

The previous chapter describes your program’s image as it executes

under A0S/VS. This chapter describes the A0S/VS file structure and
the system calls you use to create and maintain files and

directories.

093-000335-00 Licensed Material - Property of Data General Corp.

CHAPTER 4 - FILE CREATION AND MANAGEMENT

A file is a collection of related data that is treated as a unit.
"File" also refers to the disk blocks used to store files. FEach file
has a filename by which you and A0S/VS address that file. You can
create files and assign them filenames by using the ?CREATE system
call, the CLI, or one of the text editors A0OS/VS supports. Or, you
can create files as you assemble, compile, and link your source code.
In the latter case, the utilities assign the filenames.

There are two general types of devices that allow you to store and
retrieve file information. You can use multifile devices, such as
disks and magnetic tape, to perform file I/0 and to store and
retrieve files. Other devices, such as consoles, you can use
strictly for file I/0.

Disk File Structures

Each file consists of one or more file elements. A file element is a
set of contiguous 512-byte disk blocks. (Contiguous disk blocks are
blocks with sequential addresses). The default file-element size is
four (four disk blocks per element), or whatever file-element size
you selected during the system—generation procedure. (Refer to the
"Managing AOS/VS’ manual for more information on the system—
generation procedure.) You can also specify a file-element size when
you create a file.

A0S/VS always rounds file-element sizes to the next higher multiple
of the default file-element size. For example, if you create a file
with a file-element size of five and the default file-element size is
four, AOS/VS rounds the file-element size to eight.

AOS/VS allocates disk space to a file based on its file-element size.

For example, a file with a file-element size of four "grows" in units
of four contiguous blocks.

The blocks that make up a file element are always contiguous,
although the file elements may not be. For example, a file with a
file-element size of four may consist of a number of "scattered"
4-block elements.

To keep track of each file’s file elements, AOS/VS maintains one or
more index levels for each disk file. An index is a single block
that lists the address of each file element. As a file exhausts one
index, AOS/VS provides a superior index, to a maximum of three index

levels. A pointer in each index level links that level with its
immediate subordinate. Figure 4-1 shows typical growth stages for a

file with a file—element size of four.

42 Licensed Material - Property of Data General Corp. 093-000335-00

CHAPTER 4 - FILE CREATION AND MANAGEMENT

Initial File Element

!
Block (512 bytes)-—-> | [
> Data
|
[

|
I
{ > Data
[
P

| I

| |

I I
e e e e e e e e e e e e e !
| One-Level Index |
| -1 |
!) [====> 1] I [
! / I | > Data I
et / | b [
I I A | i |
! Index \]
] \ - | !
] \====>] | !
! Il | > Data I
! | b I
! | I !
] |
| e e e e e e e ——————— —-—— -
| Two—Level Index |
[- |
| [====> 1 [|
| / | | > Data |
r e / l bl I
| [> I\ I I |
[/ Index \ |
| / \ -]
| = / \=—> [I
11 N\ |] > Data |
| Index \] 1 |
| '\ e ! I _l |
| \ —=> 1 I\ [
| Index \ - !
| \===> !
] I
|]
| |
| |

Figure 4-1. File Growth Stages

093-000335~00 Licensed Material - Property of Data General Corp. 4-3

CHAPTER 4 - FILE CREATION AND MANAGEMENT

Files with larger file-element sizes have fewer separate elements
and, therefore, require fewer index levels. Files with smaller
file—element sizes are easier to store, however, because each block

in a file element must be contiguous. (It is easier for AOS/VS to
find eight contiguous blocks, for example, than to find 500.)

The maximum size for a disk file is 2%%23 blocks. You cannot use all
the blocks in the total disk storage, however, because A0S/VS must
reserve some for index blocks, to store disk bootstraps, and for
other purposes.

Directory Creation

Generally, you group related disk files into directories for
convenience. A directory is a file that contains information about a
particular set of files. For example, you might create a directory
called PL 1 to group all PL/1 source files, or a directory called UPD
to contain all user profiles. The AOS/VS filename conventions also
apply to directory names.

A0S/VS organizes directories into a hierarchical tree structure
similar to the process tree structure. (See Figure 4-2.) The initial
directory, called the root, is superior to all others in the
hierarchy. A colon (:) represents the root.

Directory Entries

Fach directory contains a directory entry for every one of its
subordinate files. A typical directory entry contains the name of

the file, its file type, a list of the access privileges for various
users, and other information unique to the file type. For example, a

directory entry for an IPC file contains such additional information

as the PID of the process that created the file and the file’s local
port number. AOS/VS recognizes 256 different types of directory

entries, numbered from 0 through 255.

Data General reserves types 0 through 127; the user parameter files
PARU.32 and PARU.16 define these types. Users can define directory
entry types 128 through 255.

4=4 Licensed Material - Property of Data General Corp. 093-000335-00

{]
| : Root]]
I /1\ [
| /1N 1|
| / | \ [
! UTIL UDD UPD [
| /\ I I
| / \ ! \ 1
| Directory --> LANG SPEED COMMON BIFF |
! /\ SED { IAN |
! \ ! FUMBLE I
I / \ DFSHEET . P
| / \ PROGS . I
| Subdirectory----> PL 1 DG_L . . 1
[| I . f
| | | . !
[File Entries~—---> PL1.PR DGL.PR |
1 PL1.TEMP DGL. ST |
| . . |
I . . |
| . . |
| |

; ! [

N—

Figure 4-2. Sample Directory Tree

File Types

A file’s characteristics and function determine its file type.
yp

Table

CHAPTER 4 - FILE CREATION AND MANAGEMENT

4-1 lists the A0OS/VS file types.

User data files (file type ?FUDF) are not executable files.
Typically, you use ?FUDF files to store the object files or text
files you create with one of the text editors.

As Table 4-1 indicates, there are two types of program files:

0 ?FPRV files, which are developed under A0OS/VS.

o ?FPRG files, which are developed under AOS.

093-000335-00 Licensed Material - Property of Data General Corp.

CHAPTER 4 - FILE CREATION AND MANAGEMENT

Table 4~1. File Types

|Mnemonic|

?FDIR

?FCPD

?FSDF
FIPC
?FMTF

?FGFN

?FGLT
?FDKU

?FSPR

?FQUE

I
I
I
l
!
[
I
I
[
I
I
|
I
I
|
I
!
!
I
I
!
|
I
|
I
I
!
I
I
I
I
I
|
I
I
I
I
I
I
I
I
I
[
| ?FLDU
!

!

I

Text File

AOS Program File

A0S/VS Program File

Disk Directory

Control Point
Directory

Link File

Symbol Table File

User Profile File

System Data File
IPC Port Entry
Magnetic Tape File

Generic Filename

Generic Labeled Tape

Disk Unit

Spoolable Peripheral
Directory

Queue Entry

Logical Disk

Comments |

object files.

Should contain ASCII text.

Program file for use under AOS
(16-bit code).

Program file for use under A0QS/VS
(32-bit code).

None.

(See "Disk Space Control" in this
chapter.)

None.

Produced by the Link utility and
used primarily by AOS/VS.

Used by PREDITOR (user profile
editor) and EXEC.

None.

(See Chapter 7.)

None.

Refers to the generic filenames;
that is, @OUTPUT, GLIST, @DATA,
etc.

None.

None.

None.

None.

Cannot create with the ?CREATE
system call. (See "Logical
Disks" in this chapter.)

4-6 Licensed Material - Property of Data General Corp. 093-000335-00

CHAPTER 4 - FILE CREATION AND MANAGEMENT

Table 4-1. File Types (Cont.)

|Mnemonic | Type Comments

Multiprocessor
Communications Unit

system call,

Communications Line system call.

|

| |
| I]
| | |
| |]
| ?FMTU | Magnetic Tape Unit | Device you use to access magnetic
| | | tape files; cannot create with
| | | the ?CREATE system call.
| | [
| ?FLPU | Data Channel Line | Cannot create with the ?CREATE
] | Printer | system call,
| I]
| ?FNCC | [
| ?FPCC | FORTRAN Carriage | None.
?FFCC	Control
?FOCC	
?FCRA	Card Reader
]	system call.
: 7FPLA : Plotter : Cannot create with the ?CREATE	
]	
: ?FCON : Console (hard-copy : Cannot create with the ?CREATE	
	or video display)
!	
! ?FSYN | Synchronous | Cannot create with the ?CREATE
I | |
]] |

You cannot execute an AOS-written program under AO0S/VS unless you
relink it with the A0S/VS Link utility. (In some cases, you must
re-assemble or re-compile an AOS program file to execute it under
A0S/VS.) 1If you try to execute an ?FPRG program file under A0QS/VS,
it returns error code ERIFT (illegal file type).

Directory Access

Each process that runs under AOS/VS has a working directory. A
working directory is a process’s reference point in the overall
directory structure and its starting point for file access. (In
other words, your working directory is the directory you are working
in.) You can use any directory as a working directory, provided you
have proper access to it.

093-000335-00 Licensed Material - Property of Data General Corp.

4-7

CHAPTER 4 - FILE CREATION AND MANAGEMENT

In most cases, you will probably access files from your current
working directory. When you refer to a file that is not in your
working directory, you must refer to it by a pathname, unless you’ve

included the file’s parent directory in the search list for your
process.

If you want to change your working directory so that you can access
files that are not curretly in it, issue the ?DIR system call. Also,

the ?DIR system call allows you to return to your intiial working
directory after you are finished working elsewhere.

A search list is a list of directories that AOS/VS searches if it
fails to find the file that you want in your working directory. You
can use the ?SLIST system call to create a search list or to change

the contents of an existing search list. To examine your current
search list, issue the ?GLIST system call.

Filenames

A filename is a byte string that coansists of at least one, and as
many as 31, ASCII characters. The legal filename characters are:

o Uppercase and lowercase letters

0 Numerals 0O through 9

o Period (.)

0 Dollar sign ($)

o Question mark (?)

o Underscore ()

AOS/VS treats uppercase and lowercase letters alike.
| To rename a file, issue the ?RENAME system call.

In general, you can use any conventions you like to name files and
families of files. Table 4-2 lists the filename conventions used by
A0S/VS and its utilities.

4-8 Licensed Material - Property of Data General Corp. 093-000335-00

s

CHAPTER 4 - FILE CREATION AND MANAGEMENT

Table 4-2. Filename Conventions

| File Filenames End In i
I ——————— =] B e T P) l
Assembly language source files .SR
CLI macro files .CLI

Program files
Temporary files
Library files

.TMP and begin with ?

|
!
|
|
Object files | .0B
I
I
| .LB
|

g
P

You create source files for a program’s source code, and then

assemble or compile them to produce object files. One or more linked
object modules and/or library files make up an executable program
file. 1In general, you use temporary files for data that requires
only short-term disk storage.

Pathnames

A pathname specifies the exact location of a directory or file in the

file structure. For example, you could use the following pathname to

locate directory EAGLE, an entry in the superior directory PAT:
:UDD: PAT : EAGLE

Directory PAT is inferior to directory UDD, which, in turn, is
inferior to the system root, which the colon (:) represents.

A pathname can consist of:
o A prefix alone (such as a colon to indicate the system root).
o} An optional prefix followed by the name of a directory or file.

o] Pairs of prefixes and directory names or filenames.

The prefix directs A0OS/VS to a particular point in the file structure.
Table 4-3 lists the valid pathname prefixes.

093-000335-00 Licensed Material - Property of Data General Corp. 4-9

CHAPTER 4 - FILE CREATION AND MANAGEMENT

Table 4-3. Valid Pathname Prefixes

Meaning |
Start at the system root directory.
Start at the current working directory.

(Uparrow) Move up to the immediately superior directory.
(You can use more than one uparrow in a pathname.)

Start at the peripheral directory (:PER).

The peripheral directory (:PER), which is inferior to the root,
contains the names of generic filenames, which refer to classes of
I/0 devices, and the names of system devices. (See Chapter 5 for
more information on generic filenames and the peripheral directory.)

The = prefix directs AOS/VS to search only the working directory.
Generally, when a pathname has no prefix and the file that you want

is not in the working directory, AOS/VS checks the search list. The
= prefix preveuts A0S/VS from doing this.

To construct a pathname to a directory other than your working
directory, use either a single prefix, or one or more pairs of
prefixes and directory names. For example, the prefixes "~ cause
A0OS/VS to move to the directory two levels above your current working

directory. The pathname :UDD:PAT explicitly directs AOS/VS to
directory PAT, which is subordinate to both UDD and the root.

A full pathname traces the path of a particular file all the way from
the root to the file’s parent directory. The last entry in a full
pathname is :filename, where filename is the name of the file you

want to access. The following is a complete pathname to the file
GLOSSARY, which 1is an entry in directory EAGLE:

:UDD:PAT :EAGLE : GLOSSARY

Figure 4-3 illustrates the use of pathname strings for a sample
directory structure.

The ?GNAME and ?CGNAM system calls both return a file’s complete

pathname, starting with the root. However, they are not the same in
that the ?GNAME system call requires a filename or portion of a

pathname as input, while the ?CGNAM system call, requires the file’s

channel number as input. (See Chapter 5 for information on
channels.)

4-10 Licensed Material —~ Property of Data General Corp. 093-000335-00

CHAPTER 4 - FILE CREATION AND MANAGEMENT

directory B,
Locate file2

I

|

[

I

I

| UuT
! /\
I /

| Directory————————~—-———=—- > LANG

I /

| /

I /

I /

| Subdirectory----> PL 1

| |

| I

| File Entries----> PL1.PR

| PL1.TEMP

I

! Working

| Directory Pathname

I _________________

|

] D "E:file2 From working
I

I

I

: Root
/\
/ \
/ \
IL A
/\
\ / \
SPEED / \
B C
/\ I
/ \ I
/ \ file3
D E
! |
! |
filel file2

System Action

directory D, move up to
and down to directory E.
in E.

Figure 4-3. Directory

Structure

Assuming that the directory structure is the one shown in Figure 4-3,

and that D is the working directory, issuing the ?GNAME system call

would yield the following results:

Your Input

“E:file2

093-000335-00

?GNAME Output

Licensed Material - Property of Data General Corp.

4-11

CHAPTER 4 - FILE CREATION AND MANAGEMENT

The ?GRNAME system call is similar to the ?GNAME system call, except
that it returns the complete pathname of a generic file. You cannot
use the ?GNAME system call to get the "true" pathname of a generic
file. For example, given the input pathname @DATA, the ?GNAME system
call would return :PER:DATA as the complete pathname, even though the
complete pathname of the file is actually :UDD:USER:DATA. 1In this
case, the ?GRNAME system call would return :UDD:USER:DATA. (See
Chapter 5 for more information on generic files.)

Link Entries

A link entry (file type ?FLNK) is a file that contains a pathname to
another file.

Link entries act as a pathname shorthand. When you specify a link
entry in a pathname, AOS/VS substitutes the contents of the link for
its name. 1In Figure 4-3, for example, you can create a link called G
that contains the pathname :A:B:D. Thereafter, whenever you refer to
link G, AOS/VS resolves that link to :A:B:D. Link entries work
differently as input to the system calls ?CREATE and ?DELETE. The
next section discusses these two exceptions.

A prefix is optional in a link-entry pathname. If there is a prefix,
AOS/VS starts resolving the pathname at the directory that the prefix
specifies. 1If there is no prefix, A0S/VS starts resolving the
pathname at the link entry’s parent directory.

In addition to acting as pathname abbreviations, link entries serve
another purpose. A process can access a file without copying the
actual file into its working directory. To do this, the process must
include the appropriate link entry in its working directory.

Another way to avoid copying the file is to include the directory
that contains the file in a search list. This works only if no other
directory in the search list contains a file with the same name. The
?SLIST system call sets a search list for the calling process. Note
that a search list cannot contain more than eight pathnames.

One of the entries of a link can be another link. This is called a
link-to-link reference. Too many link-to-link references can cause

the system call that is referencing the link to overflow its stack.
If a stack overflow does occur, A0S/VS returns the stack overflow

error message, ERSTO.

4-12 Licensed Material - Property of Data General Corp. 093-000335-00

CHAPTER 4 - FILE CREATION AND MANAGEMENT

Because the number of link-~to~link references that you can use
depends on both your program and A0S/VS, it is impossible to predict
how many link-to-link references will cause a stack overflow.
Therefore, if a stack overflow occurs while you are using a pathname,
examine the pathname. Then, if the pathname contains link-to-link
references, remove them.

To find out what a particular link entry represents, issue the ?GLINK
system call. The ?GLINK system call is particularly useful if you

cannot decide whether to delete an existing link entry and/or create
a new one.

Use of ?CREATE and ?DELETE System Calls on Link Entries

You can use the ?CREATE and ?DELETE system calls to create and delete
link entries just as you would other files. When you apply these
calls to link entries, however, AOS/VS creates or deletes the link
itself, not its contents.

For example, suppose in directory :A you create link entry B, which
contains the pathname D:D. If you issue ?DELETE against pathname
tA:B, A0S/VS deletes link B without resolving its contents.
Directories D and E remain intact, however, as does directory A.
(Directory A is simply the "path" to link entry B.)

AOS/VS resolves a link if it is simply part of the pathname of a file
you wish to create or delete. Consider the preceding example. If
you issue ?DELETE against file C in the pathname :A:B:C, AOS/VS
resolves link B to :D:E, and then deletes file C in directory :D:E.
Again, directories A, D, and E remain intact.

File Access

To read, write, or execute a file, you must have the proper access to
it. Under A0S/VS there are five kinds of access for every file:

0o Owner access

o) Write access
o Append access
o) Read access

o Execute access

093-000335-00 Licensed Material - Property of Data General Corp. 4-13

CHAPTER 4 - FILE CREATION AND MANAGEMENT

Table 4-4 lists the access privileges and their meaning for
directories and all other file types.

Table 4~4. File Access Privileges

the file, directory in a pathname.
(This is essential if you
want to use the directory or

refer to it.)

Privilege	For Nondirectory Files] For Directories	
=======zzz=z	ss=sssssssssss oo ToRs s	SeS oS R RS S SSE R SSs SR IS S SRsamas
Owner	Allows you to change	Allows you to change the
]	the file’s ACL.	directory’s ACL, to delete
I	and/or rename its files, and	
		to initialize a logical disk
] | | (described in the next |
[| | section). |

| |
: Write : Allows you to modify | Allows you to create and/or |
| | the data in the file. | delete the directory’s files |
|] | and to modify each file’s !
! | | ACL. |
| { | !
| Append | (No meaning.) | Allows you to add files to 1
} | | the directory.]
[
Read	Allows you to examine	Allows you to list the name
	data in the file.	and file status of each file
]		in the directory.]
I [[
Execute	Allows you to execute	Allows you to name the]
	!]	
I]
! [
]]	
	!]	

Execute access is the most essential kind of access to directories,
because it allows you to use the directory name in a pathname.
Without this privilege, all other access privileges to a directory
are meaningless.

Owner access to a directory allows you to initialize logical disks in

that directory with the ?INIT system call. (See "Logical Disks" in
this chapter.)

4-14 Licensed Material — Property of Data General Corp. 093-000335~00

CHAPTER 4 - FILE CREATION AND MANAGEMENT

Access Control Lists

A0S/VS maintains a unique access control list (ACL) for every file
that is not a link entry. An ACL is an ordered list of the users who
can access the file and the type of access granted to each user.

When you try to read, write, or execute a file, A0S/VS checks your
username against each entry in the parent directory’s ACL and against
each entry in the file’s ACL.

For example, if the ACL for file GLOSSARY.CLI allows username TJ Read
and Execute access, users that log on under username TJ can execute

the file and read its data. However, these same users cannot modify
the contents of GLOSSARY.CLI or change its ACL, unless they also have
Write access to GLOSSARY.CLI’s parent directory.

There are several ways to set an ACL for a file or a directory. One
way is to use the CLI command ACL. Another way is to define a file’s
ACL from your source code via the ?CREATE, ?SACL, or ?DACL system
calls. The ?CREATE system call allows you to define the ACL along
with the other specifications for the new file or directory. The
?SACL system call allows you to set an ACL for a file or directory.

To determine a particular file or directory’s ACL, issue the ?GACL
system call. The ?GTACP system call is more specific in that it
returns the ACL for a specific file and username. If you are in
Superuser mode, the ?GTACP system call allows you to find out if a
given user has access to a particular file.

Depending on your input parameters, the ?DACL system call sets,
clears, or examines the default ACL mode for one or more processes
that have specific usernames. Default ACL mode is process specific,
rather than file specific. For example, a process can issue the

?DACL system call to turn on default ACL mode and define a specific
ACL for all files it will later create. A default ACL defined with

the ?DACL system call exists until the ?DACL caller terminates or
until it redefines that default by issuing another ?DACL system call.

The ?CREATE, ?DACL, and ?SACL system calls take the following bit
masks as ACL specifications:

Mask Meaning

?7FACA Append access
?7FACE Execute access
?7FACR Read access
?7FACW Write access
?FACO Owner access

093-000335-00 Licensed Material - Property of Data General Corp. 4-15

CHAPTER 4 — FILE CREATION AND MANAGEMENT

See the descriptions of the ?CREATE, ?DACL, and ?SACL system calls in
Chapter 13 for information on how to combine these masks.

ACL Templates

When you create an ACL, you can define access privileges for specific
usernames, or you can use ACL templates to represent certain
username/character combinations. Table 4-5 lists the valid ACL
templates and the character combinations they represent.

Table 4-5. Valid ACL Templates

example, PA* matches PAT and PAM, but not PAUL,
PA B, or PA.M.

| Template | Meaning |
] + | Matches any character strlng. For example, the ACL !
| | username specification PA+ matches any character

| | string that begins with PA, such as PAT, PAM, PAUL, |
[| PA B, and PA.M. |
I | I
| - | Matches any character string except those that contain |
] | one or more periods. For example, PA- matches PAT, [
| | PAM, PAUL, and PA B, but not PA.M. |
1 | I
[* | Matches any single character except the period. TFor |
I I |
I I |
I I |

AOS/VS scans ACL entries from left to right. Thus, you should not
place the plus sign (+) template first, because it will override more
specific templates or usernames. For example, the following ACL
specification begins with +<?FACR> (the zeros are delimiters), which
gives all users Read access only (?FACR), even though the second
element assigns Owner access to a specific username (PAT):

] +<0><?FACR>PAT<K0><?FACO><0>

4-16 Licensed Material - Property of Data Gemeral Corp. 093-000335-00

CHAPTER 4 - FILE CREATION AND MANAGEMENT

The Permanent Attribute

Any user with Owner access can easily delete a directory or file.
Therefore, A0OS/VS provides the permanent attribute for additional
protection.

The permanent attribute prevents users from deleting a directory or
file, regardless of its ACL. The ?SATR system call sets the
permanent attribute, or removes it, if the target directory or file
already has permanent status. The ?FSTAT system call returns various
information about a directory or file, including whether or not it
has the permanent attribute.

If you set the permanent attribute for a file, you should also set it

for the file’s parent directory. Otherwise, a process can delete the
file by deleting the parent directory.

Logical Disks

A logical disk (LD) is one or more physical disk units that you treat
as a single logical unit. Fach file is completely contained within a
single LD.

Each LD is a complete collection of disk space that coantains a
directory tree structure. In fact, each LD has a single directory
called the local root. It is the local root that acts as the
foundation for constructing a directory structure. You specify an
ACL for the local root when you construct the LD.

When you bootstrap A0S/VS, you select one LD as the Master LD. The

root of this LD becomes the system root, which is identified by the
colon (:).

Before you can use any LD except the Master LD, you must initialize
it with the ?INIT system call or the CLI INITIALIZE command. To use
the ?INIT system call, you must have Owner access to the LD’s local

root directory. The ?INIT system call grafts the LD’s local root to
a specified directory. (See Figure 4-4.)

No disk structure can have more than eight directory levels,
excluding the local rvoot (directory level zero).

093~-000335-00 Licensed Material -~ Property of Data General Corp. 4-17

CHAPTER 4 — FILE CREATION AND MANAGEMENT

Master LD (before ?INIT)

:{-~-—-system root
|
I

UTIL

/\

/ \
/ \
DGL FORT4

Assume that the LD to be initialized is LD ALPHA. ALPHA’s local
root, directory UDD, contains two inferior directories: USERA

|
l
I
[
|
|
I
|
|
!
!
|
I
I
| and USERB. If you issue the ?INIT system call for ALPHA, and you
| specify 0 in ACl, AOS/VS grafts ALPHA to the system root, and the
| directory tree becomes:
I
|
I
|
I
]
!
I
|
I
|
I
|
|

Master LD (after ?INIT)

:{~——-system root
!
I
/ A\
/ \
/ \
UTIL UunD
/\ /\
/ \ / \

DGL FORT4 USERA USERB

Figure 4-4. 1Initializing a Logical Disk

An LD remains initialized until you release it by issuing the
?RELEASE system call. You may want to release an LD to remove its

component volumes from the disk drives and mount other volumes ounto
those disk drives.

4-18 Licensed Material - Property of Data General Corp. 093-000335-00

CHAPTER 4 - FILE CREATION AND MANAGEMENT

Disk Space Control

You can control how A0OS/VS allocates disk space by designating
certain directories in an LD as control point directories (CPDs).
CPDs function exactly like other directories, but they contain two
additional variables:

o Current space (CS), which is the amount of space currently
allocated.

o] Maximum space (MS), which is the maximum amount of space
available in the directory.

Current space (CS) is the current number of disk blocks occupied by
the CPD and all its inferior files, except for files in an inferior
LD. When you create a CPD, A0S/VS initializes CS to zero. Maximum
space (MS) is the maximum number of disk blocks available to the CPD

and all its inferior files, except for files in an inferior LD. To
specify MS, issue the ?CPMAX system call.

Each LD’s local root is a CPD. Thus, a local root’s CS is the total
space currently used in the LD, and its MS is the maximum number of
disk blocks the LD can contain.

CPDs restrict a file’s disk space to a predefined limit. When a file
requires more disk space, A0S/VS first checks the MS and CS of its
CPD. AO0S/VS allocates more disk space to that file only if it can do
so without causing the CPD’s CS to exceed its MS. 1If a file’s
pathname contains more than one CPD, A0S/VS compares the CS to the MS
at every point, starting with the CPD closest to the file.

Figure 4-5 shows a simple directory structure with two CPDs.

Assume that the LD root and directory CPl in Figure 4-5 are CPDs. If
filel needs an additional n blocks, A0S/VS first adds n to the CS of
CPl, which is the control point closest to filel. If CS+n is greater
than the MS for CPl, any attempt to allocate additional space for
filel will fail.

If CS+n is less than or equal to the MS for CPl, AOS/VS checks the
next control point, in this case the LD root. AO0S/VS adds n to the
CS for the root. 1If CS+n is less than or equal to the MS at this
level, then A0S/VS allocates the additional disk blocks; otherwise,
the allocation attempt fails.

093-000335-00 Licensed Material - Property of Data General Corp. 4-19

CHAPTER 4 - FILE CREATION AND MANAGEMENT

LD Root

I
I
control point CP]

/ \
/ \
/ \
directory A directory B
| |
| |
:CPl:A:filel :CPl:B:file2

Figure 4-5. Control Point Directories (CPDs)

When you create a CPD, AOS/VS does not initially check its MS against
those of the other CPDs in the file tree. 1In fact, A0S/VS pernmits
oversubscription, as long as the tree’s total CS does not exceed the
MS in any superior control point, up to and including the local root.
Note that you cannot set a CPD’s MS to less than its CS.

4-20 Licensed Material - Property of Data General Corp. 093-000335-00

CHAPTER 4 -~ FILE CREATION AND MANAGEMENT

File Creation and Management Sample Programs

The following program, FILCREA, opens the console and asks you for
the name of the file you want to create. Then, if the file already
exists, FILCREA deletes the file and recreates it for you.

.TITLE FILCREA
«ENT FILCREA

«NREL
FILCREA:?0PEN CON ;0pen CON (console) for I/0.
WBR ERROR sError out.
7WRITE CON ;Write message.
WBR ERROR ;Quit.
XLEFB 0,BUF*2 ;Get byte pointer to buffer.
XWSTA 0,CON+?IBAD ;Put in I/0 packet.
7READ CON ;Read filename.
WBR ERROR ;Quit.
CREATE: ?CREATE CPKT ;Create file (ACO still
;contains byte pointer to
;filename.)
WBR TEST ;Try to handle the error.
7WRITE CON sEcho the filename.
WBR ERROR ;Quit.
XLEFB 0,TMES#*2 ;Get byte pointer to
;confirmation message.
XWSTA 0, CON+?IBAD sPut in I/0 packet.
?WRITE CON ;Display confirmation message
;on console.
WBR ERROR ;Quit.
WSUB 2,2 ;Good return flags.
?RETURN ;Return to the CLI.
WBR ERROR ;s 7RETURN error return.
sHere we deal with errors from ?CREATE.
TEST: WLDAT ERNAE, 2 ;Is the error code
WSEQ 2,0 ;""file name already exists'?
WBR ERROR ;No. Report error and quit.

093-000335-00 Licensed Material - Property of Data General Corp. 4-21

CHAPTER 4 - FILE CREATION AND MANAGEMENT

FILCREA Program (Cont.,)
;File already exists. Delete it and start again.
XLEFB 0,BUF*2 ;Get byte pointer to buffer.
?DELETE ;Delete file.
WBR ERROR ;NOW what?
WBR CREATE ;Resume processiung.
sAll errors except those from ?CREATE come here. We just return with
;an error code.
ERROR: WLDAI ?RFEC! ?RFCF! ?RFER sError flags: Error code is
;in ACO (?RFEC), message is
;in CLI format (?RFCF), and
;caller should handle this as
;an error (?RFER).
?RETURN ;Return to the CLI.
WBR ERROR ; 7RETURN error return.
; 7CREATE packet.
CPKT': «BLK ?CLTH ;Allocate enough space for
;packet. -
.10C CPKT+?CFTYP ;Record type in left byte and
.WORD ?0RDS*400! ?FUDF ;data type in right byte.
.LOC CPKT+?CCPS ;File control parameters.
«WORD 0 ;Ignore.
.LOC CPKT+?CTIM ;Address of time block.
.DWORD -1 ;Set all values to current
;time (default is -1).
.L0OC CPKT+?CACP ;Set up byte pointer to ACL.
.DWORD ACL*2
.LOC CPKT+?CDEH sReserved
.WORD O ;Set to 0.
.LOC CPKT+?CDEL ;File element size.
+WORD -1 ;Set to default.
.L0OC CPKT+?CMIL sMaximum number of index
«WORD -1 ;levels. Default.
.LOC CPKT+?CLTH ;End of packet.
ACL: .TXT "Username<0><?FACO!?FACW! ?FACR><0>" ;Set ACL to OWR. -/

4-22 Licensed Material - Property of Data General Corp. 093-000335-00

CHAPTER 4 - FILE CREATION AND MANAGEMENT

FILCREA Program {(Cont.)

;Open an I/0 packet for the coansole.

CON:

«BLK

.LOC
«WORD

. LOC

«WORD

.LOC
«DWORD

.LOC
«WORD

.LOC
«.DWORD

.LOC
« DWORD

.LOC

?IBLT ;Allocate enough space for
s packet.,

CON+?ISTI ;File specifications.

?ICRF!?RTDS!?0FI0 ;Change format to data-

;sensitive records and open
;for input and output.

CON+? IMRS ;Physical block size (in
;bytes).

-1 ;Default to 2K bytes.

CON+?IBAD ;Byte pointer to record I/0

ITEXT*2 ;buffer.

CON+?71RCL

120. ;Record length is 120
;characters.

CON+?IFNP ;Byte pointer to pathname.

CONS*2

CON+?IDEL ;Delimiter table address.

-1 ;Use default delimiters: null,

sNEW LINE, form feed, and
;carriage return.

CON+?IBLT ;End of packet.

;Filename, message, and buffer.

CONS:

ITEXT:

BUF:

TMES:

+TXT "@CONSOLE" ;Use generic name.

.TXT "Type filename of file you want to create.

.BLK

JTXT "

«NOLOC

.END

093-000335-00

”

50. ;Allocate enough space for
;buffer.

created with ACL of WSR.<L12>"
0

FILCREA ;End of FILCREA program.

End of Chapter

Licensed Material - Property of Data General Corp. 4-23

CHAPTER 5
FILE INPUT/OUTPUT (1/0)

The file I/0 system calls are:

?7ALLOCATE
?ASSIGN

?CLOSE

?CRUDA
?DEASSIGN

?GCHR

?GCLOSE
?GECHR

?GOPEN
7GPOS
?GTRUNCATE
?LABEL
?0PEN
?PRDB/ ?7PWRB

?RDB/ ?WRB
?RDUDA

?READ

?RELEASE
?SCHR

?SDLM
?SECHR

?SEND

?SPOS
?STOM

?TRUNCATE

?UPDATE
WRITE
?WRUDA

Allocates disk blocks.

Assigns a device to a process for record I/0.
Closes a file previously opened for record I1/0.
Creates a user data area (UDA).

Deassigns a character device.

Gets the characteristics of a character device.
Closes a file previously opened for block I/0.
Gets extended characteristics of a character
device.

Opens a file for block 1I/0.

Gets the file pointer position.

Truncates a disk file (block I/0).

Creates a label for a magnetic tape.

Opens a device for record I/0.

Performs physical block I/0.

Performs block I/0.

Reads a user data area (UDA).

Reads a record for record I/0.

Releases an initialized logical disk (LD).

Sets the characteristics of a character device.
Sets delimiter table.

Sets extended characteristics of a character
device.

Sends a message to an operator.

Sets the position of the file pointer.

Sets the time-out value for a device.

Truncates a disk file or magnetic tape file (record

1/0).

Flushes file descriptor information.
Writes a record for record I/0.
Writes a user data area (UDA).

093-000335-00

Licensed Material —~ Property of Data General Corp.

CHAPTER 5 - FILE INPUT/OUTPUT (I/0)

Writing to or reading data from a device is called file input/output
(I/0). Before you can use file I/0 system calls, you must understand
file I/0. Therefore, this chapter is divided into the following

ma jor sections:

[0}

5-2

File I/0 Concepts

This section defines blocks, records, and channels, describes how
AOS/VS stores and accesses files, and describes the steps that
you normally perform to use file I/0. (See "I/O Concepts.")

Block I/0

This section describes block 1/0 and how it allows you to access
a file directly controlling the device on which the file exists.
(See "Block I/0.")

Physical Block TI/0

This section describes physical block I/0 and how it is a
low-level form of block I/0 that only allows you to access disk
files. (See "Physical Block I/0.")

Record I/0

This section describes record I/0 and how it allows you to access
a file without knowing on which device that file exists. (See
"Record 1/0.")

I1/0 device sections

The I/0 device sections describe the I/0 devices and how to use
them to perform file I/0. (See "Device Names," "Generic
Filenames," "Labeled Magnetic Tapes," "File I/0 on Labeled
Magnetic Tapes," "File I/0 on Unlabeled Magnetic Tapes,"
"Multiprocessor Communications Adapters (MCAs), "Character
Devices," "Line-Printer Format Control," and "The IPC Facility as
a Communications Device.")

Sample Programs
This section contains assembled listings of two sample programs

that illustrate the use of various file I/0 system calls. (See
"Sample Programs.")

Licensed Materfial - Property of Data General Corp. 093-000335-00

\v’

CHAPTER 5 - FILE INPUT/OUTPUT (I

File I/0 Concepts

This section defines blocks, records, and channels, describes how
A0S/VS performs file I/0, and describes the file I/0 operation
sequence.

Blocks and Records

A0S/VS stores files (data) in physical units called blocks. 1In
general, there are two methods of accessing these files:

o Block I/0
o Record I/0

Block I/0 system calls allow you to directly access the blocks in
which your files are stored. Blocks vary in size from device to
device. Therefore, when you access a file using a block I/0 system
call, you must specify the block size, the starting block number, and
exactly how many blocks you want to transfer.

Record I/0 system calls allow you to indirectly access the blocks in
which your files are stored. When you issue a record I/0 system
call, AOS/VS sees the file as a collection of logical units called
records. Then, A0S/VS selects the correct file and records based on
the record type that you specified when you created the file. The
record type defines the format of a file’s records. AOS/VS uses this
information along with other parameters, such as the file’s pathname,

to associate physical blocks on a device with a certain file and its
records.

Channels

File 1/0, which includes both block I/O and record I/0, takes place
across paths called channels. When you issue a system call to open a
file, AQS/VS assigns the file a channel and a unique channel number

to identify that channel. The mnemonic ?LOCHN represents the lowest
possible channel number and the mnemonic ?HICHN represents the
highest possible channel number.

To disassociate a channel number from a file, close the channel.
When you close a channel, it becomes unavailable for further file

I/0. A0S/VS assigns a new channel number every time you reopen the
file.

093-000335-00 Licensed Material -~ Property of Data General Corp.

/0)

5-3

CHAPTER 5 - FILE INPUT/OUTPUT (I1/0)

File I/0 Operation Sequence

File I/0 usually involves performing the following steps:

l. Open the file with the ?0PEN system call (for record I/0) or the
?GOPEN system call (for block I/0).

2. Read or write the file data with the ?READ/?WRITE system call
(for record I/0) or the ?RDB/?WRB system call (for block I/0).

3. Close the file with the ?CLOSE system call (for record I/0) or
?GCLOSE system call (for block I/0).

The sequence for block I/0 is similar to the sequence for record I/0.
(See Table 5-1.)

Table 5-1. File I/0 Operation Sequence

Block I/0 Call |

Open the file. ?70PEN ?GOPEN

| |
|]
] |
Read or write.] ?READ/?WRITE | ?RDB/?WRB
Close the file. | ?CLOSE | ?GCLOSE
| |

Many file I/O system calls require a packet of file specifications.
In general, the ?0PEN, ?READ, ?WRITE, and ?CLOSE system calls use
similar specification packets, as do the ?GOPEN, ?RDB, ?WRB, and
?GCLOSE system calls. However, some packet offsets and masks apply to
certain system calls only. For example, the Exclusive Open option
applies to the ?0PEN system call, but not to the ?READ, ?WRITE, or
?CLOSE system calls. At various points in the file I/0 cycle, you
can change certain information in the file specification packet.

You can open a file repeatedly without issuing a ?CLOSE system call
after each ?0PEN system call. AOS/VS maintains an open count for each
?0PEN system call and closes the file only when the open count equals
zero.

The Creation option in the ?0PEN packet allows you to simultaneously

create and open certain file types. Table 5~2 lists the file types
you can create with this option. When you select the creation option
and default the file type parameter in the ?0PEN packet, AOS/VS

5-4 Licensed Materfial - Property of Data General Corp. 093-000335-00

CHAPTER 5 - FILE INPUT/OUTPUT (I

creates the new file as a user data file (type ?FUDF). You generally
use user data files for storing text, data, and variables. User data
files are not executable program files.

Table 5-2. File Types You Can Create with the ?0PEN System Call

|File Type]| Meaning] Comments

User Data File | This is the default file type. (To
take this default, set the right byte
of offset ?ISTO to 0.)

This type of file should contain ASCII

7FTXT Text File
code.
?FPRV 32-bit This type of file is an executable
Program File 32-bit program file; it should contain
linked, executable code.
?FPRG 16-bit This type of file is an executable

Program File 16-bit program file; it should contain

linked, executable code.

create this type of file, you can
default only the following parameters:
hash frame size, maximum number of
index levels, and access control list.

?FIPC IPC File This type of file directs AO0S/VS to
create an IPC file or open an existing
IPC file to allow full-duplex
communications between two processes.

7FCPD Control Point Although you can use the ?0PEN system

Directory call to create a control point
directory, we recommend that you use

the ?CREATE system call instead.

[| |
[[|
| |]
! [|
] ! |
] I I
! !]
|] |
| | |
] | [
| | I
| !]
| | [
| ! |
I | |
] ?FDIR | Disk Directory | If you use the ?0PEN system call to
! | |
! [|
| [|
| | |
| |]
] |]
| | [
| | |
] | |
| | |
| | !
! ! |
] | |
]] |
| I |

Unless you have Exclusively Opened a file (an option available in the
?0PEN packet), more than one process with Write access can update any
record in the file simultaneously.

093-000335-00 Licensed Material -~ Property of Data General Corp.

/0)

5-5

CHAPTER 5 - FILE INPUT/OUTPUT (I/0)

By issuing the ?UPDATE system call, you can guarantee the integrity
of all previous ?WRITE system calls issued against a file if the
system crashes while that file is still open. The ?UPDATE system
call flushes memory-resident file descriptor information to disk.
Note, however, that the ?UPDATE system call does not write a file’s
data to disk, just its file descriptor information.

File Pointer

To manage repeated I/0 sequences, AOS/VS maintains a separate file
pointer for each open channel. The file pointer keeps track of the
character position for the next read or write sequence on a file.

When you open a file, AOS/VS positions the file pointer, by default,
to the first character (byte) in the file. A0S/VS then moves the
file pointer forward as it reads or writes each record or byte
string. Three ways to override the default position of the file
pointer are:

o Select the Append option in the ?0PEN packet (?APND in offset
?21ISTI).

This option moves the file pointer to the last byte in the file,
which allows you to append data with the ?WRITE system call.

0 Manipulate the file pointer in the ?READ or ?WRITE packet during
an I/0 sequence. .

o Issue the ?SPOS system call to reposition the file pointer
without performing I/0.

The ?GPOS system call returns the current position of the file
pointer. The ?TRUNCATE system call deletes all data that follows the
file pointer in a disk file, and writes two end-of-file marks after
the file pointer in a magnetic tape file.

Block I/0

Block I/0 means reading or writing files that exist on a device in
physical units called blocks. The sizes of these blocks vary from
device to device. (See "I/0O Devices and Generic Filenames" for
information on devices.)

To perform block I/0 on a file, you must know the number of blocks

you want to transfer (block count), the starting block number, and
the block length (number of bytes per block). You specify this

5-6 Licensed Material - Property of Data General Corp. 093-000335-00

—

CHAPTER 5 — FILE INPUT/OUTPUT (I/0)

information in a block I/0 packet. (See the description of the ?RDB
and the ?WRB system calls for the packet structure.) The ?GTRUNCATE
system call allows you to reduce the size of a disk file that is
currently open for block I/0.

The ?ALLOCATE system call allocates blocks for specified data
elements and zeroes those data elements that do not actually exist.
You can use the ?ALLOCATE system call to make sure that subsequent
I/0 will not cause a calling process to exceed its control point

directory’s maximums. (See Chapter 4 for information on control
point directories.)

Physical block lengths vary from device to device. To find the block
length for a particular device, refer to the ‘Programmer’s Reference
Peripherals’ manual. The standard block length for disks is 512
bytes. Magnetic tape block length is whatever length you specify
when you issue the ?GOPEN system call. You must specify an MCA
unit’s block length with each read or write operation.

Physical Block I/0

AOS/VS supports physical block I/0 for disks. Physical block I/0 is
more primitive than block I/0. To perform physical block I/0, you
must issue the system calls ?PRDB (read physical blocks) and ?PWRB
(write physical blocks.) These system calls require a packet that is
similar to the packet for the ?RDB and ?WRB system calls, but that
also includes a packet extension.

Physical block I/0 allows you to bypass A0S/VS’s usual retries for
disk errors. You can also use the ?PRDB or the ?PWRB system call to
check for bad blocks on a disk, or for problems with an I/O device.
When AO0S/VS encounters a bad block (traansfer error) while it is
executing a ?PRDB/?PWRB system call, it takes the normal return, but
flags the bad block and reports the reason for the error in the
?PRDB/?PWRB packet. When a device error occurs during a ?PRDB/?PWRB
system call, A0OS/VS performs the block transfer, but returns the
device error code to the ?PRDB/?PWRB packet.

In summary, physical block I/0 differs from block I/0 in that
physical block I/0 has:

o No remapping.
If a physical block transfer fails because of a bad block, A0S/VS

continues to read or write the additional blocks, and then takes
the normal return from the ?PRDB or ?PWRB system call.

093-000335-00 Licensed Material -~ Property of Data General Corp. 5-7

CHAPTER 5 - FILE INPUT/OUTPUT (I/0)

Offset ?PRBB of the system call packet indicates the relative
block number of the last good block (successful transfer), and
offset ?PCSl indicates the reason for the error. (Under standard
block I/0, A0S/VS avoids bad blocks by referring to the bad block
table that the DFMTR utility built when it formatted the disk.
(Refer to the ‘Managing AOS/VS’ manual for more information about
the disk formatter and formatting procedures.)

o} No retries.

If a physical block transfer fails, AOS/VS does not try to read
or write the block(s) again. (This is different from block I/0
in which A0S/VS retries the block read or block write.)

o No ECC corrections.

If data errors occur during a physical block transfer, AOS/VS
completes as much of the transfer as possible, and takes the
normal return from the system call. Packet offset ?PRBB contains
the relative block number of the last good block, and offsets
?PCS3 and ?PCS3 contain the error-correction code (ECC) words for
that particular device.

?PRDB and ?PRWB work in conjunction with the assembly language block

status instructions DIA, DIB, and DIC. (For details on the syntax
and function of these instructions and the error-correction codes for

devices, refer to the ‘Programmer’s Reference Peripherals’ manual.)

Record 1/0

Record I/0 means reading or writing files that exist on a device in
logical groupings called records. There are four types of records:

o Dynamic-length

When you read to or write from a file that contains
dynamic-length records, you must specify the length of each
dynamic record in that file.

o Fixed-length
When you read to or write from a file that contains fixed-length

records, you must specify a record length that is common to every
record in that file.

5-8 Licensed Material - Property of Data General Corp. 093-000335-00

CHAPTER 5 - FILE INPUT/OUTPUT (I/0)

o) Data—-sensitive

When you read to or write from a file that contains data-
sensitive records, you must specify the maximum record length in
offset ?IRCL of your I/0 packet. Then, AOS/VS transfers data
until it either encounters a delimiter or reaches the maximum
record length that you specified. 1In the latter case, your I/0
system call fails and returns error code ERLTL (line too long) in
ACO.

The default delimiters are: NEW LINE, CR (carriage return), NULL,
or FORM FEED. You can override the default delimiters by
specifying a 16-word delimiter table when you open the file or by
issuing the ?S5SDLM system call after you open the file.

o Variable-length

When you read to or write from a file that contains
variable-length records, you must specify the length of each
record in a 4-byte ASCII header. This means that each record in
a single file can be a different leangth.

Device Names

During system initialization, A0OS/VS records the names of all
available I/0 devices in its peripheral directory, :PER. Because the
standard device names are not reserved words, you must precede each
one with the prefix @. As a pathname template, @ represents the :PER
directory. Thus, when you use @ as a filename prefix, AOS/VS
recognizes the filename as either a device name or a generic
filename. (See "Generic Filenames." Also, see Table 5-3 for a
complete list of the A0S/VS devices and their device names.

The peripheral directory (:PER) also contains generic filenames.
Generic filenames are names that refer to devices or files of a

particular type, such as input files, output files, and list files.

Generic filenames represent common classes of devices and files. By
coding with generic filenames, you can change the filenames
associated with the generic names without recoding the program. For
example, you might code a program with the generic filename @LIST to
represent the list file. Then, before you execute the program, you
can set the list file to a specific filename.

093-000335~00 Licensed Material - Property of Data General Corp. 5-9

CHAPTER 5 - FILE INPUT/OUTPUT (I/0)

Table 5-3. AO0S/VS Devices and Device Names

| Name Device]
I P —-‘—"—_—==========_._--.====_—_-—————================= I
ALM Asynchronous Line Multiplexor.
@CoNO System Control Processor (SCP).

@CON2 through
@CONn

DASHER® display consoles or asynchronous
communications lines 1 through n on Lines 0

through n-2 (for example, CON2 is on Line O,
CON3 is on Line 1, etc.).
@CRA and @CRAl First and second card readers.

@KB0O through
@DKB6

6063 or 6064 fixed-head disk unit 0 through 6.

!

I

I

I

[

I

I

[

[

|

I

I

I

I

!

I

| Moving-head disk units 0 through 7 on the first
@DPN17 | controller, and 10 (octal) through 17 (octal) on
| the second controller where n is a single
I
I
I
I
!
I
|
I
|
|
|
!
!
I
I
I
I
I

alphabetic character that indicates the disk
unit type. (Refer to the ’‘Managing AOS/VS’
manual for descriptions of these types.)

@LpPB, @LPB1
through @LPB7

Data channel line printers 0 through 17.

@LMT Labeled magnetic tape.

I

I

I

I

I

!

|

]

I

!

l

|

I

I

| @PNO through
]

|

!

I

|

|

|

I

|

I

I

| @MCA, @MCAl Multiprocessor communications adapter
| controllers (unit names).

|

| @MTBO through
| @MTB17

Magnetic tape controller units O through 7 on
the first controller, and 10 (octal) through 17
(octal) on the second controller.

I
]@PLA and @pPLAI
!

First and second digital plotters.

5~10 Licensed Material - Property of Data General Corp. 093-000335-00

CHAPTER 5 - FILE INPUT/OUTPUT (1/0)

Table 5-4 lists the six generic filenames and the files they
represent.

Table 5-4. Generic Filenames

| Filename | Refers To |
| GGONSOLE | Any fnteractive device associated with a process |
| | (usually a CRT console). !
: @LIsT : A mass output file. :
: @INPUT : A command input file. :
: @oUTPUT : Any output file. :
: @DATA : Any mass input file. :
: @NULL : A file that remains empty. :
| ! !

Like device names, generic filenames requires the @ prefix.

For an interactive process, your console usually serves as both the
@INPUT and the @GOUTPUT file. @NULL is not a strict generic filename,
in that you cannot associate it with an actual pathname. When you
write data to the @NULL file, AOS/VS does not output the data to any
other file or device. When you try to read the @NULL file, AOS/VS
returns an end-of-file condition.

When you create a process with the ?PROC system call, you can set any

generic filename except @NULL to a specific pathname. For example,
you can set a process’s @QLIST file to the following pathname:

:UDD:USERNAME :MYDIR:LPT

where:
o MYDIR is the current working directory

o LPT is the list file

093-000335~00 Licensed Material — Property of Data General Corp. 5-11

CHAPTER 5 -~ FILE INPUT/OUTPUT (I/0)

The ?PROC packet provides the following parameters for generic
filename associations:

Offset Generic Filename
?PCON @CONSOLE
?PIFP @INPUT

?POFP @QovuTPUT
?PLFP @LIST

?PDFP @DATA

The ?PROC packet also allows the ?PROC caller to pass its own generic

filename associations to a newly created son. (See the description
of the ?PROC system call in Chapter 13 for more information on the

?PROC packet.)

Usually, AOS/VS copies the data it reads from the @INPUT file to the
@UTPUT file. However, if QINPUT and @OUTPUT are both consoles, then
the @INPUT function echoes data to the @OUTPUT console. The

generic filenames @INPUT, @OUTPUT, and QLIST acquire all the
characteristics of the devices associated with them. For example, if
you associate the generic @LIST file with the line printer, a
separate listing prints each time you open and close @LIST or any
other file.

The @DATA file is similar to the @INPUT file, except that it does not
copy data to the @OUTPUT file.

Multiprocessor Communications Adapters

AOS/VS supports type 42006 Multiprocessor Communications Adapters

(MCAs). The I/0 protocol that A0S/VS uses for these devices is the
same MCA protocol that Data General’s A0S, RDOS, and RTOS operating
systems use.

Each MCA enables two or more central processing units (CPUs) to
communicate across a data channel. The MCA units are connected by

hardware links. A single MCA can connect a CPU to as many as 14
other CPUs. By adding a second MCA (MCAl), you can connect another

15 CPUs.

5-12 Licensed Material - Property of Data General Corp. 093-000335-00

CHAPTER 5 - FILE INPUT/OUTPUT (I/0)

Each MCA link consists of two devices: an MCAT, which transmits data
from one processor to another, and an MCAR, which receives the data.
The MCA pathname takes the following forms:

@MCAT :n
@MCAT!:n
@MCAR:n
@MCAR1:n

where n is the number of the MCA link, in the range from O
through 15

The link number indicates which remote CPU you are communicating with
when your local CPU is linked to more than one remote CPU.

Character Devices

Character devices are devices that perform I/0 in bytes. CRT and
hard-copy consoles are typical character devices.

Character devices can operate in one of two modes: binary mode or
text mode. Text mode is the default, but you can specify binary mode
when you issue a ?READ or a ?WRITE system call against the device.
When a character device is in binary mode, A0OS/VS recognizes only
delimiters. Therefore, A0S/VS passes each byte of any other
character without interpretation.

When a character device is in text mode, AOS/VS interprets each byte
according to the device’s characteristics, or distinguishing
features. The device characteristics include:

o The line length of the output.

o] Whether the device is ANSI standard or non—ANSI standard.

o) Whether the device echoes characters.

o] Whether the device uses hardware tab stops or form feeds.

To qualify text mode further, you can set the character device to the

Page Mode characteristic. When a character device is in page mode,
AOS/VS automatically stops its output at the line length (lines per
page) you specify, or when it encounters a FORM FEED character.

To display the next page while the device is in page mode, type the !
CTRL-Q console control character. (See '"Console Format Control" in |
this chapter for a description of the console coantrol characters.) |

093-000335-00 Licensed Material ~ Property of Data General Corp. 5-13

CHAPTER 5 -~ FILE INPUT/OUTPUT (I1/0)

The ?GCHR and ?GECHR system calls return the current characteristics
of a character device and the extended characterstics of a character
device, respectively. The ?SCHR and ?SECHR system calls set or
remove device characteristics or extended device characteristics,
respectively, depending on your input specifications.

To define characteristics for a character device, you must set
certain characteristic flags in a 4-word buffer in AC? when you
issue the ?GCHR system call or the ?GECHR system call. Usually, you

will probably set characteristic flags in the first three words of
this buffer. If you set characteristic flags in the fourth word,
Word 3, then you are setting an "extended" characteristic.

The extended characteristics control XON/XOFF data flow over console
lines. By setting the following extended characteristics, you can

prevent character loss when the host computer or line device input
buffer is overfilling:

Extended Characteristic
(in Word 3) Meaning

?XIFC Console line is enabled to recognize
CTRL~S interrupts from the host
computer. The console line stops
sending data until the host computer
issues CTRL~Q.

?X0FC Console line is enabled to send CTRL~-S
interrupts to the host computer; the
host computer stops sending data until
the console line issues CTRL-Q.

(This is useful on D400, D450, or G300
graphics console lines.)

The initial operator process (PID 2) can override characteristics
that were set during the system—generation procedure. However, if
you are not PID 2, you can only set the modem control and monitor
ring indicator characteristics during the system—generation

procedure. (For more information on the system-generation procedure,
refer to the “"Managing A0S/VS’ manual.)

The ?SEND system call allows you to pass a message from a process to
a console without opening and closing the console. This means that
you can pass messages from real-time processes without consoles to a
system process, such as OP CLI.

5-14 Licensed Material - Property of Data General Corp. 093-000335-00

CHAPTER 5 - FILE INPUT/OUTPUT (I/0)

Full-~Duplex Modems

A full-duplex modem is a communications device that translates analog

signals to digital signals, and vice versa, over telephone lines.
A0S/VS supports 1/0 over full-duplex modems, which AOS/VS treats as
character devices.

You must define modems and set the modem control characteristic
(?7CMOD) during the AOS/VS system—generation procedure. You cannot
set or remove this characteristic with the ?SCHR system call.

AOS/VS supports both auto-answer modems and non—auto-answer modems.

The following sections describe the operating procedures for each
modem type. Table 5-5 lists the flags used in modem operation.

Table 5~5. Modem Flags

data.

| Flag | Meaning

| CD { Carrier detect; if set, the communications line is

| | conditioned for data transmissions.

I |

| DSR | Dataset ready; if set, A0S/VS is connected to a

| | communications line.

I !

| DTR | Data console ready; if set, AOS/VS is ready to connect
] | with a remote user.

| |

| RTS | Request to send; if set, A0S/VS has made a request to send
| I

! I

The following steps summarize the operating sequence for auto-answer
modems :

1. During modem initialization, both DTR and RTS are off, which
indicates that the modem is off.

2. Upon execution of the first ?0PEN system call, AOS/VS sets DTR
and RTS, and changes the modem status to on.

093-000335-00 Licensed Material - Property of Data General Corp.

5-15

CHAPTER 5 — FILE INPUT/OUTPUT (I/0)

3. No I/0 will take place until both DSR and CD are on, which
indicates that the modem is connected.

4. The I/0 call terminates with an error return if DSR lapses during
the 1/0 sequence, or if CD lapses for more than 5 seconds.

Non-Auto-Answer Modems

If you are receiving data over a non-auto-answer modem, and you are
not PID 2, which can override characteristics set during the
system—generation procedure, you can select the Monitor Ring
Indicator characteristic during the system—generation procedure.
This characteristic appears as parameter ?CMRI in the second device

characteristics word. (See the descriptions of the ?GCHR and ?SCHR

system calls in Chapter 13.) Like the ?CMRI characteristic, you can
only set the ?CMOD characteristic during the system—generation
procedure, unless you are PID 2.

A0S/VS uses the Monitor Ring Indicator to detect incoming calls
(rings) to a non-auto-answer modem. If you select the riung-indicator
option, A0S/VS begins monitoring the ring indicator as soon as you
open the local modem—controlled device. When a remote user places a
call to your device, the hardware signals a modem interrupt and sets

the ring indicator. A0S/VS then raises the DTR flag and sets a
timer. If A0S/VS does not detect a DSR signal and a valid carrier
signal within 5 seconds of the modem interrupt, it posts a disconnect

against the line. When this occurs, you must close the
modem—controlled device and re-open it.

The following steps summarize the operating sequence for
non—-auto-answer modems with the Monitor Ring Indicator option:

l. During modem initialization, both DTR and RTS are off, which
indicates that the modem is off.

2. Upon execution of the first ?0PEN system call to the
modem—controlled device, AOS/VS begins monitoring the ring
indicator, provided you selected this characteristic (?CMRI)
during the system—generation procedure.

3. When a remote user places a call, the MV/8000 hardware signals an

interrupt for the local modem and sets the ring indicator; AOS/VS
then sets the DTR flag and starts the ring indicator timer.

5-16 Licensed Material - Property of Data General Corp. 093-000335-00

CHAPTER 5 - FILE INPUT/OUTPUT (I1/0)

A0S/VS begins checking for a DSR signal and a CD signal; if these
occur within 5 seconds of the modem interrupt, the modem is
connected; otherwise, the system posts a disconnect against the
line.

No I/0 takes place until the modem is connected.

1/0 terminates with an error return if the modem becomes
disconnected during the I/0 sequence; this state occurs when

either the DSR flag changes from on to off, or the carrier signal
lapses for longer than 5 seconds.

NOTE: If you have selected the ring-indicator option,
you cannot use the communications line for
manual dial-outs. To use the line for manual
transmissions, you must generate it again,
without the ring-indicator option.

Card Readers

A0S/VS also recognizes card readers as character devices. The
following steps summarize how A0S/VS handles these devices:

l.

5

When you open a card reader, AOS/VS starts it for input. The
card reader then reads ahead as many cards as wil fit in its ring
buffer. A0S/VS does not restart the card reader until there is
room in the ring buffer for an entire card.

A0S/VS performs the Hollerith-to—-ASCII conversion if the card
reader is in text mode when you issue a ?READ system call. If
the card reader is not in text mode, A0OS/VS does not convert
Hollerith code to ASCII code.

1f AOS/VS encounters a non-Hollerith card when you issue the
?READ system call, it returns the file read error code ERFIL.

AOS/VS returns an end-of-file condition when it reads a card that
has all rows punched in column 1.

AOS/VS assumes that all cards are at most 81 columns long.
Because it does not check column length on input, mark—sense card
readers are compatible with A0S/VS.

093-000335-00 Licensed Material - Property of Data General Corp. 5-17

CHAPTER 5 - FILE INPUT/OUTPUT (I/0)

6. If the card reader is in binary mode, you can set the packed
characteristic for its input. This allows you to pack four
12-bit columns into three 16-bit words. Without the packing
option, AOS/VS right-justifies the 12 bits in the buffer and uses
the 4 upper bits for the following octal status codes:

100000 end of file

040000 hopper empty or stack full
020000 pick fail

010000 read error

7. If you set the Trailing Blanks (?CTSP) characteristic, AOS/VS
retains all trailing blanks on the cards. If you omit this
characteristic, AOS/VS discards all trailing blanks and writes a
NEW LINE character after the last character on each card. You
can fit more cards into the ring buffer if you omit this
characteristic.

8. The No NEW LINE (?CNNL) characteristic directs AOS/VS to ignore
all NEW LINE characters in each card.

Character Device Assignment

A0S/VS allows you to open a device for the exclusive use of one and
only oune process by "assigning" the device to that process. You can
do this explicitly by issuing the ?ASSIGN system call, or you can do
this implicitly by opening the file. You cannot issue the ?ASSIGN
system call against a file that is already open.

If you assign a file with the ?7ASSIGN system call, you must issue the
?DEASSIGN system call to break the assignment. TIf you assign a
device with the ?0PEN system call, you can break the assignment by
closing the device or by terminating the process. A process can open
a device more than once without breaking an ?0PEN system call
assignment; AOS/VS does not break the assignment until the last
?CLOSE system call (when the ?0PEN system call count drops to zero).

Device assignment works somewhat differently for consoles. All son
processes can share their father’s console, even if the consle was
specifically assigned to the father. However, only the most recently
created son can actually control the console by issuing ?0PEN,
?CLOSE, ?ASSIGN, ?RELEASE, ?GCHR, ?GECHR, ?SCHR, and ?SECHR system
calls against it. The father process and all other sons can issue
only ?READ and/or ?WRITE system calls against an assigned console.

5-18 Licensed Material -~ Property of Data General Corp. 093-000335-00

CHAPTER 5 - FILE INPUT/OUTPUT (I/0)

Line-Printer Format Control

When you write a file to a data channel line printer controlled by
EXEC, you can tailor the format of the output by creating a user data
area (UDA) for the file. The ?CRUDA system call creates a UDA. The
?RDUDA and ?WRUDA system calls read and write UDA information,
respectively. Typically, you use UDAs to specify file formats,
although you can use them for other purposes.

In addition to the ?CRUDA system call, you can also use the AOS/VS
Forms Control Utility (FCU) to create UDAs for format specifica-—
tions. To do this, you must perform the following steps:

1. Create a file with the filename of the UDA that you want to
create.

This file can contain format specifications or, if you wish, it
can be empty.

2. Execute FCU. (Refer to the ‘Command Line Interpreter (CLI)
User’s Manual (A0S and A0S/VS)’ for more information on FCU.)

3. Move the newly created UDAs to the :UTIL:FORMS directory so
that EXEC can access them.

If you want the contents of a particular UDA to override EXEC’s
default format specification, use the CLI switch /FORMS when you
print the file on the line printer. If you omit the /FORMS switch or
if the file has no format specifications, A0S/VS uses the current
default EXEC format settings. (Refer to the ‘Command Line
Interpreter (CLI) User’s Manual (A0S and A0S/VS)’ for more
information on the CLI switches.)

Console Format Control

Several control characters and control sequences allow you to control
the output that prints on your console.

A control character is any character that you type while you press
the CTRL key at the same time. By default, A0S/VS does not pass
control characters to your program. However, if you want to override
this default, set binary mode or type CTRL-P immediately before you
type a control character. Either method will cause AOS/VS to pass
the control character to your program. Table 5-6 lists the control
characters and what they do.

093-000335-00 Licensed Material -~ Property of Data General Corp. 5-19

CHAPTER 5 - FILE INPUT/OUTPUT (I/0)

Table 5-6. Control Characters and Their Functions

| Control

| Character Function]

to your program.)

I

]

I
| CTRL-C ! Begins a control sequence.]
! | I
| CTRL-D | An end-of-file character; terminates the current read |
] | and directs AOS/VS to return an end-of-file condition. |
| I !
CTRL-0	Suppresses output to your coansole until you type
	CTRL-0 again. (If A0S/VS detects a BREAK condition,
	then its output resumes immediately.)
I ! I	
CTRL-P	Signals AOS/VS to accept the next character as a I
	literal, not as a control character.
I	I
CTRL-S	Freezes all output to your console, but does not !
	discard it. (To disable CTRL-S, type CTRL-Q.)
I	I
CTRL-Q	Disables CTRL-S; if the device is in page mode,]
[CIRL-Q displays the next page. !
I I I	
CTRL-U	Erases the current input line on your console.
CTRL-T	Reserved for future use by Data General. (Currently,
[and	these control sequences do nothing. However, if you
CIRL-V	precede either one with CTRL-P, AOS/VS passes them !
[I	
! ! |

A control sequence is a CTRL-C immediately followed by any control
character from CTRL-A through CTRL-Z. What happens when you type the
second control character depends on the internal state of the process
with which the console is associated. If the process has not
explicitly redirected the control character, then A0S/VS ignores the
control sequence and treats the second control character as it
normally would. However, AOS/VS ignores control sequences that do
not have a-default action.

Table 5+7 lists the control sequences and what they do.

5-20 Licensed Material - Property of Data General Corp. 093-000335-00

CHAPTER 5 - FILE INPUT/OUTPUT (I/0)

Table 5-7. Control Sequences and Their Functions

| Control
| Sequence

CTRL-C CTRL-A

CTRL-C CTRL-B

CTRL-C CTRL-C

when you want
ahead.)

CTRL-C CTRL-D
through

CTRL-C CTRL-Z

Function

Generates a console interrupt (provided you used

the ?7INTWT system call to define a console
interrupt task). (See Chapter 6 for more
information on the ?INTWI system call.)

I

|

|

I

I

|

I

[

| Generates a console interrupt and aborts the

| current process.

|

| Echoes the characters “C “C on the counsole, and
| empties your type—ahead buffer. (This is useful
[
!
I
I
|
I
I

to revoke a command you have typed

Reserved for use by Data General.

The IPC Facility as a Communications Device

In addition to the interprocess
described in Chapter 7, you can
device, and perform I/0 against
an IPC file, A0S/VS buffers the
order. To use the IPC facility
performs the following steps:

1. The calling process creates

communications (IPC) procedures

use IPC files as a communications
them. When you perform I/0 against
IPC messages in first—in/first-out
as a communications device, AOS/VS

an IPC file entry with the ?0PEN

creation option (bit ?0FCR in offset ?ISTI) and sets the file
type to ?FIPC (the file type for IPC files).

2. AOS/VS issues a global ?IREC system call for the IPC entry, which
open. (Note that global ?IREC system
calls issued from a particular ring can receive only IPCs
destined for that particular ring.) (See Chapter 7 for a
description of the global ?IREC option.)

indicates that the entry is

093-000335-00 Licensed Material -~ Property of Data General Corp.

5-21

CHAPTER 5 - FILE INPUT/OUTPUT (I/0)

4

3. The other process issues a complementary ?0PEN system call on the
IPC entry.

4. AOS/VS responds with an ?ISEND system call to synchronize the two
processes.

After AOS/VS performs these steps, either process can issue ?READ or
?WRITE system calls through the established IPC file. When one of
the processes closes the IPC entry or terminates, the system sends

the other process an end-of-file condition (error code EREOF) when it
tries another ?READ system call against that file.

When you perform I/0 on an IPC entry, AOS/VS synchronizes all ?READ
and ?WRITE system calls. Thus, for a process to receive another
process’s termination message, it must read it in the proper

sequence. Otherwise, the process could repeatedly attempt to write
to the closed IPC entry with no results, because in that case, there

is no error return.

Note that the process that creates the IPC file (by issuing the first
?0PEN system call) owns the file.

Labeled Magnetic Tapes

A labeled magnetic tape contains both user data and information about
that data--the latter in the form of system and user labels. Labeled
magnetic tapes provide the following advantages over unlabeled
magnetic tapes:

o ANSI-standard and IBM formats, which enable you to use a labeled
magnetic tape on another operating system.

o] A naming facility, so you can reference your tape file by name
rather than by tape number.

o Volume identifiers, so that a logical file can span several
physical tape reels.

| o Detailed information about when and how much I/0 is actually
i performed for a particular device.

You can use either the CLI LABEL utility or the ?LABEL system call to
create labels for a magnetic tape. After you complete the labeling
procedures, you can create files on the tape.

5-22 Licensed Material - Property of Data General Corp. 093-000335-00

CHAPTER 5 - FILE INPUT/OUTPUT (1/0)

Formats

AOS/VS supports two primary labeling formats: ANSI format (Levels 1,
2, or 3), which uses the ASCII character set, and IBM format (Level 1
or 2), which uses the EBCDIC character set. This allows you to
select a format and labeling level suitable for use on another
operating system. The formats and levels differ in the aumber of
files allowed in a volume set, the allowable record types, the types
of labels, and the contents of the labels. Table 5-8 defines the
number of files and record types allowed for each label format and
level.

Table 5-8. Label Formats and Levels: Files per Volume
Set, Record Types

] | Specification | Format | Level |
| === | == s s eSS IS S S S S IS SIS IS S S SSsSNsSss S | Sssssass=s | =ss==s==== |
| N | Single file, single volume | ANSI i1, 2, 3 |
| o.] [IBM 1 1, 2 |
I I ! | I
| o | Single file, multiple volume | ANSI f1, 2, 3 |
| £ | IBM 1, 2 !
| | | | |
V F | Multiple file, single volume | ANST 1 2, 3

1] | IBM] 1, 2 [
1 | I I
| e | Multiple file, multiple volume | ANST i 2, 3]
| s | | IBM | 1, 2 |
|- - it | !]
| ! Fixed-length [ANSI Vo1, 2, 31
| R | | IBM 1, 2 |
| e | I] |
| ¢ | Variable-length] ANSI | 3 !
| o | | IBM | 1, 2]
| | ! I I
| d | Variable-length spanning blocks] IBM | 2 {
| | | I I
I T | Undefined-length] IBM | 1, 2 |
1y | I !
I p | Data-sensitive ! n/a | n/a !
| e | ! ! !
I s | Dynamic] n/a | n/a I
! I | | I

093-000335-00 Licensed Material - Property of Data General Corp. 5-23

CHAPTER 5 - FILE INPUT/OUTPUT (1/0)

If you do not set any flags in offset ?IRES of the ?0PEN packet,
AOS/VS assumes that you want to use labeled tapes in AOS format.
However, if you want to use labeled tapes in ANSI or IBM format, you
must set one of the following flags in offset ?IRES:

o Set ?0ANS to use labeled tapes in ANSI format.
0 Set ?0IBM to use labeled tapes in IBM format.

A0OS/VS does not write the data in EBCDIC. To do this, you must
select the field translation packet when you issue the ?READ or
the ?WRITE system call,

You should select the labeling level based on the label support of
the operating system on which you will use the tape. ANSI Level 3
and IBM Level 2 are the default levels, but you can select a lower
level within the ?LABEL system call packet or the ?0PEN system call
packet extension for labeled tapes.

If you select a lower level before writing to the tape, A0S/VS
records less information about your data in the labels. 1If you
select a lower level before reading, AOS/VS ignores some of the
information in the labels. Because AOS/VS can read a tape to a lower
level than you specify (for example, an ANSI Level 1 tape even if you
define it as an ANST Level 3 tape), you should default to the highest
level.

Label Types

There are four types of labels:

o Volume labels

These labels identify the volume (reel) of magnetic tape; they
occur only at the start of each volume.

o} File header labels
These labels identify the file and its characteristics; they

occur before every file on a labeled tape. If the file spans
volumes, each file section starts with file header labels.

5-24 Licensed Material - Property of Data General Corp. 093-000335-00

CHAPTER 5 - FILE INPUT/OUTPUT (1/0)

o) End-of-file labels

These labels identify the file and its characteristics; they
occur after every file on a labeled tape.

o End-of-volume labels

These labels identify the file and its characteristics; these
occur at the end of a volume of tape to indicate that the file
spans volumes.,

Figure 5~1 shows how labels and data are written on a labeled tape.

Each type of label contains one or more individual labels. Some
labels are necessary and must be present, or AOS/VS returns an error.

Other labels are used if present, but are not required, and some are
permitted but dare not used. (The '"permitted" labels do not cause
errors; AOS/VS ignores the information in them.) Table 5-9 lists the

different types of labels for the various formats and levels.

Volume Labels

As Table 5-10 indicates, each labeled tape volume must begin with a
volume 1 label (VOL1) of 80 bytes (characters). Table 5-10 lists the
required contents of the VOL]1 labels. The system supplies the
characters in quotation marks (for example, "VOLI").

The volid, or tape volume identifier, must consist of up to six
characters from the following character set:

o] Alphabetic characters A through Z, uppercase only
o) Numerals O through 9
o Special characters ! " % () *+ , - ./ ; <> =27

The volid is part of the pathname you use to refer to a labeled tape
file.

The Access field, which is used for ANSI tapes, defines the users
allowed to access the tape. You must use a blank space character

(ASCII 40) in this field. Otherwise, AOS/VS does not allow access to
the volume. The space character allows anyone access to the volume.

093-000335-00 Licensed Material - Property of Data General Corp. 5-25

CHABTER 5 - FILE INPUT/OUTPUT (I/0)

Single File,
Single Volume

Single File, Multiple Volumes

A\ Tape mark; separates data (Two consecutive
tape marks represent an end-of-tape mark.)

| |
| |
| Reel 1 Reel 1 Reel 2 Reel 3 |
| |
] | VOL }] VOL | | VOL] | VOL | |
| |===========| |s===========| |===sss=s=s==| |===s========s| !
| | HDR | | HDR | | HDR | | HDR | |
F VNN EYRRMVAANANAN T VNNV VL I
| | File | | File | | File |} File | |
I | | (first 1 | (second 1] (last |]
1] | section) | | section) | | section) | |
. - - - - - - |
o VNN AN NN N AN RN N A S A U I AN NN RN RN !
| | EOF | | EOV | | EOV | | EOF]]
I NNV AR A A AN AR NN RN SN S A AR S SRR RNNNY I
I NN PYNMARMNANNAN T POV VALY I
| |
| Multiple Files, Multiple Files, Multiple Volumes]
] Single Volume g |
] Reel 1 Reel 1 Reel 2 Reel 3 l
| |
| | VOL | ! VOL | | VOL | | VOL |]
| |===========| |============| |=s======s===| |s==========| !
| | HDR] | HDR | | HDR | HDR |

P NN PYNVMAMMANAANNL T POV VALY !
| | File A]] File A | | File B | | File C | |
P |] [(last I (last | [
1|] |] | section) | | section) | |
. = ~ R - - |
N ANRARRN RN AN RN AN NN NN N R NN S A ANNNNN RSN RNY |
| | EOF] | EOF | i EOF] | EQOF]

N ARNNR RN AN AR RN NN AR A AR A R A N A VA AN AN NNANNNNN Y [
	HDR]	HDR		HDR		HDR	
==	[m—— I Bt [
] File B] File B		File C		File D		

[! I (first | | (first | | | |
|] | section) | | section) | | [|
I~ = - - . - [
IV AN RN N N N AR NN A N NN N A A Y A AN R RN NN !
| | EQOF] | EOV |] EOV | | EOF] |
F VNN AR N Y AN NN R A A N A A Y A AN NS RN N NN I
AR R RN RN RN AN RN NN R N N AN RN A N AN N AV AN SRR RRNN NN I
| |
| KEY: VOL Volume labels |
| HDR Header labels |
| EOF End-of-file labels |
| EOV End-of-volume labels i
] !
[}
| |

Figure 5-1. Labels and Data on a Labeled Magnetic Tape

5~26 Licensed Material - Property of Data General Corp. 093-000335-00

CHAPTER 5 - FILE INPUT/OUTPUT (

Table 5-9. Types of Labels

I/0)

[Labels IANST(1)|ANST(2)|ANSI(3)[IBM(1)|IBM(2)

|

|

| VOLl (Volume 1) | N] N | N | N | N
| UVL1-9 (User I P | P | P | P | P
I Volumes 1 through 9) | | I ! I

l e s o et i i e S i e s AR S o o < P i i S0 £ S Al Al S el o R A e L o it o o S —— -
| File Header Labels:

I o o o il o A S o D o P S i T D D S i D AR R D SO S o T M ol i S i o i e rm v o

| HDR1 (Header 1) | N | N] N | N | N
] HDR2 (Header 2) i P } P | U | P | U
] HDR3-9 (Headers] P | P | P ! P P
| 3 through 9) | | | | |

| UHL1-9 (User | P | U | U] U | U
1 Headers 1 through 9) | | | | |

l_. e o i s e e e A A Al e e

| End-of-File Labels:

l — — it e . T Sl i £ T e S S o Y i S A e O A S e o TP T el S S D P D S i i
| EOF1 (End of File 1) | N | N] N | N | N
!] | | [|

| EOF2 (End of File 2) | P | P } U | P | U
| | [! [!

| EOF3-9 (End of Files] P | P | P | P | P
| 3 through 9) | | I I [

|] | | | i

| UTL1-9 (User Trailers | P | U | U | U | U
! 1 through 9) | I | | |

| P

| End-of-Volume Labels:

I ———— -
| EOV1* (End of Volume 1) | N | N [N | N | N
| [| | | |

| EOV2* (End of Volume 2) | P | P | U | P | U
[| ! | | |

| EOV3-9* (End of Volumes | P | P ! P | P | P
I 3 through 9) |] [| |

| I | | | |

| UTL1-9 (User Trailers | P [U | U] U | U
| | I | | |

KEY: Necessary
Used if present, but not required
Permitted, but not used

End-of-volume labels are necessary only if the file
spans reels

o =

093-000335-00 Licensed Material - Property of Data General Corp.

5-27

CHAPTER 5 - FILE INPUT/OUTPUT (I/0)

Table 5-10. Contents of VOL1 Volume Labels

| Byte Position | ANSI(1) | ANSI(2) | ANSI(3) | IBM(1) | IBM(2) |
'====:==========!=========|=========I=========I:::::a::l::::::::]
! 01-04 | "voLl™ | "voLl" | "woLl" | "VOL1" | '"VOL1" |
| I | [| [|
| 05-10 | Volid | Volid | Volid | Volid | Volid |
| | | | | | !
[11 | Access | Access | Access | '"O" o "o" |
| [| | | | !
12-37	Blank	Blank	Blank	Blank	Blank
]	!			
38-41	Owner	Owner	Owner	Blank	Blank
	name	name	name !	I	
				[
42-51	Owner	Owner	Owner	Owner	Owner
	name	name	name	name	name
	[
] 5279	Blank	Blank	Blank] Blank	Blank	
] !] [
80	Version	Version	Version	Blank	Blank
	number	number	number		
] !	[]				

The optional Owner Name field identifies the owner of the volume.

A0S/VS ignores this field when you reference a file on the volume.
The default value for this field is a blank space.

The Version Number field specifies the ANSI label format (version)
you want for labeled tape processing. This field must contain 1, 2,
or 3 if you intend to read the tape. AOS/VS uses version number 3
when you write to the tape.

If you use the ANSI label format, you can follow the VOL1 label with

as many as nine optional user volume labels (UVLs) to record
additional data about all files on the volume. Note that you cannot

use UVLs for tapes that are in IBM format.

Each UVL can contain up to 76 bytes of data. Bytes 1 through 3
contain the character string "UVL", which A0S/VS supplies. AOS/VS
numbers UVLs consecutively from 1 through 9. Byte 4 contains the
label number.

Table 5-11 lists the contents of a UVL.

5-28 Licensed Material - Property of Data General Corp. 093-000335-00

CHAPTER 5 - FILE INPUT/OUTPUT (I/0)

Table 5~11. Contents of User Volume Labels (UVLs)

| Byte Position | ANSI(1) [ANST(2) | ANSI(3)

T oos w4 e
: 04 : Label number : Label number : Label number :
: 05-80 : User data : User data : User data :
I I ! I !

A Header 1 (HDRl) label of 80 bytes must follow the VOLI label,
regardless of the tape’s format or labeling level. Table 5-12
describes the contents of HDR1 labels. AO0S/VS supplies the
characters in quotation marks (for example, "HDRI").

AOS/VS assigns a sequence number to each file on a labeled tape
volume set. If the file spans volumes, A0S/VS divides it into
sections and assigns each a section number. AOS/VS uses the File

Sequence Number and File Section Number fields, and a third field,
Block Count, for error detection, as follows:

o) File Section Number

The File Section Number indicates which section of the file
AOS/VS is currently processing; AOS/VS checks this field to see
that the file is processed in order, and that the volume contains
the proper file section.

o File Sequence Number

The File Sequence Number indicates whether or not the file was
written correctly. (An incorrect sequence number means the file
was written incorrectly.)

o} Block Count

The Block Count indicates the number of blocks written to the
file; if the block number on the end-of-file (EOF) or
end-of-volume (EQV) label is not the number actually read, a
block may have been skipped.

093-000335-00 Licensed Material — Property of Data General Corp. 5-29

CHAPTER 5 - FILE INPUT/OUTPUT (I/0)

Table 5-12. Contents of HDRl File Header Labels

|

|

| |
61-73 |System ID |System ID [System ID

|

!

|

System ID |System ID
| |
74-80 | Blank Blank | Blank Blank | Blank
] I | I
* For IBM levels 1 and 2, Bytes 36 through 41 contain information
that A0S/VS does not use during processing.

!
[
|
|
!
count] count
|
|
|
!

! Byte !]
| Position | ANSI(1) | ANSI(2) | ANSI(3) | IBM(1) | IBM(2) |
I===========I==========l==========|==========I=========='==========I
01-04	'"HDRI"	'"HDRI"	'M"HDRI"	'"HDRI"	"HDRI"™
	[] l]				
05-21	Filename	Filename	Filename	Filename	Filename
	!		I !		
] 22-27	File ID	File ID	File ID	File ID	File ID
]	set	set	set	set	set]
		!	[
28-31	File	File	File	File	File
	section	section	section	section	section]
	number	number	number	number	number
				!	
32-35	File	File	File	File	File
	sequence	sequence	sequence	sequence	sequence
]	number	number	number	number	number]
]			I I [
36-39	"0001™	"00O1"	"0001"™	Blank*	Blank*]
]]]		
40-41] "oo"] "oo"] oo™ ! Blank*	} Blank*				
I		I i [!			
] 42-47	"00000"	"00000"	Creation	Creation	Creation
]			date	date	date
		I]]		
48-53	[Expiration	Expiration	Expiration	Expiration	Expiration]
	date	date	date	date	date
!]	I				
54	" " (blank	Access	Access Access	Access	
!	space I ! I				
	character)]	
	[]			
55-60	Block Block	Block Block] Block i			
]] count count		count I			
[
! !
! |

5~-30 Licensed Material - Property of Data General Corp. 093-000335-00

CHAPTER 5 - FILE INPUT/OUTPUT (I/0)

The Expiration Date field prevents A0S/VS from overwriting the data

on a labeled tape before the specified date. The default expiration

date is 90 days after the tape’s creation date.

The Access field (like the Access field in the VOL1 label) defines
the users allowed to access the tape. For ANSI format, the default
for this field is a blank space character (ASCII 40). For IBM
format, the default is 0. This gives all users access to the data.
Be sure to use the proper default value. If you use another
character in this field, AOS/VS assumes that additional access
privileges are required, and will not allow access to the tape.

A0S/VS checks the following fields to see that the file on the tape
matches the file you requested for I/0:

o File Set Identifier
The File Set Identifier field identifies the file set. (A file

set is a group of files that occupies one or more volumes.)
AOS/VS checks the File Set Identifier to see that the newly

mounted volume belongs to the file set. By default, the File Set

Identifier is the volid (volume identifier) or the first volume
in the file set.

o) Filename

The Filename field identifies the file you want to process.
There is no default value for this field.

o Generation Number

The Generation Number field indicates the file’s generation.

(The default generation aumber is 0001.) A file can appear on a

tape more than once, if each occurrence has a different
generation number. This is useful for recording changes to a
file.

o) Version Number

The Version Number field indicates which version of a certain

file generation you are referencing. (The default version number

is 00.) Only one version of a file’s generation can appear on a

tape.

093-000335-00 Licensed Material - Property of Data General Corp.

5-31

CHAPTER 5 - FILE INPUT/OUTPUT (I/0)

Header 2 Labels

A0S/VS allows additional header labels (HDR2 and HDR3-9), but these
are not required. 1In fact, AOS/VS uses only Header 2 labels (HDR2),
if present, or the ANSI Level 3 and IBM Level 2 formats; it ignores
Header 3 through 9 (HDR3-9) for all formats and levels.

If you do use HDR2 labels, they must contain the information shown

in Table 5-13. AO0S/VS enters the characters in quotation marks (for
example, "HDR2").

Table 5-13. Contents of HDR2 File Header Labels

| Byte Position | ANSTI(3) | IBM(2) |
T oimon 0 s R |
: 05 : Record type : Record type :
: 06-10 : Block length : Block length :
: 11-15 : Record length : Record length :
: 16-38 : Blank : Blank* :
: 39 : Blank : Block attribute :
: 40~50 : Blank : Blank* :
: 51-52 : Buffer offset : Blank* :
: 53-80 : Blank : Blank* :
I I I

I
* For IBM Level 2, Bytes 40 through 80 contain information that
A0S/VS does not use during processing.

5-32 Licensed Material - Property of Data General Corp. 093-000335-00

CHAPTER 5 - FILE INPUT/OUTPUT (I/0)

The HDR2 labels describe the record type, record length, and block
length of the data. The ?0PEN packet conveys this information to
A0S/VS. The following list describes the HDR2 fields:

o Record Format

The Record Format field is dynamic, fixed~length, data-sensitive,
or variable length. The record format field must match the
specification in offset ?ISTI of the ?0PEN packet. (See the
description of the ?70PEN system call in Chapter 13.) You cannot
default this value if you intend to write to the tape. 1If you
intend to read the tape and there is no HDR2 label, the record
type defaults to fixed-length.

o Block Attribute

The Block Attribute field states whether the records are blocked
(several records per physical block), unblocked (only one record
per block), or spanned (a record occupies two or more consecutive
blocks). A0S/VS writes all records in blocked format. (You can
specify spanned for variable-length records with the special

variable-block record type, ?RTIVB.)
o Block Length

The Block Length field states the maximum length of each physical
block on the tape; offset ?IMRS in the ?0PEN packet governs this
value. If you choose the ?IMRS default (-1), AOS/VS uses 2048
bytes as the block length when it is writing, and the value of
the HDR2 field when it is reading.

o Record Length
The Record Length field states the maximum length of each record;
offset ?IRCL in the ?0PEN packet conveys this value. If you
choose the ?IRCL default (-1), A0S/VS uses 210 as the record
length when it is writing, and this value in the HDR2 field when
it is reading.

o) Buffer Offset

The Buffer Offset field states the number of non—data bytes at
the start of each physical block. A0S/VS ignores this field.

093-000335-00 Licensed Material - Property of Data General Corp. 5-33

CHAPTER 5 - FILE INPUT/OUTPUT (I/0)

User Header and User Trailer Labels

In addition to file header labels and file trailer labels
(end-of-file, end-of-volume), you can define user header and user
trailer labels to supply further information about a labeled tape
file. AO0S/VS reads or writes these labels via the ?0PEN packet
extension for labeled tapes. A0S/VS does not record these
user—-defined labels in the system labels.

Table 5-14 defines the contents of user header and user trailer
labels. Notice that these labels have the same format as UVLs,

except that bytes 1 through 3 contain the required strings "UHL" or
"UTL", as appropriate.

Table 5-14. Contents of UHL and UTL User Labels

| Byte |] ! | !
[Position| ANSI(2) | ANSTI(3) | IBM(1) | IBM(2) |
l===:====I==============l==============|==============|==========:==|
! 01-03 | "UHL" or | "UHL" or | "UHL" or | "UHL" or |
I ' "UTL" I "UTL" ' "UTL" | "UTL" |
! [I | I [
| 04 | Label number | Label number | Label number | Label number|
I [| [| |
| 05-80 | User data | User data | User data | User data |
| I I | I

End-of-Volume 1, End-of-File 1 Labels

End-of-volume 1 (EOV1) and end-of-file 1 (EOF1) labels have the same
format as HDRI labels, except that Bytes 1 through 4 contain either
"EOV1" or "EOF1", as appropriate. (See Table 5-9 for the format.)

End-of-Volume 2, End-of-File 2 Labels

End-of-volume 2 (EOV2) and end-of-file 2 (EOF2) labels have the same
format as HDR2 labels, except that Bytes 1 through 4 contain either
"EOV2" or "EOF2", as appropriate. (See Table 5~10 for the format.)

5-34 Licensed Material - Property of Data General Corp. 093-000335-00

CHAPTER 5 - FILE INPUT/OUTPUT (I/0)

File I/0 on Labeled Magnetic Tapes

To use labeled tapes for file I/0, you must be logged on under the
EXEC utility, either in batch or at a console. You cannot issue I/0
system calls against a labeled tape from the operator’s console,
because the operator process is not a son of EXEC. The OP username
must mount all labeled tapes, and the CLI command CONTROL @EXEC
OPERATOR ON must be in effect. This command signals EXEC that the
operator is available to mount the tapes.

There are two ways to mount a labeled tape: explicitly, by issuing

the CLI MOUNT command, or implicitly, by issuing the ?0PEN system
call. The CLI MOUNT command syntax is:

MOUNT/VOLID=volid linkname operator-message
where:

o linkname is the name of the link entry associated with the
tape’s filename

o operator—message is a text string, which usually instructs
the operator to mount the tape

o volid is the 6—~character volume identifier (See '"Volume
Labels" for the volid character set.)

The CLI MOUNT command creates links for both labeled and unlabeled

tapes. When you issue the CLI MOUNT command against a labeled tape,
EXEC passes the message string to the operator and creates a link

entry for the filename in your initial working directory.

The link resolves to @LMT:volid when you open, read, write, or close
that tape volume. Note that EXEC creates the link entry in your
initial working directory, not in the directory from which you issued
the CLI MOUNT command.

When you perform primitive I/0 or issue CLI commands against the
labeled tape volume, you can substitute the tape’s filename for
@LMT:volid. After you read or write to a tape file that you opened
with the CLI MOUNT command, use the CLI DISMOUNT command to tell the
operator to remove the tape from the tape drive.

093-000335-00 Licensed Material - Property of Data General Corp. 5-35

CHAPTER 5 - FILE INPUT/QUTPUT (I/0)

You can also mount a labeled tape with the CLI DUMP command, or any
CLI command that accesses @LMT:volid. When you use this method, EXEC
checks to see if the tape is already mounted. TIf it is not, EXEC

directs the operator to mount it. The syntax of the CLI DUMP command
is:

DUMP @LMT:volid:filename

Fach time you issue the CLI DUMP command, EXEC directs the operator

to mount and then dismount the tape. Thus, the CLI MOUNT command is
usually the more efficient method.

If you mount the labeled tape with the ?70PEN system call, offset
?IFNP points to the name of the tape volume, which must be in the
following form:

@LMT:volid:filename

A0S/VS does not create a link when you use this method, but it does
tell the operator to mount the labeled tape volume specified in the
pathname. When you close that tape file with the ?CLOSE system call,
AOS/VS directs the operator to dismount the labeled tape volume.

Mounting a labeled tape explicitly with the CLI MOUNT command is the

most efficient way to perform I/0 on more than one labeled tape file,
because A0S/VS does not need to rewind and reposition the tape for

each I/0 sequence or direct the operator to mount and dismount the
tape for each ?0PEN and ?CLOSE system call. However, the ?0PEN
system call is useful because it gives you the option of creating and
opening the tape file at the same time.
When you read or write to a labeled tape, refer to the tape by one of
the following pathnames:
@LMT:volid:filename
where:
o @LMT is the generic filename for a labeled tape

o volid is the volume identifier number

o filename is the name of the file you wish to access

5-36 Licensed Material - Property of Data General Corp. 093-000335-00

CHAPTER 5 — FILE INPUT/OUTPUT (I/0O)

:UDD:username:linkname:filename
where:
o UDD is the name of the user directory
o username is your username

o linkname is the name of the link entry created by EXEC when
the tape was mounted

o] filename is the name of the tape file

You do not need to cite a specific tape unit number for either of these

formats. Use the second format if your current working directory is not
:UDD:username.

EXEC creates the LMT entry and assigns it file type ?FGLT, the file
type for labeled tapes. The filename you choose must coasist of at
least 1 and not more than 17 characters from the same character set
you used for volid.

Because not all characters in this set conform to the character set
for filenames, you cannot pass all labeled tape filenames through the

CLI. (Instead, you must write your own programs, using the I/0
system calls, to perform I/0 on these labeled tapes.)

File I/0 on Unlabeled Magnetic Tapes

To use a magnetic tape unit, you must first open it. To do this,

specify the number of the tape unit and the position of the file oun
the tape (its file number) in the following form:

@MTBx:y

where:

0 x is the number of the tape unit

o} y is the file number

093-000335-00 Liceansed Material - Property of Data General Corp. 5-37

CHAPTER 5 - FILE INPUT/OUTPUT (I/0)

Magnetic tape files are numbered sequentially, starting with 0.
Thus, the pathname @MTBO:2 specifies the third file on tape unit 0.

If you do not specify a file number, A0S/VS automatically opens the
first file (file 0) on the tape.

If you use block I/0 system calls to access a magnetic tape, you can
specify the file number after you issue ?RDB or ?WRB system calls
against the tape.

If you issue the CLI command MOUNT to signal the operator to mount a

magnetic tape, use the linkname you used in the MOUNT command when
you perform I/0 against the file. For example, if you issue the

following CLI command, you would be using the linkname TAPEl to open,
read, write, or close that file:

MOUNT TAPE]l operator message

In this case, A0S/VS would find TAPE! in your initial working
directory.

5-38 Licensed Material - Property of Data General Corp. 093-000335-00

CHAPTER 5 — FILE INPUT/OUTPUT (I/0)

File 1I/0 Sample Programs

The following program, RITE, opens the console and the disk file
FILE. Then, RITE asks you to type lines of text at your console

keyboard, and writes each line to FILE. When you type "RD," RITE
reads the lines back from FILE and displays them on your console.

RITE uses ?0PEN, ?READ, ?WRITE, and ?SPOS system calls.
LTITLE RITE
.ENT RITE

«NREL

;0pen console (@CONSOLE) and file for iaput and output.

RITE: 70PEN CON ;0pen console (CON) for I/0.
WBR ERROR ;Report error and quit.
70PEN FILE ;0pen or create disk file

;named FILE.
WBR ERROR ;Quit.,

;Write greeting and put byte pointer to I/0 buffer in packet.

?7WRITE CON ;Display message on console.

WBR ERROR ; 7WRITE error return.

XLEFB 0,BUF*2 ;Get byte pointer to I/0
;buffer.

XWSTA 0,CON+?IBAD ;Put in I/0 packet.

;Read line, check for terminator, and then write to file.

NLDAI ‘RD’,0 ;Put RD terminator in ACO.
LOOP: ?READ CON ;Read a line.

WBR ERROR ;Quit.

XNLDA 1,BUF ;Get first word of buffer.

WSNE 0,1 ;Did user type RD?

WBR SPOS ;Yes. Do ?SPOS.

7WRITE FILE ;No. Write line to FILE.

WBR ERROR ;Quit.

WBR LOOP ;Get next line from user.

093-000335-00 Licensed Material - Property of Data General Corp.

5-39

CHAPTER 5 - FILE INPUT/OUTPUT (I/0)

RITE Program (Cont.)

;Set position at beginning of file.

SPOS: NLDAI

XWSTA
XNLDA
WMoV

WIORI
XNSTA

?25P0S

WBR
XNSTA

0,1
1,FILE+? IRNH
2 ,FILE4+2ISTT
2,0

?1IPST,2
2,FILE+?1ISTI

FILE

ERROR
0,FILE+?ISTI

;Get 0 in ACI.

;Put in record number word.
;Get file’s specifications.
;Save old specifications in
;ACO.

;sAdd ?1IPST specification.
;Put in file specifications.

;Position at beginning of
;FILE.

;Quit.

sRestore old specifications.

;Read lines back from FILE and display on console.

LOOPl: ?READ

EOF:

;Close the file.

CLOSE:

;Process error and/or return here.

WBR

?WRITE

WBR
WBR
NLDAI

WSEQ
WBR

WBR

FILE
EOF

CON
ERROR

LOOP1
EREOF, 2

0,2
ERROR

?CLOSE CON

ERROR

?CLOSE FILE

WBR
WSUB
WBR

ERROR: WLDAI

5-40

Licensed Material -

ERROR
2,2
BYE

?RFEC! ?RFCF! ?RFER, 2

sRead from FILE into buffer.
;Try to handle the errvor.

;Display line on console.

sQuit. \\,/
;Read/write another line.

sError code for end-of-file
; (EOF) is EREOF.

;Was it an EOF?

;No. Quit.

;Close console.
;Quit.

;Close FILE.

;Quit.

;Set flags for normal return,
;Take good return.

sError flags: Error code is

;in ACO (?RFEC), message is in

;CLI format (?RFCF), and

;caller should handle this as

;an error (?RFER). o,

Property of Data General Corp. 093-000335-00

CHAPTER 5 - FILE INPUT/OUTPUT (I/0)

RITE Program (Cont.)

BYE: ?RETURN ;Return to CLI.
WBR ERROR ;s 7RETURN error return

;0pen and I/0 packet for console.

CON: «BLK ?IBLT ;Allocate enough space for
;packet.
.L0C CON+?1ISTI ;File specifications.
«WORD ?ICRF! ?2RTDS! 20F1I0 ;Change format to data-

;sensitive records and open
sfor input and output.

.L0C CON+? IMRS
+WORD ~1 ;Default physical block size
;to 2K bytes.

.LOC CON+?1BAD ;Byte pointer to record I/0
.DWORD ITEXT*2 ;buffer.

.LOC CON+?IRCL
«WORD 120. ;Record length is 120
;characters.

«LOC CON+?IFNP ;Byte pointer to pathname.
.DWORD CONS*2

.LOC CON+?1IDEL ;Delimiter table address.

.DWORD -1 ;Use default delimiters: null,
sNEW LINE, form feed, and
;carriage return (default is

.LOC CON+?1IBLT ééié.of packet.
;Filename, buffer, and messages.
CONS: .TXT "@CONSOLE" ;Use generic name.
BUF: .BLK 60. . ;Allocate enough space for
;buffer.

ITEXT: LTXT "I write lines to file FILE. Type RD[NL] to read lines
back and stop.<12>"
.NOLOC O ;Resume listing all.

093-000335-00 Licensed Material - Property of Data General Corp. 5-41

CHAPTER 5 - FILE INPUT/OUTPUT (I/0)

RITE Program (Cont.)

; 70PEN and I/0 packet for FILE. You can omit those entries that you
sywant to set to 0.

FILE: «BLK ?1IBLT ;Allocate enough space for
; packet.

.LOC FILE+?ICH

LWORD O +A0S/VS assigns channel
;number.
. LOC FILE+?ISTI ;File specifications.

«WORD ?0FCR! 20FCE! 2ICRF! ?RTDS! ?0F IO ;Delete file and then
;recreate it (?0FCR!?0FCE),
sjchange format (?ICRF) to
;data—-sensitive records
; (?RDTS), and open for input
;and output (?0FIO).

.LOC FILE+?1ISTO

«WORD 0 ;Default to ?FUDF, user data
;file.

.L0C FILE+?IMRS

«WORD -1 ;Default physical block size
;to 2K bytes.

.LoC FILE+?IBAD ;Byte pointer to record 1/0

.DWORD BUF*2 ;buffer,

.LOC FILE+?IRES ;Density mode (for magnetic
;tapes only).

+WORD O ;Default it.

.L0C FILE+?IRCL
«WORD 120. ;Record length is 120
;jcharacters.

.LOC FILE+?7IRLR ;Number of bytes transferred.

«WORD 0 ;Only ?READ and ?WRITE use
;this.

+.L0C FILE+?IRNW ;Reserved.

«WORD 0 ;Set to 0.

.LOC FILE+?IRNH ;Record number.

+DWORD O ;0nly ?READ and ?WRITE use
sthis,

5-42 Licensed Material - Property of Data General Corp. 093-000335-00

CHAPTER 5 - FILE INPUT/OUTPUT (I/0)

RITE Program (Cont.)

.LOC FILE+?1IFNP ;Byte pointer to pathname.
+DWORD FNAME*2

.LoC FILE+?IDEL s;Delimiter table address.
.DWORD -1 ;Use default delimiters: null,

sNEW LINE, form feed, and
;jcarriage return (default is

;=1).
.LOC FILE+?IBLT sEnd of packet.
FNAME: .TXT "FILE" ;Disk filename.
+END RITE ;End of RITE program.

093-000335-00 Licensed Material - Property of Data General Corp. 5-43

CHAPTER 5 - FILE INPUT/OQUTPUT (I1/0)

Block I/0 Sample Program

The block I/0 sample program, DLIST lists all filenames in a

directory and prints them on the line printer. DLIST uses the CLI
?GTMES mechanism (see Chapter 11) to get the directory name as well
as using ?GOPEN to open the directory. Also, DLIST uses the ?0PEN,

?READ/?WRITE, ?GNFN, and ?SEND system calls. To execute DLIST, type:
X program name directory name
LTITLE DLIST
« ENT DLIST
.NREL

;Get the directory name, open it, and open the line printer queue.

DLIST: ?GTMES CLIMSG ;Get directory name.
WBR ERROR ; 7GTMES error return.
LLEFB 0,DIRNAME*2 ;Get byte pointer to directory
;name.

NLDAI -1,1 ;Specify that AOS/VS assign
‘ ;channel number for ?GOPEN.
_

?GOPEN DIR ;O0pen the directory.

WBR ERROR ; 2GOPEN error return.

?70PEN LINEP ;Open the line printer queue,

WBR ERROR ; 70PEN error return.

;Use ?GNFN to get next name and write to line printer.

XNLDA 1,DIR+?ICH ;Keep channel number in ACl.
NEXT : ?GNFN GNAME ;Put filename in ?GNFN buffer.,

WBR EOF ; 7GNFN error return.

?WRITE LINEP ;Output contents of 7GNFN
sbuffer (filename) on line
;printer.

WBR ERROR ;s 7WRITE error return.

XLEFB 2,NL*2 ;Get address of NEW LINE
;character.

XWSTA 2,LINEP+?IBAD ;Put address of NEW LINE
;character in line printer
;buffer.

093-000335-00 Licensed Material -~ Property of Data General Corp. 5-45

CHAPTER 5 - FILE INPUT/OUTPUT (I/0)

DLIST Program (Cont.)

?WRITE
WBR
XLEFB

XWSTA
WBR

EOF: NLDAT

WSEQ
WBR

;Finished with filenames.

XLEFB
XLEFB
WLDAT

?SEND
WBR
WSUB
WBR

ERROR: NLDAI

BYE: ?RETURN
WBR
NL: .TXT

3 7SEND console name and message.

CONS: . TXT

TMSG: .TXT
«NOLOC

LINEP
ERROR
2, FNAME*2

2 ,LINEP+?IBAD
NEXT

EREOF, 2

0,2
ERROR

0, CONS*2
1,TMSG*2
(CLIMSG-TMSG)*211822,2

ERROR
2,2

BYE

?RFEC! ?7RFCF! ?RFER, 2

ERROR

"<a2>"

"@CONSOLE"

;Output contents of buffer

; (address of NEW LINE
s;character) on line printer.
;s 7WRITE error return.

;Get byte pointer to filename
;buffer.

sRestore buffer address.

;Get another filename.

;s Is error code EREOQOF

; (end~of-file)?

;Yes., Skip this instruction.
;No. Try to handle the error.

Get ?SEND parameters and issue ?SEND.

;Byte pointer to console name.
;Byte pointer to ?SEND message.
;Message length and byte
;pointer flag.

;Send message to console.

; 7SEND error return.

;Done. Set flags for ?SEND
;normal return.

;Goodbye.

;Error flags: Error code is in
;ACO (?RFEC), message is in
;CLI format (?RFCF), and
;should handle this as an
serror (?RFER).

sReturn to CLI.
;s 7RETURN error return

;Put each name on a new line.

A NOLOC 1 follows.

;Use generic name.

"All filenames written to line printer. Bye."

0

;Resume listing all.

5-46 Licensed Material - Property of Data General Corp. 093-000335-00

CHAPTER 5 - FILE INPUT/OUTPUT (I/0)

DLIST Program (Cont.)

3 7GTMES packet to get directory name from CLI.

CLIMSG: .BLK

.LOC

«WORD

.LOC

«WORD

.LOC

«DWORD

.LOC

DIRNAME: .BLK

?GTLN

CLIMSG+?GREQ
?GARG

CLIMSG+?GNUM
1
CLIMSG+?GRES

DIRNAME*2

CLIMSG+GTLN

50.

;Allocate enough space for
;packet.

sRequest type.

;sPut argument in ?GRES only.

sArgument 1 is directory name
; (argument 0 is program name).

;Byte pointer to receive
;buffer.

;Byte pointer to directory
;jname buffer (DIRNAME).

;End of packet.

;Directory name buffer.

; 7GOPEN packet (needed for directory).

DIR: «BLK

.LOC

; 7GNFN packet to get next filename.

GNAME: .BLK

.L0C

«DWORD

.LOC

+DWORD

.LOC
«DWORD

.LOC

FNAME: .BLK

093-000335~-00

?0PLT

DIR+?0PLT

7NFLN

GNAME+?NFKY

0

GNAME-+?NFNM

FNAME*2

GNAME+?NFTP

-1

GNAME+?NFLN

16.

;Allocate enough space for
;packet.
sEnd of packet.

;Allocate enough space for
; packet.

;A0S/VS uses this after first

;call,
;Set to O for first call.

;Byte pointer to filename
;receive buffer.

;There is no template (default

;iS -].)c
;End of packet.,

;Area of receive filenames.

Licensed Material — Property of Data General Corp.

5-47

CHAPTER 5 - FILE INPUT/OUTPUT (I/0)

DLIST Program (Cont.)

;20PEN and I/0 packet for line-printer output file.

LINEP: .BLK

.L0OC
«WORD

.LOC
«WORD

.1L0C
«WORD

'LOC
-WORD

.LOC

«DWORD

.LOC

«WORD

.LOC
«WORD

.LOC
«WORD

.LOC

«WORD

.LOC
« DWORD

.10C
«DWORD

?2IBLT

FILE+?ICH
0
FILE+?ISTI

?ICRF!?RTDS! ?70FOT

FILE+?1ISTO
0

FILE+?IMRS
-1

FILE+?IBAD
FNAME*2

FILE+?IRES

0

FILE+?IRCL
136.

FILE+?TIRLR
0

FILE+?IRNW

0

FILE+? IRNH
0

FILE+?IFNP
LPTNM*2

;Allocate enough space for
;packet.

;A0S/VS assigns channel number.
;File specifications.

;Change format (?ICRF) to
;data-sensitive records

; (?RDTS), and open for input
sand output (?0FI0).

;Default file type to ?FUDF,
suser data file.

;Default physical block size
;to 2K bytes.

;Byte pointer to record I/0
;buffer.

;Density mode (for magnetic
;tapes only).

;Default to density mode set
;during VSGEN procedure.

;Record length is 136
;characters.

sNumber of bytes transferred.
;Only ?READ and ?WRITE use
;this.

;Reserved.
;Set to O.

;Record number.

;Only ?READ and ?WRITE use
;this.

;Byte pointer to pathname.

5-48 Licensed Material - Property of Data General Corp. 093-000335-00

CHAPTER 5 - FILE INPUT/OUTPUT (I/0)

DLIST Program (Cont.)

.1.0C FILE+?IDEL sDelimiter table address.

.DWORD -1 ;Use default delimiters: null,
;NEW LINE, form feed, and
;jcarriage return (default is

s=1).
.LOC FILE+?1BLT ;End of packet.
LPTNM: .TXT "@Lpr" sPrinter queue filename.
«END DLIST ;End of DLIST program.

End of Chapter

093~000335-00 Licensed Material - Property of Data General Corp. 5-49

CHAPTER 6
TASKS

The system calls that allow you to initiate and manage tasks are:

?DFRSCH

?DQTSK
?DRSCH
?ERSCH

?IDGOTO

?1DKIL
?IDPRI

?IDRDY
?IDSTAT

?7IDSUS
?IFPU
?IQTSK
?KILAD
7KILL
IMYTID
?PRI
?PRKIL
?7PRRDY

?PRSUS
?REC

?RECNW

?75US
?TASK

?TIDSTAT

?TLOCK
?TRCON
?TUNLOCK

?UIDSTAT

Disables scheduling and indicates prior state of
scheduling.

Dequeues a task or tasks previously queued.
Disables task scheduling.

Enables task scheduling.

Redirects a task.

Kills a task specified by its TID.

Changes the priority of a task specified by its
TID.

Readies a task specified by its TID.

Returns task statistic flag. (16-bit processes
only)

Suspends a task specified by its TID.
Initializes the floating-point status registers.
Creates a queued task manager (for ?TASK queuing).
Defines a kill-processing routine for a task.
Kills the calling task.

Returns the TID of the calling task.

Changes the priority of the calling task.

Kills all tasks of a given priority.

Readies all tasks of a given priority.

Suspends all tasks of a given priority.

Receives an intertask message.

Receives an intertask message without waiting.

Suspends the calling task.
Initiates one or more tasks.

Returns the status of a task specified by its TID.
(32-bit processes only)

Protects a task from being redirected.

Reads a task message from a process console.

Revokes redirection protection for the current task
in the current ring.

Returns the status of a task and an unambiguous
identifier.

093~-000335-00

Licensed Material — Property of Data General Corp.

CBAPTER 6 - TASKS

receipt.

I
(Cont.)]
I
WDELAY Suspends a task for a specified time.]
XMT Transmits an intertask message.]
XMTW Transmits an intertask message and waits for its |
|
l

A0S/VS includes many system calls that allow you to manage tasks and

a multitasking environment. Before you can use these system calls,
however, you must understand what tasks are, what multitasking is,
and how to manage tasks and the multitasking environment. Therefore,

this chapter is divided into the following sections:

0]

The first two sections define tasks, multitasking, and the AOS/VS

task-protection models. (See '"Task Concepts" and "Task-
Protection Schemes.") '

The third section describes how to identify tasks. (See "Task
Identifiers and Priority Numbers.')

The fourth section describes how to initiate tasks. (See "Task
Initiation.")

The remaining sections describe stacks (including inner-ring
stacks), how AOS/VS schedules tasks, how you can redirect tasks,
how you kill tasks, console~to-task and task—to-task
communication, and the registers that allow you to manipulate
floating-point numbers. (See "Stack Space Allocation and Stack
Definition," "Inner-Ring Stack Support," "Task Scheduling," "Task
Redirection," "Task Termination," "Console-to-Task
Communication," "Task-to-Task Communication," and "MV/8000
Floating-Point Registers.')

The last section contains sample programs. These sample programs

use many of the system calls described elsewhere in this chapter.
(See '"Sample Programs.')

Licensed Material — Property of Data General Corp. 093-000335-00

CHAPTER 6 — TASKS

Task Concepts

A task is a path through a process. It is an asynchronously
controllable entity to which the CPU is allocated for a specific
time. A task can only execute code within the bounds of the address

space allocated to its process. (See Chapter 3 for more information
on processes.)

Each process consists of one or more tasks, which execute
asynchronously. You can design your code so that several tasks
execute a single re—entrant sequence of instructions, or you can
create a distinct instruction path for each task.

You combine program files with other information to define processes.
A task is the basic element of a process. Initially, each process
has only one task associated with it. However, unlike processes,
tasks within a process only exist until you kill them either
explicitly or implicitly. (See "Task Termination" in this chapter.)

If you are familiar with high-level languages such as BASIC or
FORTRAN, you are probably familiar with single-task programs.
Single~task programs display one path that connects all branches of
logic, no matter how complex. Multitasking is a programming
techanique that allows up to 32 tasks within a single process to
execute.

As a programming technique, multitasking offers several advantages,
including:

o Parallelism

Multitasking is a straightforward way to handle complex parallel
events within one program. Thus, it can be useful for time-out
and alarm routines, and overlapped I/0. Multitasking gives a
program the flexibility to respond to external asynchronous
events.

o Efficiency

While one task is suspended, perhaps on an I/0 operation, another
task can be executing. Each task has a priority level, and
AOS/VS schedules tasks based on their relative priorities. The
A0S/VS multitasking scheduling facility provides efficient CPU
and memory use, especially in an environment with heavy memory
contention and devices of varying speeds.

093-000335-00 Licensed Material ~ Property of Data General Corp.

6-3

CHAPTER 6 - TASKS

You can design your code so that several tasks execute one re—entrant
instruction sequence, or you can create a different instruction path
for each task.

Task-Protection Schemes

The AOS/VS protection model prevents tasks executing in an outer
ring from interfering with tasks executing in critical inner-ring
code paths. AOS/VS uses two classes of protection mechanisms to
protect tasks executing in one ring from interference by tasks
executing in other rings:

o]

6-4

Ring maximization

Under this protection scheme, A0OS/VS considers a task that is
executing in a user ring to be less privileged than another task
that is executing in a lower user ring. For all system calls,
AOS/VS uses the ring-maximization protection scheme when it
validates user-supplied channels, word pointers, or byte

pointers.

This means that a channel opened by a system call issued from
one user ring cannot be passed as input to a system call issued
from a higher user ring. Also, system calls issued from one
user ring cannot be passed as input pointers to lower-ring
memoty locations.

The ring-maximization protection scheme parallels the
hierarchical protection scheme of the MV-series memory-management
hardware.

Ring specification

The ring-specification protection scheme protects tasks executing
in one user ring from interference by tasks executing in any
other user rings. The connection-management facility and the

IPC facility use the ring-specification protection scheme in the

following ways:

o The connection—-management facility considers connections to
be between pairs of process identifier (PID)/ring tandems.

Licensed Material - Property of Data General Corp. 093-000335-00

-/

CHAPTER 6 - TASKS

o The IPC facility now requires a ring field as well as a PID
and a local port number field as part of each global port.

All IPC messages are sent to specific rings within a
destination process. Within the destination process, only
tasks that issue IPC receive request system calls from the

specified ring can receive IPC messages sent to that ring.
In this way, interprocess communications paths are secured

from both malicious and accidental interference by tasks

issuing IPC receive requests from other rings within the same
process.

(See Chapter 2 for information on the ring structure.)

When you create a task, you should assign it a task identifier
(TID) in the range from 1 through 32. 1In addition to providing a
simple way for you to keep track of each task’s actions, several
system calls require a TID as input.

If you do not assign each task a TID, A0S/VS assigns the initial
task TID I, but assumes that every other task is TID 0. Although
permissible, this is not advisable. Tasks that share TID 0 cannot
issue ?IDSTAT, ?IDPRI, ?IDRDY, ?IDSUS, and ?TIDSTAT system calls.

In addition to the TIDs that you supply, A0S/VS assigns a unique TID
to each task in the system. Therefore, even though each initial task
is TID 1 within its own process, it also has a unique TID. This
system—assigned unique TID allows you to index into multiple—~task
databases.

To find out what the unique TID for a particular task is, issue the
?UIDSTAT system call. The ?UIDSTAT system call returns the unique
TID and the conteants of the task’s status word.

Priority numbers are values AOS/VS uses to determine the order in
which tasks execute. Priority numbers range from 0 (the highest
priority) through 255 (the lowest priority). A0S/VS assigns the
initial task (TID 1) priority 0, the highest priority.

To find out the priority and TID of a calling task, issue the ?MYTID
system call. If you want to use system calls that require a TID or

priority level as an input parameter, you can use the ?MYTID system
call to get this information.

093-000335-00 Licensed Material - Property of Data General Corp.

6-5

CHAPTER 6 - TASKS

Task Initiation

The Link utility lets you specify the maximum number of tasks in a
process, up to a limit of 32 tasks. Each process is initialized when
A0S/VS begins to execute that process’s initial task. To initiate
other tasks, any executing task can issue the ?TASK system call.

The ?TASK system call requires a packet. This packet allows you to

specify several characteristics for the new task, including its TID
and its priority.

You can influence task scheduling by assigning a priority level to a
task. TIf you do not assign a priority, AOS/VS assigns the new task
the same priority level as the calling task (the task that issued the
?TASK system call).

You can use the ?TASK system call to initiate one or more tasks

immediately, or you can use it to initiate a task at a later time.
Therefore, there are two versions of the ?TASK packet:

o The standard packet, which initiates a task.

o The extended packet, which initiates a task at a particular time

and at particular intervals. This is called queued task
creation.

When you issue a ?TASK system call that specifies a starting PC
within Ring 7, A0S/VS passes control to the ?UTSK task-initiation
routine, which places the address of a task-kill routine in AC3 and

then returns control to the ?TASK system call. (?UTSK is in the user
runtime library URT32.LB.)

You can tailor a task—initiation routine to your own application.
For example, you may want to assign system resources to each newly
initiated task. To use a tailored task—initiation routine, you must
assign the new routine the label ?UTSK and then link it with your
progam. If you do not do this, A0S/VS passes control to the default
?UTSK routine, which immediately returns control to the ?TASK system
call. 1In addition, if your tailored ?UTSK task—initiation routine
pushes anything onto the stack, it must also pop it off the stack
before exiting from the routine. Otherwise, if it leaves anything
on the stack, the calling task may not return to the proper address
in your program.

To abort the ?TASK system call while your ?UTSK task-initiation
routine is executing, load ACO with an error code and return to the
address in AC3 (the address of the task-initiation error return). If
you do not want to abort the ?TASK system call, increment the value

6—6 Licensed Material - Property of Data General Corp. 093-000335-00

CHAPTER 6 — TASKS

of AC3 by 1 and return to the address in AC3 (the address of the task
initiation normal return). This not only causes the ?UTSK task-
initiation routine to return successfully, but also causes the ?TASK
system call to continue normally.

To use the queued task creation option, you must use the extended
?TASK packet, and you must issue the ?IQTSK system call before you
issue the ?TASK system call. The ?IQTSK system call creates an
additional task, the queued task manager, which handles the
initiation queue. (The queued task manager is one of the 32 possible
tasks in your program.) The ?DQTSK system call removes one or more
?TASK packets from the queued task manager’s initiation queue.

Every task that uses the A0S/VS system calls must have a unique
stack. A stack is a block of consecutive memory locations that
AOS/VS sets aside for task-specific information.

The stack works by a push-down/pop-up mechanism; that is, you store
information by "pushing" it onto the stack, and retrieve information
by "popping" it off the stack. The “Principles of Operation 32-Bit
ECLIPSE Systems’ manual explains stacks in detail and describes the
assembly language instructions for the push and pop functions.

The Link utility allocates the stack for the initial task when you
link your program. By default, Link sets up a stack of 60 words for
the initial task. You can specify an alternate size by using the
appropriate function switch in the Link command line.

You must allocate stack space and define the stacks for all other
tasks within the ?TASK packet(s). The stack parameters in the ?TASK
packet include the stack base, or starting address of the stack, the
stack size, and the address of the stack fault handler.

The stack fault handler is a routine that takes control when there is
a stack fault. You can define your own stack fault handler or you
can use the A0S/VS default stack fault handler. To specify the
default stack fault handler, set the stack fault handler parameter to
-1.

093-000335-00 Licensed Material - Property of Data General Corp.

6-7

CHAPTER 6 - TASKS

A stack base value of -1 means that you will allocate the stack at a
later time (that is, after task initiation). If you choose this
option, you must allocate the stack before the newly initiated task

issues any system calls. You must allocate a stack of at least 30
double words (60 words).

A task that tries to enter an inner ring via an LCALL instruction
cannot succeed unless there is a 32-bit stack (called a wide stack)
already defined in the target ring for that task. When you load a
segment image into an inner ring, inner-ring stacks must be
initialized for all tasks that may want to enter that ring. This
section describes the rules that govern the inner-ring stack
initialization that A0S/VS performs when you issue the ?RINGLD system
call. (See Chapter 3 for information on loading a program file into
a specific ring with ?RINGLD.)

Every process begins executing in Ring 7. You can specify the Ring 7

stack for the initial task of the process either when you link or
after the initial task begins to execute.

The ?RINGLD system call initializes inner-ring wide stacks on behalf
of all possible tasks in an inner ring. You can specify the size of
these initial stacks at one of the following times:

o When you compile your program.

To do this, the compiler initializes locations 20 through 27 (the
wide-stack parameters) of the process image. Then, at ?RINGLD
time, AOS/VS partitions the region delimited by the stack base

and the stack limit into separate stacks of equal size for all of
the tasks in the process.

o When you link your program into a program file.

To do this, you must specify the following in your Link command
line:

/STACK=n
where n = (number of tasks) * (stack size per task)

Link allocates n words at the end of your unshared area. At
?RINGLD time, AOS/VS partitions this n-word region into separate
stacks for each task in the process. Although n can be as few as

12 double words, we recommend that you allocate at least 60
double words per task for n.

6-8 Licensed Material - Property of Data General Corp. 093-000335-00

CHAPTER 6 - TASKS

If you specify the segment image’s initial stack size when you link,
AOS/VS uses that size to override any stack size that you may have
specified at compile time.

When you link an inner-ring segment image, you should also specify a
value for the /TASKS= switch. The number that you choose must be

greater than or equal to the number of possible tasks specified for
the (Ring 7) process image. (Note that a general-purpose local
server should be linked for 32 tasks.)

When you issue ?RINGLD, AOS/VS performs the following steps:

1. A0S/VS loads the segment image into the inner ring for which it
was linked.

2. A0S/VS initializes wide stacks in the specified ring for all
tasks of the process.

A0S/VS gets the size of the total available stack region from
locations 20 through 27 (the wide-stack parameters) of the ring.
Then, A0S/VS divides the region into equal-sized wide stacks for
each possible task in the process. The size of each stack is the
size that was implicitly set at either compile or Link time.

Typically, A0S/VS performs the following steps to initialize the
inner-ring stacks:

1. A0S/VS sets the frame pointer, the stack pointer, and the stack
base to the start of the task’s stack region.

2. AOS/VS sets the stack limit to the end of the stack region minus
2 frames.

3. A0S/VS sets the stack overflow handler address to the address
that you specified in Page 0 of the segment image.

It is possible to force A0S/VS to initialize a single common
inner-ring stack for all tasks in the process. To do this, set the
stack pointer within the segment image so that it contaias the same

value as the stack limit. Then, at ?RINGLD time, AO0S/VS initializes
all the stacks within the inner ring so that they have the same stack
pointer, frame pointer, stack base, and stack limit.

?TASK system calls can be issued from any loaded user ring. 1If a
task in an inner ring issues a ?TASK system call, it can initiate a

task in that ring or in any higher, loaded user ring. It can specify
new wide-~stack parameters for the new task. Offsets ?DSTB, ?DSFLT,

093-000335-00 Licensed Material - Property of Data General Corp. -9

CHAPTER 6 - TASKS

and ?DSSZ of the ?TASK packet allow the caller to initialize new
stack parameters for the task in the ring specified by the new task’s
initial PC (offset ?DPC).

The ?TASK system call causes AOS/VS to reset the wide stacks for the
new task in all user rings lower than the ring specified in ?DPC.
AOS/VS resets wide stacks by resetting the stack pointer and the
frame pointer to the stack base. This ensures that tasks can re-use
the same stack sequentially several times in a
?TASK/?KILL/?TASK/?KILL sequence.

Once a new task has been initiated, it is free to allocate a new wide
stack for itself at any time. However, it is the responsibility of
the task to recycle the old wide-stack memory, if the process wishes
to re-use the memory.

Task Scheduling

AOS/VS schedules tasks according to a strict priority scheduling
algorithm applied at the task level.

After a process’s initial task begins to execute under A0S/VS, you

can change its task priority at any time by issuing either the ?PRI
or the ?IDPRI system call.

To change a process’s own priority, you can issue the ?PRIPR system
call. However, if you want to change the priority of another
process, the calling process must be in Superprocess mode.

Tasks pass through several different states while a process is
executing. A task passes from the inactive to the active state when
you initiate it with the ?TASK system call. After a task is active,

it can become ready or suspended. Figure 6-1 illustrates the task
states and the system calls that affect them.
AOS/VS reschedules tasks under the following circumstances:

o When the task that is executing becomes suspended.

0 When a suspended task of a higher priority than the task that is
currently executing becomes ready to run.

o When there is more than one highest priority-level task that is

ready to run and a round-robin interval has elapsed. (You specify
the round-robin interval during the system—generation procedure.)

6-10 Liceansed Material — Property of Data General Corp. 093-000335-00

CHAPTER 6 — TASKS

RTN, ?KILL

\)
| | ?TASK | Active | Task Scheduler | Active |
| Inactive |-———--- > Ready |-———-——--——————————e >|Executing]|
! | I ! | |
?IDRDY © | ?7IDSUS ?78US]
7PRRDY | | ?PRSUS ?IDSUS |
7XMT] | ?PRSUS |
| | 7REC |
P - 7XMIW |
] |———— > Active | |
!

|Suspended | {~———===~=—— |
|

Figure 6~1. Task States

[4

To disable scheduling, you can issue either the ?DRSCH system call,

which does not return an indication of the prior state of scheduling,

or you can issue the ?DFRSCH system call, which does. Both the
?DRSCH and the ?DFRSCH system calls are very dangerous in that they
can disrupt the entire multitasking environment. Therefore, do not
use these system calls unless you are very certain that they are
precisely what you need.

To re—enable scheduling after you have disabled it with a ?DRSCH or a

?DFRSCH system call, issue ?ERSCH. (See "Critical Region

Locking/Unlocking" for more information on the ?DRSCH and the ?DFRSCH

system calls.)

Task Suspension

Several different events, including some system calls, will suspend
an active task. To explicitly suspend a task, issue one of the
following system calls: ?SUS, ?IDSUS, or ?PRSUS. Certain other
system calls suspend the calling task while they perform their
functions. System calls of this kind include the I/0 system calls
?READ and ?WRITE, system calls to acquire system resources, and
system calls that depend on another task’s response, such as the
?7XMIW and ?REC system calls.

093-000335-00 Licensed Material -~ Property of Data General Corp.

6—-11

CHAPTER 6 - TASKS

Tasks compete for all system resources (including the CPU). Only
"ready" tasks can compete for the CPU. A task is ready if it is not

waiting for some event to complete (that is, suspead). (See "Task
Readying" for more information on readying tasks.) 1If a task is not
ready, then it is suspended.

A task becomes suspended when it:

0 Is part of a process that the ?BLKPR system call has blocked. To

do this, the ?BLKPR system call suspends all tasks within the
process. (See Chapter 3 for more information on blocked
processes.)

o Issues an explicit request to suspend itself or another task
within the same process (via the ?IDSUS and ?SUS system calls).

o Issues an explicit request to wait for a message from another
task within the same process (via the ?REC and ?XMIW system
calls).

o Issues certain (most) system calls. A system call is usually a
request to use some system resource. ‘

If every task in a process is suspended, then that process is

blocked. To block a process (that is, suspend every task), you must
issue the ?BLKPR system call. When you have explicitly blocked a

process with the ?BLKPR system call, you must issue the ?UBLPR system
call to unblock that process.

The ?WDELAY system call suspends a task for a specific amount of

time. This allows you to synchronize tasks or to temporarily suspend
a task until some asynchronous event has completed.

Task Readying

A task remains suspended until the event that caused the suspension
completes or until the suspended task is '"readied" by A0S/VS or by
another task.

Tasks become ready when:

o) A task that was suspended by a ?BLKPR system call against its
process is explicitly unblocked by the ?UBLPR system call and the
task is not suspended for any other reason.

The ?BLKPR and ?UBLPR system calls work together. Therefore, the

?UBLPR system call can only unblock processes that were blocked
by the ?BLKPR system call.

6-12 Licensed Material - Property of Data General Corp. 093-000335-00

CHAPTER 6 - TASKS

0 A task issues an ?IDRDY or a ?PRRDY system call to explicitly
request that A0S/VS ready another task. (The ?IDRDY system call
readies a task of a given TID and the ?PRRDY system call readies
all tasks of a given priority.)

In this case, the task that is being readied must have been
previously suspended by a ?SUS, ?IDSUS, or ?PRSUS system call.
In addition, the task that is being readied must belong to the
same process as the task that issues the ?IDRDY system call.

o] A message for which the task was explicitly requested to wait
becomes available. In this case, the task only becomes ready when
the message is from another task within the same process.

o A system resource becomes available after an implicit wait for
that system resource during a system call.

o A task issues a task-kill system call (?IDKIL or ?PRKIL) or a
redirection system call (?IDGOTO) against a suspended task.
(Before AOS/VS executes the system call, it automatically readies
the target task.)

Task Redirection

To redirect a task’s activity without killing it, you must issue the
?IDGOTO system call. The ?IDGOTO system call stops the task’s
current activity (or readies the task, if the task was suspended) and
then directs the task to a new location. The task begins executing

at the new location as soon as it regains control of the CPU. The
task’s priority remains the same.

Typically, you use ?IDGOTO to interrupt a task after a CTRL-C CTRL-A
console interrupt sequence. (A CTRL-C CTRL-A sequence interrupts
console output. For details about this function, see the
description of ?IDGOTO in Chapter 13.)

Inner-Ring Task Redirection Protection

Tasks executing in critical sections of an inner ring cannot tolerate
being redirected by tasks executing in outer rings. However, task
redirection is a common method of responding to external events. 1In

fact, typing a CTRL-C CTRL-A console interrupt sequence frequently
causes an ?IDGOTO system call to perform task redirection on the main

093~000335-00 Licensed Material - Property of Data General Corp.

6-13

CHAPTER 6 — TASKS

task(s) of a process. Therefore, to solve this problem, AOS/VS
provides you with the ?TLOCK and ?TUNLOCK system calls, which allow
you to control whether a task can be redirected by a task-redirection

system call. (The task-redirection system calls are ?IDGOTO, ?IDKIL,
?PRKIL, ?IDSUS, and ?PRSUS.)

The ?TLOCK system call allows a task that is executing in an inner
ring to lock itself against task-redirection system calls issued by
another task that is executing in a higher ring of the same process.
The ?TUNLOCK system call unlocks a previously locked task.

A task can issue a ?TLOCK system call to protect itself from being
redirected by any task that is in a higher ring or, optionally, in
the same ring. The ring-maximization protection scheme governs which
tasks can and cannot redirect a task. (In other words, only a
task-redirection system call that originates from the same ring or in
a lower ring can redirect a locked task.)

If a task issues a task-redirection system call, but the task it
wants to redirect (the target task) is locked, the calling task waits
until the target task issues enough ?TUNLOCK system calls to unlock
the rings that are lower than the ring in which the calling task
resides.

If a task issues a ?PRKIL or a ?PRSUS system call whose input
priority specifies more than one protected task, A0S/VS makes a note
of all tasks of that priority when the ?PRKIL or ?PRSUS system call

occurred. If the redirecting task must wait because one or more
target tasks are locked, the task will only wait until all the noted
locked tasks issue enough ?TUNLOCK system calls to allow the
redirection to occur. If a redirecting task specifies more than one
task, the redirections may occur separately (depending on whether one
or more of the target tasks are locked). However, in this case, the
task-redirection system call will not complete until all the
specified tasks have been redirected.

As input to the ?TLOCK system call, you can specify a double-word
mailbox in AC2, if you want AOS/VS to inform your protected task when
another task is trying to redirect it. A0S/VS will set a nonzero
flag in this mailbox if another task’s redirection request is
waiting.

To protect a task from being redirected by another task within the

same ring, set the ?TMYRING flag in ACO when you issue the ?TLOCK
system call,

6-14 Licensed Material - Property of Data General Corp. 093-000335-00

CHAPTER 6 - TASKS

If a task in an inner ring is redirected to a higher ring, then
AOS/VS resets the stack pointer and frame pointer for each affected
inner ring to the stack base of that ring on behalf of all loaded
user rings that are less than or equal to the redirected higher ring.
This means that if a task in Ring 5 is redirected to Ring 7, A0S/VS
resets the task’s stack and frame pointers for Rings 5 and 6.

Task Termination

You can kill (terminate) a task explicitly or implicitly. To
explicitly kill a task, issue one of the following system calls:

?7IDKIL Rills a task of a certain TID.
?PRKIL Kills all tasks of a certain priority.
?KILL Kills the calling task.

To kill a task implicitly, begin the new task with a WSSVS or WSSVR
(wide-save) instruction, and end it with a WRTN (wide-return)
instruction. As A0S/VS executes the initial wide-save instruction,
it saves the contents of AC3 as the return address for the task. At
this point, AC3 contains the address of the task~kill routine (placed
in AC3 during task initiation). When AOS/VS executes the WRIN, it
passes control to the return address ian AC3; that is, the task-kill
routine.

Because killing a task does not guarantee an orderly release of its
user-related resources, you may want to define a kill-processing
routine for this purpose (for example, to close the task’s currently
open channels).

You can define either a unique kill-processing routine for each task
or a general kill-processing routine for all tasks within a process.
?KILAD, which you issue after task initiation, defines a unique
kill-processing routine that is then invoked when you issue ?IDKIL or
?7PRKIL. TIf you define a general kill-processing routine, assign the
routine the label ?UKIL and link it with your program. You can use
both ?KILAD and user-defined ?UKIL kill-processing routines within
the same program.

If there is no user-defined ?UKIL routine to kill a task, AOS/VS uses

the dummy ?UKIL routine in URT32.LB. This routine returns control to
A0S/VS, which then kills the task. ?UKIL kill processing is only
invoked on behalf of tasks that initiated processing within Ring 7
(that is, tasks whose initial PCs are Ring 7 addresses).

093-000335-00 Licensed Material - Property of Data General Corp.

6-15

CHAPTER 6 - TASKS

Task Creation and Termination Detection

Typically, a local server needs to maintain accurate task-specific
databases. Therefore, to keep those task-specific databases
accurate, a local server must be able to keep track of when tasks are

created and when they terminate. This section describes how AOS/VS
helps an inner-ring server to detect when a task is created and when
it is terminated.

All active tasks have distinct Unique Storage Position (USP)
pointers associated with Rings 4 through 6. Tasks within 32-bit
processes also have a USP pointer associated with Ring 7. A
double-word pointer at location ?USP within a ring specifies the USP
pointer for a given task within the ring. The USP pointer allows

tasks to keep track of task-specific databases associated with a
particular ring.

When a process issues a ?TASK system call to create a task, A0S/VS
initializes all the USP pointers associated with that task to zero.
When a customer issues LCALL to eater a local server, the local
server can examine the USP pointer to that inner ring. The local
server can interpret a zero USP pointer to mean that this is the
task’s first visit to the local server. In this case, the local
server can initialize any task-specific databases for that initially
entering task.

AOS/VS uniquely identifies every task within a process to aid in
identifying task-specific databases with their tasks. The ?UIDSTAT
system call returns the unique TID associated with a given task,

When a task terminates, AOS/VS serially invokes a ?UKIL postprocessor
for each loaded user ring whose ring number is less than or equal to
the ring specified by the task’s initial PC. Local servers can use
the ?UKIL postprocessor to update or deallocate task-specific data-
bases, as appropriate. The ?UKIL routine should not issue system
calls.

Several ?UKIL postprocessors (one per ring) can be associated with a

process. However, only one ?UTSK postprocessor can be associated
with a process. A0S/VS only invokes a ?UTSK postprocessor on behalf

of tasks that are to be executed in Ring 7. The ?UTSK postprocessor
must reside in Ring 7.

6—-16 Licensed Material - Property of Data General Corp. 093-000335-00

CHAPTER 6 - TASKS

Console~to-Task Communication

A0S/VS allows you to pass a message from your console to individual
tasks in a multitasking environment.

The ?TRCON system call creates a message—-management system task on
your behalf, which parses each message from you and transmits that

message to the proper calling task.

Task-to-Task Communication

A0S/VS provides an intertask communications facility that you can use

to synchronize tasks or pass messages among them. The following
system calls allow tasks to communicate with one another:

?7XMT Transmits an intertask message.
?7XMTW Transmits an intertask message and awaits its reception.

?REC Receives an intertask message; suspends the ?REC caller
if there is no message currently available.

?RECNW Receives an intertask message; does not suspend the ?REC
caller if there is no message curreantly available.

Tasks deposit messages in and retrieve them from 32-bit locations
called mailboxes. Before you send a message with an ?XMT or an 7XMIW
system call, you must initialize the appropriate mailbox to zero.

Timing is a factor for both the ?XMIW and the ?REC system call. If a
sending task issues an ?XMIW system call before another task issues a
complementary receive, A0S/VS suspends the seader until the receive
occurs. Likewise, if a task issues an ?REC system call against an
empty mailbox (the sender has not transmitted the message yet),
A0S/VS suspends the receiver until the transmission occurs.

The ?XMT and ?RECNW system calls maintain the calling task in the
ready state, regardless of the timing of the transmit and receive
sequence. If a task issues an ?RECNW system call against an empty

mailbox, the system call fails, and A0S/VS returns an error code to
ACO.

093-000335-00 Licensed Material — Property of Data General Corp.

6-17

CHAPTER 6 - TASKS

You can use the ?XMT and ?XMIW system calls to "broadcast" a message;
that is, to send the message to all tasks currently waiting for the
message. If you do not select the broadcast option and more than one

task is waiting for the message, A0OS/VS sends the message to the
receiver with the highest priority.

Critical Region Locking/Unlocklng

You can use the intertask communications system calls to lock or
unlock a critical region. A critical region is a procedure or
database that all tasks share, but that is available to only one task
at a time. To protect a critical region, you must define a mailbox
to syanchronize task execution within the critical region. A task
gains control of a critical region by issuing a successful receive
against that mailbox. The procedure for locking and unlocking a
critical region is as follows:

o First, a task initializes the locking facility, either by setting
the mailbox to a nonzero value or by issuing the ?XMT system call
"without broadcast" from the initializing task to the mailbox.
(The ?XMT system call message may specify the address of the
critical region.)

o Second, a task locks (gains exclusive control of) the critical
region by issuing an ?REC system call against the mailbox.
AOS/VS suspeands other tasks that issue subsequent ?REC system
calls against the mailbox.

Once a task has locked a critical region, it remains locked until the
task issues another ?XMT system call to unlock it. If more than one
task is waiting for control of a critical region (that is, more than
one task was suspended by a ?REC system call to the mailbox), the
second ?XMT system call readies the highest priority receiver, which
then gains control of the critical region.

You can also lock a critical region implicitly by issuing a ?DRSCH
system call, which disables all task scheduling in the calling
process, or a ?DFRSCH system call, which not only disables all task
scheduling in the calling process, but also returns an indication of
the prior state of scheduling. TIf you use a ?DRSCH or a ?DFRSCH

system call to lock a critical region, you should use a ?ERSCH system
call to unlock it. However, ?DRSCH and ?DFRSCH system calls can be

dangerous because they disable all multitask scheduling for the
calling process.

6-18 Licensed Material — Property of Data General Corp. 093-000335~00

CHAPTER 6 - TASKS

Unless absolutely necessary, you should avoid using the ?DRSCH and
the ?DFRSCH system calls. Although there may be times when you need
to issue one of these system calls, such as to control a "race"

condition between two tasks that are coapeting for the same critical
region, you must use them with discretion. Disabling task

scheduling, even briefly, can disrupt the entire multitasking
environment.,

The ?ERSCH system call re-enables multitask scheduling for the
calling process.

MV/8000 Floating—P01nt Registers

The MV/8000 hardware has five registers that allow you to manipulate
floating-point numbers:

o) Four floating-point registers, FACO, FACl, FAC2, and FAC3.

o One floating-point status register, FPSR, which records

information about the current state of the MV/8000 floating-point
processor,

Before you can use any of the MV/8000 floating-point instructions
from a task, you must issue ?IFPU to initialize the floating-point
status register. To obtain accurate results for floating-point
arithmetic, you must do this even for single-task programs.

093-000335-00 Licensed Material - Property of Data General Corp. 6-19

e

CHAPTER 6 - TASKS

The initial task of the following program, NEWTSK, creates a new task
that has a priority of 1 and a TID of 2. The initial task opens the
console, creates the new task, announces its death, gets its

priority, and kills itself. Then, the new task takes control, writes
a message, and returns to the CLI. (The last task cannot kill itself

with a 7TASK system call.)

NEWISK uses the ?TASK, ?MYTID, and ?IDKIL system calls.
TITLE NEWTSK
« ENT NEWT SK
.TSK 2

;0pen console (CON), create a new task, and kill self.

NEWTSK: ?0PEN CON ;0pen console (CON) for I/0.

WBR ERROR ; 70PEN error return.

?TASK TPKT ;Create new task, TID 2, with
;priority of 1.

WBR ERROR ; ?TASK error return.

7WRITE CON ;Display termination message
;on console.

WBR ERROR 3 7WRITE error return.

MYTID ;Get TID in ACO and priority
;in ACl.

WBR ERROR ; ?7MYTID error return.

WMOV 0,1 sMove TID into ACIl

?7IDKIL ;and die.

WBR ERROR ; 7IDKIL error return.

;New task is now the only task.

NTSK: XLEFB 0,NMSG*2 ;Get byte pointer to message.
XWSTA 0,CON+?IBAD ;Put message in I/0 packet.
?WRITE CON ;Display message on console.
WBR ERROR ; 7ZWRITE error return.
WSUB 2,2 ;Set AC2 for normal return.
WBR BYE ;Go and return.

;Error handler.

ERROR: NLDAI ?RFEC! ?RFCF! ?RFER, 2 ;Error flags: Error code is in
;ACO (?RFEC), message is in
;CLI format (?RFCF), and caller
;should handle this as an error
;s (?RFER) .

093-000335-00 Licensed Material - Property of Data General Corp. 6-21

CHAPTER 6 - TASKS

NEWTSK Program (Cont.)

BYE: ?RETURN sReturn to CLI.
WBR ERROR 3 TRETURN error return.

; 70PEN and I/0 packet for console.

CON: «BLK ?IBLT ;Allocate enough space for
;packet.
.1L0C CON+?1ISTI ;File specifications.
«WORD ?ICRF! ?RTDS! ?20FI0 ;Change format to data-

;sensitive records and open
;for input and output.

.LOC CON+?1IMRS

«WORD -1 ;Default physical block size
;to 2K bytes.

.LOC CON+?1BAD
.DWORD ITEXT*2 ;Byte pointer to record I/0
sbuffer.

.LOC CON+?7IRCL
«WORD 120. ;Record length is 120
;jcharacters.

.LOC CON+?IFNP

.DWORD CONS*2 ;Byte pointer to pathname.
.LOC CON+?IDEL ;Delimiter table address.
.DWORD -1 ;Use default delimiters: null,

sNEW LINE, form feed, and
;jcarriage return (default is

;=10
.LOC CON+?1IBLT ;End of packet.
;Filename and messages. A .NOLOC 1 follows.
CONS: .TXT "@CONSOLE" ;Use generic name.

ITEXT: .TXT "I’m the default task. I have opened the console and
I’m about to ?IDKIL myself.<12>"

NMSG: <TXT "I’'m the new task. I am about to ?RETURN.<12>"

«NOLOC O

6-22 Licensed Material - Property of Data General Corp. 093-000335~00

; 7TASK packet for new task.

TPKT: « BLK

.LOC
«WORD

.LOC
+WORD

.LOC
«DWORD

.LOC
+«WORD

. LOC
«WORD

.LOC
- DWORD

.LOC
«DWORD

.LOC

«DWORD

.LOC
«WORD

.LOC
+ DWORD

.LOC
«WORD

093-000335-00

?DSLTH

TPKT+?DLNK
1

TPKT+?DLNL
0

TPKT+?DLNKB
0

TPKT+?DPRI
1

TPKT+?DID
2

TPKT+?DPC
NT SK

TPKT+?DAC2
0

TPKT+?DSTB
STACK

TPKT+?DSFLT
-1
TPKT+?DSSZ

60.

TPKT+?DFLGS
0

CHAPTER 6 - TA

NEWTSK Program (Con

SKS

te)

;Allocate enough space for the

;standard packet.

;Set to 1 for standard packet

;Reserved.,
;Set to O.

;Reserved.
;Set to O.

;Assign priority 1 to the new
;task (default is 0, which
;assigns the new task the sam
;priority as the caller).

;Assign TID 2 to the new

; task (default is 0, which
;does not assign a TID to
;the new task).

;Task’s starting address is
s NTSK.

;There is no message for the
;new task.

;Stack base address is STACK.
;Stack fault handler address.
;Use default stack fault
;handler in URT32.LB (default
;Stack size is 60 words.

;Task flag word.
;Set to 0.

Licensed Material -~ Property of Data General Corp.

e

6-23

CHAPTER 6 - TASKS

NEWTSK Program (Cont.)

.LOC
«WORD

.LOC
« WORD

.LOC

STACK: .BLK

«END

TPKT+?DRES
0

TPKT+?DNUM
1

TPKT+?DSLTH

60.

NEWT SK

;Reserved.

;Set to O.

;Create one task.

;End of packet.

;60-word stack for new task.

;End of NEWTSK program.

6-24 Licensed Material - Property of Data General Corp. 093-000335-00

CHAPTER 6 - TASKS

The following program, BOOMER, is a fast, two-task copy program that
uses ?IXMT and ?REC system calls to syachronize ?READ and ?WRITE

system calls.

BOOMER copies an existing input file to an output file.

BOOMER uses the ?TASK, ?XMTW, ?REC, ?KILL, ?IXMT, ?READ, and ?WRITE

system calls.,

.TITLE BOOMER
«ENT BOOMER
.TSK 2
+NREL 1

;Initial task uses ?GTMES to get output filename (second argument) and
;opens it. Repeats ?GTMES to get input filename (first argument) and
;opens it. Creates output task.

BOOMER: ?GTMES

WBR
LLEFB

LWSTA

?0PEN

WBR
NLDAT

LNSTA

?GTMES
WBR
LLEFB

LWSTA

?0PEN
WBR

?TASK
WBR

GPKT ;Get input filenane.

ERROR ; 7GTMES error return.

0, FNAME*2 ;Get byte address of filename
;that ?GTMES returns.

0, INPUT+?IFNP ;Put in input I/0 packet.

INPUT ;Open INPUT file.

ERROR ; 70PEN error return.

1,0 ;Get 1 in ACO.

0, GPKT+?GNUM ;Specify argument 1.

GPKT ;Get output filename.

ERROR s 7GTMES error return.

0, FNAME#*2 ;Get byte address of filename
;that ?GTMES returns.

0,0UTPUT+?IFNP ;Put in output I/0 packet.

OUTPUT ;Open OUTPUT file.

ERROR ; 70PEN error return.

TPKT ;Create output task.

ERROR ; 7TASK error return.

;Loop reads ianto BUFl, transmits it to output task, reads into BUF2,
;and transmits it to output task. Message for output task is buffer

;address.

READER: ?READ

WBR
LLEF
LWLDA

7XMTW
WBR

093-000335-00

INPUT ;Read buffer from INPUT file.
ERROR s 7READ error return.
0,MAILBOX ;Get message address.

1, INPUT+? IBAD ;Message is buffer address.

;Wake up output task.
ERROR ‘ ; 7XMTW error return.

Licensed Material -~ Property of Data General Corp. 6-25

CHAPTER 6 - TASKS

BOOMER Program (Cont.)

;Swap buffer byte pointers for next read.

LLEFB 0,BUF1*2 ;Get byte pointer to BUFl.

LLEFB 2,BUF2%2 .;Get byte pointer to BUF2.

WSNE 1,2 sWas BUFl used for last read?

WMOV 0,2 ;No. Make BUF1 current buffer.

LWSTA 2, INPUT+?1LBAD sYes. Put byte pointer to
scurrent buffer ianto input
;packet.,

WBR READER ;Read into current buffer.

;0n end-of-file condition, get number of characters to read from input

;packet and make this number the buffer

;Error handler.

ERROR: WLDAI

?RETURN

WBR

?RFEC! ?RFCF! ?RFER, 2

ERROR

6-26 Licensed Material - Property of Data General Corp.

length for the last ?XMT.

EOF?: NLDAI EREOF,1 ;Was error code "end-of-file"

; (EREOF)?

WSEQ 0,1 ;Yes.

WBR ERROR sNo. Try to handle the error.

LLEF 0,MAILBOX ;Get address of message.

LWLDA 1, INPUT+?IBAD ;Message is byte pointer to
;buffer.

WMoV 1,2 ;Copy to AC2 for indexing.

NLDAT -1,3 ;Put -1 in AC3.

WLSH 3,2 ;Make byte pointer to buffer
;a word pointer.

LNLDA 3,INPUT+?IRLR ;Get number of characters read
;from input I/0 packet.

LWSTA 3,-2,2 ;Make buffer length (AC2-2)
;the number of characters
;read.

2XMTW ;Send last buffer,

WBR ERROR ; 7XMTW error return.

?XILL sInput is done; output task

;will return to CLI.

sError flags: Error code is in
;ACO (?RFEC), message is in
;CLT format (?RFCF), and caller
;should handle this as an error
; (?RFER) .

sReturn to CLI.
;s ?7RETURN error return.

093-000335-00

;Output task does the writing:

WRITER: LLEF 0,MATILBOX
?REC
WBR ERROR

LWSTA 1,0UTPUT+?1BAD

WMoV 1,2
NLDAI -1,3
WLSH 3,2

XWLDA 0,-2,2

LNSTA 0,0UTPUT+?IRCL

?WRITE OUTPUT

WBR ERROR
WLDAI BUFLGTH, 1
WSNE 0,1

WBR WRITER
WSUB 2,2
?RETURN

WBR ERROR

CHAPTER 6 - TASKS

BOOMER Program (Cont.)

;Get message address.

;Wait for message.

;3 ?REC error return.

;Got message, which was byte
;pointer to buffer. Put in
;I/0 packet.

;Copy to AC2 for indexing.
;Put -1 in AC3.

;Make byte pointer into word
;pointer.

;Get buffer length left by
;input task (original length,
sunless task hit end of File).
;Make this maximum receive
;length in 1/0 packet.

sWrite buffer to OUTPUT file.
;s 7WRITE error return.

;Get original buffer length.
;Is current buffer length same
;as original buffer length?
;Yes. Get another buffer.

s;No. Done. Set for normal
sreturn.

sReturn to CLI.
; 7RETURN error return.

;Buffers, message, packets in unshared code.

«NREL
;Buffer declarations.

BUFLGTH

16384.
BUFLGTH

BUF1: .BLK (BUFLGTH+1)/2
BUFLGTH

BUF2: .BLK (BUFLGTH+1)/2
;Mailbox for message.

MAILBOX: O

093-000335~00 Licensed Material - Property of Data General Corp.

;Need to change only this

sfor residual characters after
;end of file.

;Size of BUF1

;for residual characters after
;end of file.

;5ize of BUF2.

6-27

CHAPTER 6 - TASKS

BOOMER Program (Cont.)

; 7GTMES packet to get input and output filenames.

GPKT: «BLK

.LOC

«WORD

.1LOC
«WORD

.LOC

«DWORD

.LOC

2GTLN
GPKT+?GREQ
?GARG

GPXT+?GNUM
2

GPKT+?GRES

FNAME*2

GPKT+?GTLN

; 70PEN and I/0 packet for input task.

INPUT: BLK

.LOC
« WORD

.LOC
«WORD

. LOC
.DWORD

.LOC

«WORD

.LOC
. WORD

.LOC
«DWORD

?1BLT

INPUT+?ISTI
?ICRF!?RTDY! ?20FIN

INPUT+?IMRS
-1

INPUT+? IBAD
BUF1%*2

INPUT+?IRCL
BUFLGTH
INPUT+? IRLR

0

INPUT+? IFNP
FNAME*2

;Allocate enough space for
;packet.

sRequest type.

;Put argument in ?GRES oanly.

sArgument 2 is input filename.

;Byte pointer to receive
;buffer.

;End of packet.

;Allocate enough space for
;packet.

;File specifications.
;Change format to dynamic-~
;length records and open for
;input only.

s;Default physical block size
;to 2K bytes.

;Byte pointer to record I/0
;buffer.

sRecord length is BUFLGTH.

;Set to 0 (used by ?READ and
3 ZWRITE only).

;Byte pointer to pathname.

6-28 Licensed Material - Property of Data General Corp. 093-000335-00

.LOC
«DWORD

.LOC

INPUT+?IDEL
-1

INPUT+?IBLT

CHAPTER 6 — TASKS

BOOMER Program (Cont.)

;Use default delimiters: nul
;NEW LINE, form feed, and
scarriage return (default is
.'—1)0

3

;End of packet.

; 7TASK packet for output task (minimum packet).

TPKT: «BLK

.LOC

«WORD

.LOC
«WORD

.LOC
«DWORD

.LOC
+WORD

.LOC
- WORD

.LOC
«DWORD

.LOC
«DWORD

.LOC
« DWORD

.LOC
«WORD

093-000335-00

?DSLTH

TPKT+?DLNK

1

TPKT+?DLNL
0

TPKT+?DLNKB
0

TPKT+?DPRI
1

TPKT+?DID
2

TPKT+?DPC
WRITER

TPKT+?DAC2
0

TPKT+?DSTB

STACK

TPKT+?DSFLT
-1

1,

;Allocate enough space for the

;standard packet.

;Set to 1 for standard packet.

;Reserved.
;Set to O.

;Reserved
;Set to 0.

;Assign priority 1 to the new

;task (default is 0, which

;assigns the new task the same

;priority as the caller).

;Assign TID 2 to the new
;task (default is 0, which
;does not assign a TID to
;the new task).

;Task’s starting address is

s WRITER.

;There is no message for the
;new task.

;Stack base address is STACK.

;Use default stack fault

;handler in URT32.LB (default

;iS —'1).

Licensed Material - Property of Data General Corp.

6-29

CHAPTER 6 - TASKS

BOOMER Program (Cont.)

.LOC
« DWORD

.LOC
«WORD

.LOC
«WORD

.LOC
-WORD

.LOC

; 70PEN and I/0 packet for output task.

OUTPUT: .BLK

.LOC
«WORD

.LOC

«WORD

.L0C
«DWORD

.LOC
«WORD

.LOC
.WORD

. LOC
«.DWORD

TPKT+?DSSZ
60.

TPKT+?DFLGS
0

TPKT+?DRES
0

TPKT+?DNUM
1

TPKT+?DSLTH

?IBLT

OUTPUT+?1ISTI

?OFCR! ?0FCE! ?ICRF! ?7RTDY!

OUTPUT+?IMRS

-1

OUTPUT+?1IBAD
BUF1%*2

OUTPUT+?IRCL
BUFLGTH

OUTPUT+?IRLR
0

OUTPUT+? IFNP
FNAME*2

;Stack size is 60 words.

;Task flag word.
;Set to 0.

;Reserved.
;Set to 0.

;Create one task,

;End of packet.

;Allocate enough space for

;packet.

;File specifications.

?0F10 ;Delete
;file, change format to
;dynamic-length records, and
;open for input and output.

;Physical block

;bytes).

file, recreate

size (in

;Block size is 2K bytes

sydefault is -1).

;Byte pointer to record 1/0
;buffer.

;Record length is BUFLGTH.

;A0S/VS returns characters
;transferred (used by ?READ
;and ?WRITE only).

;Byte pointer to pathname.

6-30 Licensed Material - Property of Data General Corp.

093-000335-00

E——

.LOC
«DWORD

.LOC

FNAME: .BLK

STACK: BLK

+END

093-000335-00

OUTPUT+?IDEL
-1

OUTPUT+?1IBLT

(?MXPL+1)/2

60.

BOOMER

CHAPTER 6 - TASKS

BOOMER Program (Cont.)

;Use default delimiters: null,
;NEW LINE, form feed, and
;carriage return (default is
;_1).

;End of packet.

;Filename buffer. System
;1limit for number of
;characters.

;60-word task stack.

;End of BOOMER program.

End of Chapter

Licensed Material - Property of Data General Corp. 6-31

N —

CHAPTER 7
THE INTERPROCESS COMMUNICATIONS (IPC) FACILITY

The IPC system calls are:

| |
I |
I 1
| ?GCPN Returns the global port number of the target !
| process’s console.]
| ?GPORT Returns the PID associated with a global port]
] number. |
| ?ILKUP Returns a global port number.]
| ?IMERGE Modifies a ring field within a global port number. |
| ?IREC Receives an IPC message.]
| ?ISEND Sends an IPC message.]
| ?ISPLIT Finds the owner of a port (including its ring |
| number).]
| ?IS.R Sends and then receives an IPC message.]
| ?TPORT Translates a local port number to its global |
| equivalent. |
!]

AOS/VS allows processes to communicate with each other through the
Interprocess Communications (IPC) facility, which allows you to:

o Transmit variable~length free-form messages from one process to
another.

o Synchronize processes during execution.

You can use the IPC facility to pass arguments from a father process
to a son process and return the results to the father before the son
terminates. If there is a delay between the father’s receive request
and the son’s message, A0S/VS pends the father process until the son
process responds, thereby synchronizing the two processes. AO0S/VS
uses the IPC facility to send messages to father processes to notify
them of their sons’ terminations.

093-000335-00 Licensed Material - Property of Data General Corp.

7-1

CHAPTER 7 - THE INTERPROCESS COMMUNICATIONS (IPC) FACILITY

The following primitive system calls allow you to send and/or receive
IPC messages:

?ISEND Sends an IPC message.
?IREC Receives an IPC message.
?IS.R Sends and then receives an IPC message.

For each of these system calls, you must supply a header (packet)
that includes the origin and destination of the message, its length,
its address, and other information about the connection.

During each IPC transmission, portions of the sender’s header over—
write portions of the receiver’s header. 1In fact, some transmissions
consist solely of passing header information from the sender to the
receiver.

To use the primitive IPC system calls, ?ISEND and ?IS.R, the calling
process must have privilege ?PVIP, which is one of the optional

privileges you can specify when you create a process with the ?PROC
system call. (See Chapter 3 for information on creating processes.)

If the calling process does not have the ?PVIP privilege, it must use

the IPC facility as a standard peripheral device, which it can then

access by device-independent I/0 techniques. (See Chapter 5 for

information on how to do this.) Also, you can use the connection- *’/
management facility, which is described in Chapter 8, to establish

communications between processes. (Note that if a process is a

declared customer under the connection-management facility, it does

not need the ?PVIP privilege to issue the ?IS.R system call.)

Sending Messages Between IPC Ports

AOS/VS sends IPC messages between ports. Ports are full-duplex
communications paths that a process identifies by port numbers. There
are two types of port numbers:

o] Local port numbers

Local port numbers are values that the IPC caller (either the
sender or the receiver) defines to identify its own ports.

o} Global port numbers

Global port numbers uniquely identify each port currently in use
system wide. Global port numbers are made up of a process’s PID,
its local port number, and its ring number. When a process
refers to its local port in an IPC system call, A0OS/VS translates
the local port number to its global equivalent. The ?TPORT
system call performs this translation. N

7-2 Licensed Material - Property of Data General Corp. 093-000335-00

CHAPTER 7 - THE INTERPROCESS COMMUNICATIONS (IPC) FACILITY

When a process sends an IPC message, it defines a local port number
for the connection, then it specifies that port number and the
destination’s global port number in the IPC header. The receiving
process issues a complementary receive system call and, like the
sender, defines its own local port number and specifies the sender’s
global port number. If the port specifications on both ends match
(including the target ring), AOS/VS sends the message.

NOTE: Only a specific task in the target ring can
receive the IPC message. Therefore, it is
very important that you specify the target
ring. This prevents a task in one ring from
intercepting an message intended for a task
that is executing in another ring.

A process must use a global port number to refer to another process’s
port. However, because global port numbers depend on the system
environment, they frequently change during subsequent process
execution. To circumvent this problem, potential IPC users can issue
the ?CREATE system call to create IPC files, which serve as ports.
Then, these same users can define the local port numbers before they
issue IPC system calls. As AOS/VS executes the ?CREATE system call,
it translates the local port numbers into global port numbers.
Potential senders and receivers can then issue ?ILKUP system calls
against the IPC file to determine its global port number.

When you issue the ?CREATE system call to create an IPC file, AOS/VS
saves the number of the ring from which the system call was issued in
the new IPC file. The global port number, which ?ILKUP returns,

incorporates this same ring number. AOS/VS intecrprets all global
port numbers as containing ring fields.

The ?ISEND and ?IS.R system calls interpret ring fields (within
global port numbers) as follows:

Offset ?IDPH (the global port number) must always contain a
valid user ring number. The ring number specifies the ring to
which the message will be sent. However, the caller must have

appropriate privileges to send a message to that ring within
that particular process.

093-000335-00 Licensed Material - Property of Data General Corp. 7-3

CHAPTER 7 - THE INTERPROCESS COMMUNICATIONS (IPC) FACILITY

The ?IREC system call interprets ring fields (within global port
numbers) as follows:

Offset ?I0PH (the global port number) can contain either a

valid user ring number or a zero ring number. A nonzero ring
number indicates that ?IREC returns a message only from sends
issued from the specified origin ring within the specified origin
process. A zero ring number indicates that ?IREC will return a
message from any ring within the specified origin process that
sends a message destined for the ?IREC caller’s ring. (You can
use the ?IMERGE system call to construct a global port number
with a zero ring field.)

When you include ring fields as part of global port numbers, the
?IREC port—-matching rules are affected in that if the receiver

specifies a nonzero ring field in an otherwise zero global header, a
ring-specific global receive takes precedeunce after explicit matches.

To identify the PID that is associated with a particular global port
number, you must issue the ?GPORT system call. Conversely, if you
know the name of the PID of a console’s associated process, you can
identify its console port number by issuing the ?GCPN system call.

The ?ISPLIT system call extracts the ring field from a global port
number, while the ?IMERGE system call permits both 16- and 32-bit
users to modify the ring field within a global port number.

The following steps describe a typical IPC sequence:

1. The sending process uses the ?CREATE system call to create an IPC
file entry (type ?FIPC) in its working directory. This file
entry serves as the origin port for the message. (See Chapter 4
for a description of the ?CREATE system call.)

2. The sending process issues the ?ISEND system call and specifies

the following in the header: its own local port number, the
receiver’s global port number, the length and address of the
message buffer, and, optionally, system and user flags.

3. (optional) The receiving process issues the ?ILKUP system call
to determine the sender’s global port number.

7-4 Licensed Material - Property of Data General Corp. 093-000335-00

Ty ——

CHAPTER 7 - THE INTERPROCESS COMMUNICATIONS (IPC) FACILITY

4. The receiving process issues the ?IREC system call and specifies
the following in the ?IREC header: its own local port number, the
sender’s global port number, and, optionally, user flags.

Note that this sequence assumes that the sender issues the ?ISEND
system call before the receiver issues the complementary ?IREC system
call. 1In fact, the send and receive system calls need not be
sequential. If there is no outstanding message for a receiver,
AOS/VS either suspends the receiviung task until you issue the ?7ISEND
system call, or returns an error (an option in the ?TIREC headers).
Similarly, if there is no ?IREC system call for an ?ISEND system
call, AOS/VS either stores the message in the memory buffers or
returns an error to the sender (an option in the ?ISEND header).

The ?ISEND and ?IREC headers consist of ?IPLTH words. The ?IS.R
header is identical to the ?ISEND header, except that it contains an
extension for receive information, because the ?IS.R system call
performs both send and receive functions. The ?IS.R header consists
of 7IPRLTH words. Figure 7-1 shows the structures of the IPC
headers, and Table 7-1 describes each header offset.

As Table 7-1 shows, the sender specifies the receiver’s global port
number in offset ?IDPH. When AOS/VS transmits the message, it
translates this value to a local port number for the receiver and
places it in offset ?IDPN of the receive header.

Similarly, the receiver specifies the sender’s global port number in
offset ?I0PH. A0S/VS translates this to a local port number during
the transmission and records it in offset ?I0OPN in the send header.

Offset ?ILTH in the send header contains the length of the IPC
message, and offset ?IPTR points to the start of the message in the
sender’s logical address space. Within the receive header, these
same offsets describe the size of the receive buffer and its starting
address, respectively. AO0S/VS copies the contents of these offsets
from the send header to the receive header during the transmission.

If you set ?ILTH to O in the send header, you can use offset ?IPTR to

send data directly to the header, rather than to a buffer. However,
you must set up both the send and receive headers in advance.

093-000335-00 Licensed Material - Property of Data General Corp. 7-5

CHAPTER 7 - THE

INTERPROCESS COMMUNICATIONS (IPC) FACILITY

7-6

Licensed Material - Property of Data General Corp.

\\/_____
] ?ISEND HEADER f
| \
} (I) 15I 16 31 |
! I
| ?ISFL | System flags] User flags | 2IUFL |
I ! T T T e [e m———
| ?IDPH | Destination port number |, :
| | e e e e e e ! !
i 7I0PN | Origin port number | Message length (in [7ILTH |
! I | words) I l
] i T] !
| ?IPTR | Message buffer address] |
! | e e e | I
| ?IPLTH = packet length]
| |
| ?IREC HEADER |
| |
| 0 15 16 31 [
] I !] !
] ?ISFL | System flags | User flags | 7IUFL |
I [== e e e e e I |
| ?I0PH | Destination port number i
| fmm e [e [!
| ?IDPN | Origin port number] Message length (in | 7ILTH | T
I ! ! words) I |
I e e — | [
| ?IPTR | Message buffer address | }
I | m—————— T e e e e e ! !
| ?IPLTH = packet length |
] !
| ?IS.R HEADER |
I !
| 0 15 16 31 |
] | I I I
] ?ISFL | System flags | User flags |?IUFL |
[[e e | o e e e e | |
| ?IDPH | Destination port number i |
| R e e e e ! I
| ?I0OPN | Origin port number] Message length (in | 7ILTH |
I I I words) I I
} | - - - - - - I
{ ?IPTR | Message buffer address |]
! [e e [e e e ! |
| ?IRSV } Reserved (Set to 0.) | Receive buffer length |?IRLT]
| ! - I- - -1 !
| ?IRPT | Address of receive buffer [[
| I | !
! ?IPRLTH = packet length |
| |
w
Figure 7-1. Structure of IPC Send and Receive Headers

093-000335-00

CHAPTER 7 - THE INTERPROCESS COMMUNICATIONS (IPC) FACILITY

Table 7-1. Contents of IPC Send and Receive Headers*

Send Header

Receive Header

Offset | Contents

0
Il
1]
i
il
W
1l
1
|
|
|
|
|
|
|
|
[
|
|
|
|
|
|
i
H
|
I
|
|
|
1]
]
]

|

]

|

= I
?ISFL | System flags. |
| |

?7IUFL) User flags. |
! |

! !

?IDPH | Destination port number.|
(double}]
word) | |
| |

?TI0PN | Origin port number. [
!

!

|

]

]

|

|

{

]

|

I
I
|
?ILTH | Length of message in

| words.

!

I

?IPTR | Address of message
(double| buffer.
word) |

?710PH

(double
word)

?71IPTR
(double
word)

System flags.

User flags (copied
from send header).

Origin port number.

Destination port
number (translated
from send header).

Length of message
buffer words (copied
from send header).

Address of message
buffer.

?71S.R Extension

I——
?IRSV | Reserved. (Set to 0.)
]

(double]
word) |
|

?IRLT | Length of the receive buffer.

?IRPT | Address of receive buffer.

* There is no default unless otherwise specified.

System and User Flags

In addition to the origin, destination, and message parameters, the
headers for the ?ISEND and ?IREC system calls contain a system flag

word (?ISFL) and a user flag word (?IUFL).

Table 7-2 describes the

optional contents of ?ISFL in the ?ISEND and ?IREC headers.

093-000335-00 Licensed Material - Property of Data General Corp.

CHAPTER 7 - THE INTERPROCESS COMMUNICATIONS (IPC) FACILITY

Table 7-2. Contents of System Flag Word (Offset ?ISFL)

?ISEND Header

?IREC Header |

!
|

Flag | Description | Flag |
| m=======|======s=zscsszssssss=sz=s== | Sss===== |
| ?IFSTM | Loop the message (send | ?7IFRFM |
! | the message back to the |]
] | the sender). | |
: ?7IFNSP : Do not buffer the : ?2IFSOV :
[| message; signal an error | [
| | if there is no ready | [
] | receiver.] |
I | | ?IFBNK |
| | I I
I ! | I
| I I |
| ! | !
I ! | ?IFRING]
| I | l
] I | |
I I l I
I | | ?IFPR |
l I I |
i | ! I
| | | I
I ! | |
I I | I
I I I I

Receive a looped |
message (sent by this|
process to itself). |

|
Buffer the message if|
the receive buffer is|
too small. |

Signal an error if

there is no spooled
message for this
receiver,

Contains the sender’s
ring field (returned
by AOS/VS).

Indicates .PR file
type of sender: 0 if
sender is a 32-bit
process; 1 if sender
is a 16-bit process
(returned by A0S/VS).

A process can "loop" a message (send a message to itself). To do
this, the process must perform the following steps:

1. 1Issue an ?ISEND system call.
2. Issue an ?IREC system call.
3. Set bit ?IFSTM in the ?ISEND header.

4. Set bit ?IFRFM in the ?IREC header.

Usually, a process loops a message for testing purposes.

does not need to specify the origin and destination ports in the

headers for a looped message.

7-8 Licensed Material - Property of Data General Corp. 093-000335-00

A processor

CHAPTER 7 -~ THE INTERPROCESS COMMUNICATIONS (IPC) FACILITY

Bit ?IFNSP in the ?ISEND header directs A0OS/VS to signal an error if
there is no outstanding receiver for the sender’s message.

Within the ?IREC headers, bit ?IFSOV directs A0S/VS to store the IPC
message in the memory buffers 1if the receive buffer is too small to
accommodate it. If the receiver does not set this bit and the
receive buffer is too small, AOS/VS transmits as much of the message
as possible and discards the overflow.

A receiver can set bit ?IFNBK to direct A0S/VS to return an error if
there is no outstanding message for it. Otherwise, A0S/VS suspends
the receiving task until the message is sent.

Bits ?IFRING and ?IFPR in the receive header provide the receiver
with information about the sending process, such as the sender’s ring
field (?IFRING) and program type (?IFPR). AOS/VS controls these flag
bits; the receiving process cannot set them.

User Flag Word

The user flag word, offset ?IUFL, serves two purposes:

o AOS/VS copies the contents of offset ?IUFL from the send header
to the receive header during a transmission. Therefore, if
senders and receivers set up the two headers properly, they can
use offset ?IUFL to pass information.

o) A0S/VS uses offset ?IUFL to pass termination and obituary
messages when a process terminates or breaks a conmection with
another process. (For complete details about ?IUFL termination
codes, see "Process Termination Messages in a Customer/Server
Relationship" in this chapter.)

In a customer/server relationship, when a process terminates or
breaks a connection with another process, A0S/VS uses the IPC
facility to send an obituary message to the process with which it was
connected. For a process to receive an obituary message, it must
first issue ?IREC and set offsets ?I0PH in the ?IREC header to global
port number ?SPTM, which is the predefined origin port for obituary
messages.

093-000335-00 Licensed Material ~ Property of Data General Corp. 7-9

CHAPTER 7 -~ THE INTERPROCESS COMMUNICATIONS (IPC) FACILITY

| Various codes in offset ?IUFL of the receive header describe the
reason for the termination, and the program type of the terminated
process. Figure 7-2 shows the structure of offset ?IUFL.

|=mmmmm e —mmee | |
?RETURN ! TERMINATION | PROCESS ID |
! !
! |

| FLAGS FIELD
| _______________________________

Figure 7-2. Structure of Offset ?IUFL

| Bits O through 4 in offset ?IUFL are reserved for codes that A0S/VS
sends to a process to indicate why a process terminated. The right

byte of offset ?IUFL always contains the PID of the terminated or
disconnected process.

} The termination field in offset ?IUFL can contain any of the codes
listed in Table 7-3, depending on the reason for the termination.

All of the termination codes are unique, whether they appear in the
?7IUFL termination field or in the first word of the termination

message.

Termination Messages for 16-Bit Processes

When a 16-bit process terminates by issuing a ?RETURN system call,
the system returns flag ?TSELF to the termination field in offset
?1IUFL, and copies one or more of the codes listed in Table 7-4 to
the ?IUFL return field.

7-10 Licensed Material - Property of Data General Corp. 093-000335-00

CHAPTER 7 - THE INTERPROCESS COMMUNICATIONS (IPC) FACILITY

Table 7-3. Process Termination Codes in Offset ?IUFL for ?IREC
and ?ISEND Headers

appears in offset 0 (first word) of the IPC message.

A termination code of ?TEXT means that the actual
termination code is a right-justified 16-bit code in the
first word of the termination message in the receive
buffer. The following list describes these extended
termination codes.

| Code | Meaning]
?TSELF | Either a 16-bit process terminated itself with a ?TERM |]
| or a ?RETURN system call or a 32-bit process terminated | |
| itself with a ?RETURN system call. |
! I
?TRAP | A user trap terminated a 16-bit process; Word 5 of the |
| IPC message to the father describes the trap. |
|]
?TCIN | An abort console interrupt (CTRL-C CTRL-B sequence) |
| terminated a process. |
! !
?TAOS | AOS/VS terminated a process because of an error; offset |
| ?IPTR in the IPC header contains the error code. |
I !
?TBCX | A process broke a connection that was established via |
| the connection—management system calls. (See Chapter 8§ |
| for information on the connection-management facility.) |
] !
?TCCX | The connection still exists, but the process chained. |
| (See Chapter 8 for information on the connection-]
| management facility.) |
| |
?TEXT | Indicates an extended termination code; the extended code|
| I
I I
! |
I !
!]
| |
I |
| !
!

process. This involves customer/server
relationship, ?IDGOTO, ?IS.R and ?IREC.

|
!
!
|
I
!
?7TR32 | A process terminated because of a user
|
I
i
I
!
|
I

| ?T32T i
] or a ?RETURN system call, |
I |
| |
I trap; Word 10 of the termination message |
| describes the trap. !
| !
| ?7TABR Task abort notification to a server |
| i
| |
| i

093-000335-00 Licensed Material - Property of Data General Corp. 7-11

CHAPTER 7 - THE INTERPROCESS COMMUNICATIONS (IPC) FACILITY

Table 7-4. Termination Codes for 16-Bit Processes

Code	Meaning
TRECE	The termination message s in CLL format (the CLL 19 the
	father).
: ?RFEC : ACO contains the error code. :
: 7RFWA : A warning condition caused the termination. :
: ?RFER : An error condition caused the termination. :
: ?RFAB : An abort condition caused the termination. :
! ! [

The ?RETURN caller specifies the termination message sent to the CLI.
(See the description of the ?RETURN system call in Chapter 13.)
A0S/VS precedes the message with the following 2-word header:

Word O Contains the message length in bytes

Word 1 Contains the error code (the ?RETURN caller’s
input to ACO)

The message text follows this header. If there is no message, A0S/VS
sends only the header.

If the father is not the CLI (that is, ?RFCF is not set), AOS/VS
copies codes ?RFEC, ?RFWA, ?RFER, or ?RFAB to the ?RETURN field for
whatever interpretation the father and son processes previously
agreed on.

When a 16-bit process terminates itself with a ?TERM system call,
AOS/VS returns either the termination message specified by the
process or, if the process did not specify a message, one of the
termination codes. AOS/VS sends the termination message directly to

the father’s receive buffer. It sends the termination code to the
?IUFL termination field in the father’s receive buffer, and sets the

?7IUFL ?RETURN flags field to O.

If the 16-bit process terminated because of a user trap, A0OS/VS sets
the father’s ?IUFL termination field to ?TRAP, and sends the father
one of the 6-word termination messages listed in Table 7-5.

7-12 Licensed Material — Property of Data General Corp. 093-000335-00

M

CHAPTER 7 - THE INTERPROCESS COMMUNICATIONS (IPC) FACILITY

Table 7-5. ?TRAP Termination Messages for 16-Bit Processes

|Word | Contents
|70 1 ACO contents at the time of the trap.
1 ACl contents at the time of the trap.
2 AC2 contents at the time of the trap.
3 AC3 contents at the time of the trap.
4 Bit 0, carry; Bits 1 through 15, program counter value.
5 The following flag bits, which describe the trap:
Bit 0=0 Trap occurred while control was in the user
context.

operating system.

Bit 12=1 Process tried to write into a write-protected
area.
Bit 13=1 Memory map validity error. (The process tried

to refer to an address outside the user
context,)

Bit 14=1 Defer error. (The process tried to use more
than 16 levels of indirection in an address
reference.)

Bit 15=1 Process tried to issue a machine-level I/0

instruction without issuing the ?DEBL system

!
|
I
|
I
I
!
|
|
!
I
!
|
I
!
!
| Bit 0=1 Trap occurred while control was in the
I
|
I
|
I
l
I
|
I
|
|
I
I
!
!
| call. (See Chapter 10.)
]

If the 16-bit process terminated because of an abort console inter-
rupt (a CTRL-C CTRL-B sequence) or a ?TERM system call issued by a

superior process, AO0S/VS returns the proper code to the father’s ?IUFL

termination field (?TCIN or ?TSUP), but does not send a message.

093-000335-00 Licensed Material - Property of Data General Corp.

7-13

CHAPTER 7 - THE INTERPROCESS COMMUNICATIONS (IPC) FACILITY

Termination Messages for 32-Bit Processes

When a 32-bit process terminates because of a ?RETURN system call, a
?TERM system call, or a user trap, AOS/VS sets the ?IREC header’s
?IUFL termination field to the ?TEXT code, places the appropriate
termination code (?T32T or ?TR32) in the first word of the
termination message, and sets the ?IUFL ?RETURN flags field to 0.

If the process terminated on a ?RETURN or a ?TERM system call,
rather than a user trap, the termination message contains the
following:

Word O ?T32T (the extended termination code)
Word 1 Byte length of the message

Words 2 and 3 Error code

Word 4 Start of message text (in CLI format)

Words 2 and 3 contain the error code (if any) that the process
specified when it issued the ?RETURN system call.

Word 4 contains the termination message (if any) that the process
specified when it issued the ?RETURN system call. The entire
termination message is ?TPLN words long.

If the process terminated because of a user trap, AOS/VS sends one of
the termination messages listed in Table 7-6.

For more information on the MV/8000 ring architecture, refer to the
‘Principles of Operation 32-Bit ECLIPSE Systems’ manual.

?ISEND and ?IREC System Call Loglc

The flowcharts in Figures 7-3 and 7-4 show the sequence of operations
for the ?ISEND and ?IREC system calls, respectively.

7-14 Licensed Material - Property of Data General Corp. 093-000335-00

CHAPTER 7 -~ THE INTERPROCESS COMMUNICATIONS (IPC) FACILITY

Table 7-6. ?TEXT Code Termination Messages Sent
on 32-Bit Process User Trap

] Word Contents
I==_—6—_—_ —;;;55—22;;_;xtended te;;ination c;;;;: ——————————————————
1 and 2 | ACO contents.
3 and 4 | ACl contents.
5 and 6 | ACZ contents.
7 and 8 | AC3 contents.
9 Bit 0, carry; Bits 1 through 15, high-order bits of
program counter.
10 Low-order bits of program counter.
11 The following flag bits, which describe the trap:

1

|

!

|

|

|

]

I

|

]

|

|

|

|

1

|

I

!

|

| Bit 0=0 Trap occurred while control was in the
| user context.
I
I
I
1
|
|
I
|
I
I
!
!
|
]
|
|
1
|
|
|
|

Bit 0=1 Trap occurred while control was in the
operating system.

Bit 3=1 A node time-out occurred. (This is a
hardware error.)

Bit 4=1 Process tried to execute a privileged
instruction.

Bit 5=1 Process tried to return to an inner ring
from a subroutine call. (This is a
violation of the riang structure.)

Bit 6=1 Process tried to issue a subroutine call
to an outer ring. (This is a violation
of the ring structure.)

Bit 7=1 Gate protection error. (This is a

violation of the ring structure.)

093-000335-00 Licensed Material - Property of Data General Corp.

7-15

CHAPTER 7 — THE INTERPROCESS COMMUNICATIONS (IPC) FACILITY

Table 7-6. ?TEXT Code Termination Messages Sent
on 32-Bit Process User Trap (Cont.)

] Word Contents]
l 3 —F— === I
11 Bit 8=1 Process tried to reference an address in
Cont.) an inner ring. (This is a violation

of the ring structure.)

Bit 9=1 Process tried to read a read-protected
page.
Bit 10=1 Process tried to execute data in an

!

|

I

|

!

I

I

I

|

|

! execute-protected area.

I

| Bit 12=1 Process tried to write into a
[write-protected area.
|
I
I
I
!
!
I
I
!
|
|
I
I

Bit 13

It

1 Memory map validity error. (The process
tried to refer to an address outside the
user context.)

Bit 14=1 Defer error. (The process tried to use
more than 16 levels of indirection in an

address refereunce.)

Bit 15=1 Process tried to issue a machine-level
I/0 instruction without issuing the ?DEBL
system call. (See Chapter 10.)

7-16 Licensed Material - Property of Data General Corp. 093-000335-00

CHAPTER 7 - THE INTERPROCESS COMMUNICATIONS (IPC) FACILITY

2ISEND System Call PEETE
* START *
Kddkk
|
/\
/Proc\ No [\
< has >—=——=>|ERROR |
\?pvip/ \=—/
\?/
|Yes
/\ /\
Yes / \ No /orig\ No /——=\
— <?IFSTM= >--><port no.>—>|ERROR|

l \ 1/ \legal/ \=-—=/
Kk ! \?/ \?/Yes
x] % /\ |
Tk / \ | Translate origin port |

|

|

I

I

!

I

I

I

|

I

I

I

I

I

I

|

I

| | No /?IFRFM=1\ Yes | no. to global port no.]|
| |==~=<on outstand.>--] | |
| v \ ?IREC / l
[I \? / /\
| - \/ /Dest\ No [===\
!

I

I

I

!

I

I

I

I

I

I

I

I

I

I

I

|

|

I

I

|

[

|

|
/ 0\ | < port >-—->|ERROR|

/-==\ Yes / \ I \exists \——-/
|ERROR | {<--<?IFNSP=1 > I \?/

\=—=/ \ / | | Yes
\/ I /\

\/ I

|INo |

[|

| Spool the]]

| Message | |

|

/Rec.\

/request \ No *#*%
<matched byd>—-->*% 1 *
\correct / k%
\proc./
\?/

]
I
] | Do "move message" sequence |
|
]

khkkhk

* RETURN *
kkkkkk

Figure 7-3. ?ISEND Logic Flowchart

093-000335-00 Licensed Material - Property of Data General Corp. 7-17

CHAPTER 7 - THE INTERPROCESS COMMUNICATIONS (IPC) FACILITY

?IREC System Call dhkkikk
* START *

dedede ekt k

|Yes

/\ /\

Yes / \ No /Dest\ No ===\
[~ ~===><{?IFRFM= >-~><{port no.>-—->|ERROR|

I \ 1 / \legal/ \=—-/

\?/ \?/Yes
/Msg \ !
/in spool\ Yes | Translate dest. port

< file with >————w=] | no. to global port no.|
\?IFSTM=1/ | [

\? / I

\/
INo

/\
/ Orig\ No /---\
<port=0 or>-->]ERROR|
\exists \=—=/
\?/
| Yes

|

|

|

|

|

I

I

I

I

|

[

|

I

I

!

I

I

I

|

I

|

!

< into >-->]ERROR| |

\shared/ \=—/ [

\area? {

\/ I

| No |

/\ I

/ \ !

Yes/ Matching |

{mmmmm e <{message in > |

| \ spool / I

[Do "move message" seq.| \file / [
[| I \?/ [
I | No !

Kk sk | |

/ * RETURN * | |

/[-==\ Yes / \ Kk I |
JERROR | (== <7 TFNBK= Do e e e e e e e e | |
\wme/ \ 1/ I
\?/No I

I

I

I

|

I

I

[

[

|

|

|

[

[

I

|

I

| /\
| /Read\ Yes /[——-\
|

|

|

I

I

|

[

I

[

I
!
I
I
[
I
!
I
I
I
I
I
I
I
I
I
|
I
I
\

|
| Suspend the caller 7]
| |

I
J-==\

]ERROR |
—

Figure 7-4. 7?IREC Logic Flowchart

7-18 Licensed Material - Property of Data General Corp. 093-000335-00

CHAPTER 7 ~ THE INTERPROCESS COMMUNICATIONS (IPC) FACILITY

IPC Sample Programs

The following programs, SPEAK and HEAR, illustrate interprocess
communications with the IPC system calls ?ILKUP, ?IREC, and ?ISEND.

Program SPEAK uses routine SON (see "Processes and Memory Sample
Programs) to execute program HEAR. HEAR issues an ?IREC system call
to receive a message from SPEAK. Then, SPEAK issues ?ISEND to send
the message to HEAR. HEAR and SPEAK both use the ?ILKUP system call
to discover the other’s port number.

.TITLE HEAR
«EXTL SON
«NREL

;0pen console (CON) for input and output. (See Chapter 6 for more
;information on ?0PEN.)

HEAR: ?20PEN CON ;0pen console (CON) for 1/0.
WBR «ERROR ;Report error and quit.
?WRITE CON ;Display message on console

; (byte pointer is already in
;I/0 packet).
WBR +ERROR ;s 7WRITE error return.
;Start the SON process to run SPEAK.PR.

XLEFB 0,SPEAK*2 ;Get byte pointer to filename.
XJSR @, SON ;SON creates process.

sSPEAK is running. Create IPC entry for receive.

XLEFB 0, PORTR*2 ;Byte pointer to port name.
?CREATE IPCEN ;Create TPC entry PORTR.
WBR -ERROR ; 7CREATE error return.
XLEFB 0,MES1*2 ;Byte pointer to message.
XWSTA 0,CON+?IBAD sPut in I/0 packet.

?WRITE CON ;Write message to console.
WBR «ERROR ;Try to handle the error.

;See if SPEAK’s entry and its ports have been created.

GETOP: XLEFB 0,PORTS*2 ;Byte pointer to port name.
?7ILKUP ;Get port number from ACl.
WBR TEST ;Try to handle the error.
XLEFB 0,MES2%*2 ;Get byte pointer.
XWSTA 0,CON+?IBAD ;Put in I/0 packet.

093-000335~-00 Licensed Material — Property of Data General Corp. 7-19

CHAPTER 7 - THE INTERPROCESS COMMUNICATIONS (IPC) FACILITY

HEAR Program (Cont.)
?7WRITE CON
WBR - ERROR
XWSTA 1,RHDR+?I0PH

NLDAI 1,0
XNSTA ORHDR+?IDPN

?IREC RHDR
WBR .ERROR
XLEFB 1,MSBUF#*2

WLDAI ?RFCF!100.,2

?RETURN
WBR .ERROR

;Display success message on
;console.

;Try to handle the error.
sPut origin port number in
srecord header (note wide
;storage).

;Generate 1.

;Put destination port 1 in
;record header (note narrow
;storage).

;Receive SPEAK message.

; 7IREC error message.
;Message received. Get byte
;pointer to message buffer.
;Put flag and 100 words for
;message in AC2.

sReturn to CLI with message.
3Try to handle the error.

; 7ILKUP error. Check for error code ERFDE (file does not exist) and

;delay if present.

TEST: WLDAI ERFDE,1
WSEQ 0,1
WBR .ERROR
XLEFB 1,MES3*2
XWSTA 0, CON+?IBAD

?WRITE CON

WBR «ERROR
WLDAI 5000.,0

?WDELAY
WBR «ERROR
WBR GETOP

sPut ERFDE number in ACl.
;Skip if error code is ERFDE.
;Try to handle the error.
;Get byte pointer to message.
;Put in I/0 packet.

;Display message on console.

;Try to handle the error.
;5 seconds.

;Wait for 5 seconds.
;Try to handle the error.
;Do ?ILXUP again.

;Error instruction, byte pointer, filename, and port name.

+ERROR: XJMP ERROR

. SON: SON

SPEAK: .TXT ""SPEAK.PR"
PORTR: .TXT "PORTR"
PORTS: .TXT ""PORTS"

;To error handler.
;To subroutine SON.
;Filename of program.
;Name of receive port.

;Name of send port.

7-20 Licensed Material - Property of Data General Corp. 093-000335-00

CHAPTER 7 ~ THE INTERPROCESS COMMUNICATIONS (IPC) FACILITY

HEAR Program (Cont.)

: 20PEN and I/0 packet for console.

CON: «.BLK ?71BLT ;Allocate enough space for
;packet.
.L0C CON+?ISTI ;File specifications.
+-WORD ?2ICRF!?RTDS! 70FI0 ;Change format to data-

;sensitive records and open

;for input and output.
.LOC CON+? IMRS

«WORD -1 ;Physical block size is 2K
;bytes.

.LoC CON+?1BAD ;Byte pointer to record I/0

.DWORD MES*2 ;buffer.

.LOC CON+?IRCL
.WORD 120. ;Record length is 120
;characters.

.LOC CON+? IFNP ;Byte pointer to pathname.
.DWORD CONS*2

.LOC CON+?IDEL ;Delimiter table address.
.DWORD -1 ;Use default delimiters: null,

sNEW LINE, form feed, and
;carriage return (default is
'_1)0
3

.LOC CON+?IBLT ;End of packet.

;Filename, buffer, messages. A .NOLOC 1 follows.
CONS: JIXT "@CONSOLE" ;Use generic name.

MES: +IXT "From HEAR--I have opened the console and I am ready
to call SON.<12>"

MESI: .TXT "From HEAR—-I am back from SON. SPEAK is running. <12>
I created an IPC entry.<12>"
MES2: JIXT "From HEAR--Have ?ILKUPed the IPC port entry.<12>"
MES3: «TXT "From HEAR--?ILKUP error. I will wait and then try
again.<12>"
.NOLOC O

093-000335-00 Licensed Material - Property of Data General Corp. 7-21

CHAPTER 7 - THE INTERPROCESS COMMUNICATIONS (IPC) FACILITY

HEAR Program (Cont.)

;Header

IPCEN:

for IPC entry.

.LOC
«WORD

.LOC
«WORD

.LOC
«DWORD

.LOC
«DWORD

IPCEN+?CFTYP

?FIPC

IPCEN+?CPOR
1

IPCEN+?CTIM
-1

IPCEN+?CACP
-1

;s 7IREC Receive header RHDR.

RHDR:

MSBUF ¢

.LOC
« WORD

.LOC
«WORD

.LOC
«DWORD

«LOC
«WORD

.LOC
«WORD

.LOC
«DWORD

.LOC

«-BLK

RHDR+?ISFL
0

RHDR+?IUFL
0

RHDR+?I0PH
0

RHDR+? IDPN
0

RHDR+? ILTH
100.

RHDR+?IPTR
MSBUF

RHDR+?PLTH

101.

;s IPC file.

yPort number is 1.

;Default to current time.

;Default to curreant ACL.

;There are no system flags.

;There are no user flags.

;A0S/VS returns origin port
soumber here.

;A0S/VS returns destination
;port number here.

;Message buffer is 100 words.

sMessage buffer address.
;End of ?IREC header.

;Message buffer.

7-22 Licensed Material - Property of Data General Corp. 093-000335-00

CHAPTER 7 - THE INTERPROCESS COMMUNICATIONS (IPC) FACILITY

HEAR Program (Cont.)
;Error handler.

ERROR: WLDAIL ?RFEC! ?RFCF! ?RFER, 2 ;Error flags: Error code is
;in ACO (?RFEC), message is in
;CLI format (?RFCF), and
;jcaller should handle this as
;an error (?RFER).

?RETURN ;Return to CLI.
WBR ERROR ; 7RETURN error return.
+END HEAR ;End of HEAR program.

093-000335-00 Licensed Material - Property of Data General Corp. 7-23

g

CHAPTER 7 - THE INTERPROCESS COMMUNICATIONS (IPC) FACILITY

;The following program, SPEAK, sends an IPC message to another
;process. Then, SPEAK terminates itself. SPEAK’s origin port name
;is PORTS; its destination port name is PORTR.

.TITLE SPEAK
« ENT SPEAK
«NREL

;Create and IPC entry port named PORTS.

SPEAK: XLEFB 0,PORTS*2 ;Byte pointer to port name.
?CREATE IPCEN ;Create an IPC port.
WBR «ERROR ;Try to handle the error.

;See if PORTR, the receive port, has been created.

GETNM: XLEFB 0,PORTR*2 ;Byte pointer to port name.

?1LKUP ;Put port number in ACl.

WBR TEST ;Does the port exist?

XWSTA 1, SHDR+? IDPH s;Yes. Put port number in send
;header.

NLDAI 1,0 ;No. Generate 1.

XNSTA 0, SHDR+?I0PN ;Put destination port 1 in
;send header (narrow storage).

?ISEND SHDR ;Send SPEAK message.

WBR +ERROR ;Try to handle the error.

;The message has been sent. Wait for other process to receive message

;before terminating yourself.

?WLDAI 10000.,0 ;10 seconds.

?WDELAY ;Wait for 10 seconds.

WBR +ERROR ;Try to handle the error.

NLDAI -1,0 ;Get -1 to terminate yourself.

WSUB 2,2 ;There is no IPC message to
;the father.

?TERM ;Terminate.

WBR «ERROR ;Try to handle the error.

; 7ILKUP error. Check to see whether the error code is ERDNE (Does Not

;Exist). If the error code is ERDNE, wait.

TEST: WLDAT ERFDE, 1 ;Put error code number in ACl.
WSEQ 0,1 ;Was error code ERFDE?
WBR «ERROR ;No. Try to handle the error.
WLDAT 5000.,0 ;5 seconds.
7WDELAY ;Yes. Wait for 5 seconds.
WBR .ERROR ;Try to handle the error.
WBR GETNM ;Do ?ILKUP again.

093-000335~00 Licensed Material — Property of Data General Corp.

7-25

CHAPTER 7 - THE INTERPROCESS COMMUNICATIONS (IPC) FACILITY

SPEAK Program (Cont.)

;Error instructions, pointer, filenames, and port names.

«ERROR: XJMP

PORTS: .TXT

PORTR: .TXT

;Header for IPC

;Chapter 13.)

IPCEN: .LOC

3 7ISEND

+WORD

.LOC
«WORD

.LOC
«DWORD

.LOC
«DWORD

SHDR: .LOC

7-26

«WORD

.LOC
« WORD

.LOC
«DWORD

. LOC
+WORD
.LOC

«WORD

.LOC
« DWORD

.LOC

ERROR

"PORTS"

"PORTR

;To error handler.
;Name of send port.

;Name of receive port.

entry. (See the description of ?CREATE in

IPCEN+?CFTYP

?7FIPC

IPCEN+?CPOR
1

IPCEN+?CTIM
-1

IPCEN+?CACP
-1

send header SHDR.

SHDR+?ISFL
0

SHDR+? IUFL
0

SHDR+?IDPH
0

SHDR+?IOPN
0
SHDR+?ILTH

100.

SHDR+?IPTR
MSBUF

SHDR+?PLTH

;IPC file.

;Port number is 1.

;Default to current time.

;Default to current ACL.

;There are no system flags.

;There are no user flags.

;A0S/VS returns destination

;A0S/VS returns origin
;port number here.

;Message buffer is 100 words.

;Message buffer address.

;End of ?ISEND header.

Licensed Material -~ Property of Data General Corp. 093-000335-00

CHAPTER 7 - THE INTERPROCESS COMMUNICATIONS (IPC) FACILITY

SPEAK Program (Cont.)

;Message that we want to send. A .NOLOC 1 follows.

MSBUF: .TXT "Hello. This is your son speaking. As you read <12>
these words, I am terminating and so are you.<12>"

+NOLOC O ;Resume listing everything.
;Error handler.

ERROR: WLDAI ?RFEC! 7RFCF! ?RFER, 2 sError flags: Error code is
;in ACO (?RFEC), message is in
;CLI format (?RFCF), and
;caller should handle this as
;an error (?RFER).

?RETURN ;Return to CLI.
WBR ERROR 3 7RETURN error return.
«END SPEAK ;End of SPEAK program.

End of Chapter

093-000335-00 Licensed Material - Property of Data General Corp. 7-27

CHAPTER 8
CONNECTION MANAGEMENT

The system calls that allow you to perform connection management
are:

I]
| |
I |
I 1
| ?CON Becomes a customer of a specified server. |
| ?CTERM Terminates a customer process. |
] ?DCON Breaks a connection (disconnects) in Ring 7. |
| ?DRCON Breaks a connection (disconnects) in a specified |
| ring.]
| ?MBFC Moves bytes from a customer’s buffer. !
| ?MBTC Moves bytes to a customer’s buffer. |
| ?PCNX Passes a connection from one server to another in |
| Ring 7.]
| ?PRCNX Passes a connection from one server to another in a |
] specified ring.]
| ?RESIGN Resigns as a server.]
| ?SERVE Becomes a server process. |
| ?SIGNL Signals another task.]
| 7SIGWT Signals another task and then waits for a signal.

| ?VCUST Verifies a customer in Ring 7.]
| ?VRCUST Verifies a customer in a specified ring. |
| ?WISIG Waits for a signal from another task or process. i
I I

A0S/VS allows you to establish a customer/server relationship (called
a connection) between processes, and then use the server process to
perform certain functions on behalf of its customers. Typically, a
server process performs general routines that customer processes can
access. For instance, you can create a server process to build files
or perform I/0.

Connection management allows servers to move bytes to and from their
customers’ buffers.

093-000335-00 Licensed Material -~ Property of Data General Corp.

8-1

CHAPTER 8 - CONNECTION MANAGEMENT

Connection Creation

To make a connection between two processes you must define one
process as the server and the other as the customer. To do this,
issue the ?SERVE system call to define the calling process as a
server, and issue the ?CON system call to define a customer and
establish the logical connection between the customer and an existing
server. Figure 8-1 shows a server process with connections to three

customer processes.

[Process A |-—-> Issues ?SERVE to
| | become a server

~ ~ -~

| ?CON | ?CON | ?CON
| (become a | (become a | (become a
| customer | customer | customer
| of A) | of A) | of A)
\ \4 \
| Process B | | Process C | | Process D |

Figure 8-1. Model Customer/Server Configuration

A0S/VS maintains a connection table, which manages exchanges between
customers and servers. When a customer makes a connection (via the
?CON system call) with a declared server, AOS/VS writes an entry in
the connection table that specifies the PID of the server, the PID of
the customer, and the customer’s ring field. Each ?CON system call
generates one coanection—-table entry.,

A process can act as a server for other processes and can also act as
a customer of other servers as long as it issues the appropriate
number of ?SERVE and ?CON system calls. A process that acts as both
a server and a customer is called a multilevel connection. Figure
8-2 shows a multilevel connection, where process A is the server of
processes B, C, and D, and a customer of process X. Multilevel
connections let you set up intermediate servers for some functions,
and one or more superior servers for other functions.

8-2 Licensed Material - Property of Data General Corp. 093-000335-00

CHAPTER 8 - CONNECTION MANAGEMENT

Process X |---> Issues ?SERVE to
] become a server

A

\J
[Process A | ————— > Issues ?CON (to
| [connect with X)
- - and ?SERVE
] ! |
\ \ \
| Process B | | Process C | | Process D [--> Processes B, C,

| [| and D issue ?CON

I ~

(to connect with
Process A)

Figure 8-2. Multilevel Customer/Server Configuration

You can also make a double connection between two processes. A
double connection allows each process to act as either the customer

or the server of

the other, depending on the action to be performed.

As Figure 8-3 illustrates, a double connection requires two ?SERVE

system calls and
connection-table

two ?CON system calls. A0S/VS creates two
entries, one for each ?CON system call.

Process A

?7SERVE Process B

|]
I |
| ?2CON >
| (become customer of B) |
! |
I I

|

t (become customer of A)

093-000335-00

Figure 8-3. Double Connection

Licensed Material - Property of Data General Corp. 8-3

CHAPTER 8 -~ CONNECTION MANAGEMENT

Server Process

Once a process has server status (established with the ?SERVE system
call), it can issue the following system calls:

?CTERM Terminates a customer.

IMBFC Moves bytes from a customer’s buffer.

?MBTC Moves bytes to a customer’s buffer.

?7PCNX Passes a connection from one server to
another in Ring 7.

?PRCNX Passes a connection from one server to
another in a specified ring.

?7RESIGN Resigns as a server.

?VCUST Verifies a customer in Ring 7.

?VRCUST Verifies a customer in a specified ring.

The ?CTERM system call terminates a customer process. The ?RESIGN
system call signals A0S/VS that the caller has resigned as a server.

The ?MBTC and ?MBFC system calls allow the server to move bytes to or
from a customer’s logical address space. However, before A0S/VS
executes either of these system calls, it checks the connection table
to make sure that there is a valid connection between the two
processes, and that the customer’s buffer is in the ring defined at
connect time, which must be in the caller’s ring or in a higher ring.
Also, there must be enough space at the destination for the data to
reside entirely within the specified destination ring.

The ?PCNX system call passes a customer/server connection from one

server to another in Ring 7 and directs A0S/VS to revise the
connection—-table entry accordingly. The ?PRCNX system call is

similar to the ?PCNX system call, except the ?PRCNX system call is
not restricted to Ring 7. Both the ?PCNX and the ?PRCNX system calls
are useful for passing a valid customer from a dispatching server to
a specialized server process.

The ?VCUST system call determines whether a target process in Ring 7
is a customer of the ?VCUST caller. The ?VRCUST system call is
similar to the ?VCUST system call, except the ?VRCUST target process
need not be in Ring 7. If the ?VCUST or the ?VRCUST target process
is not a customer, AOS/VS takes the error return and passes error

code ERCDE to ACO. TIf the connection between the two has been
broken, the system call fails on error code ERCBK.

Typically, server processes communicate with their customers via the
IPC system calls ?SEND, ?IREC, and ?IS.R. However, they can also use
the fast interprocess communication system calls, ?SIGNL, ?WTSIG, and

8-4 Licensed Material ~ Property of Data General Corp. 093-000335-00

CHAPTER 8 - CONNECTION MANAGEMENT

?SIGWI, to communicate with their customers. (See "Fast Interprocess
Synchronization" in this chapter for more information on the ?SIGNL,
?WISIG, and ?SIGWT system calls.)

Connection Termination

A0S/VS breaks the customer/server connection when a process traps or
when the process issues one of the following calls:

?CTERM Terminates a customer (a server-only system
call).

?DCON Breaks a connection in Ring 7.

?DRCON Breaks a connection in a specified ring.

?7RESIGN Resigns as a server (a server-only system
call).

?TERM Terminates a process (self-terminates).

Notice that the ?CTERM system call is a server—-only system call. The
?DCON, ?DRCON, and ?TERM system calls are available to both servers
and customers. (See Chapter 3 for information on terminating
processes with the ?TERM system call.)

When AOS/VS detects a broken connection, it sets a flag bit in the
appropriate connection table entry. For A0S/VS to actually clear the
entry, however, it must receive disconnects from both the customer
and the server. For example, a customer could issue a ?DCON system
call to break its connection with the server, but the PIDs of both
processes will remain in the connection table until the server issues
a ?DCON, ?RESIGN, or ?TERM (self-termination) system call.

You should issue disconnects from both processes as soon as a
connection has served its purpose. This keeps the connection-table
entries within the maximum range and allows A0S/VS to reassign the
PIDs. (The maximum number of connections allowed under A0S/VS is
revision dependent.)

When a customer or server disconnects, A0S/VS sends the other process
an obituary message. An obituary message is a zero-length IPC
message. A customer can suppress the obituary message by setting bit
?COBIT in ACl when it issues the ?CON system call.

093-000335-00 Licensed Material - Property of Data General Corp. 8-5

CHAPTER 8 - CONNECTION MANAGEMENT

To receive an obituary message, a process must issue the ?IREC system
call; it must specify 0 and ?SPTM in ?IREC offsets ?I0OPH and ?I0PL,
respectively (origin port), and O in offset ?IDPN (destination port).
A0S/VS returns the obituary message as termination code ?TBCX in
offset ?IUFL of the ?IREC header.

Inner-Ring Connection Management

Segment images that are loaded into different user rings within the
sample process often have very different aims and identities.
Therefore, the connection-management facility identifies all
connections as being between ordered pairs of PID/ring-within-PID
tandems (called PID/ring tandems). A ring within a process can be

connected as a customer (and/or as a server) with multiple rings that
are within another process or processes.

Although multiple ?CON system calls that connect the same ordered
pairs of PID/ring tandems are legal, they will result in only a
single connection. However, connections between rings that are
within the same process are illegal.

For a server, the move bytes to and from customer privilege is
limited to only those rings in the customer that are higher than or
equal to the lowest ring that issued a ?CON system call to create a
connection to the server.

Every IPC message (obituary message, chain, etc.) issued by the
connection-management facility, is sent to the ring from which the

?CON or ?SERVE system call was issued. The system flag word of the
IPC header holds a field, ?IFRING, that contains the ring anumber of

the segment image that caused the system to generate the message.

If a server is concurrently connected to multiple rings within the
customer, A0S/VS indicates the status of those connections with a

single IPC message. This prevents the race conditions that might

occur if A0S/VS issued multiple messages.

For 32-bit receivers, flag bits are returned in the ?IPTL word of the
IPC header. For 16-bit receivers (that is, tasks in Ring 7 of a
16-bit process), the flag bits are returned in the ?IPTR word of the

IPC header. The flag bits include both a single "explicit
disconnect" flag and a bit map that contains the connection status of

the various inner rings.

8-6 Licensed Material - Property of Data General Corp. 093-000335-00

CHAPTER 8 — CONNECTION MANAGEMENT

The explicit disconnect flag expands the information that the
"connection broken" (?TBCX) termination message contains when it is
going to a server on a customer process termination. TIf the explicit
disconnect bit is set in the connection broken termination message,
then one of the rings of the customer process issued a ?DCON or a
?DRCON system call to break the connection. If the explicit

disconnect bit is not set, then one of the following caused the
broken connection:

(o}

o

The

A customer process terminated.

A customer process chained, but it did not have a connection in
its Ring 7.

NOTE: A connection broken (?TBVC) rather than a
"customer chained" (?TCCX) termination
message describes this special case of a
customer process chain, but it is also
valid for a server process chain. All
other types of process chain events cause
customer chained messages (?TCCX), because
Rings 4 through 6 are "unloaded" when
Ring 7 chains. (Effectively, Rings 4
through 6 terminate on a Ring 7 chain.)

meaning of individual bits within the bit map depends upon the

type of event being signaled:

o

The

When a customer is chained, bits set in the bit map indicate

which rings were connected before the chain. 1In this case,
AO0S/VS automatically preserves the connections to Ring 7 aund 3,
providing they existed before the chain.

When a connection is broken, if the explicit disconnect bit is
set, then the bits set in the bit map indicate rings to which
there are remaining connections. If the explicit disconnect bit
is clear, then the bits set in the bit map indicate which rings
were connected before the termination or chain.

following parameters characterize the bit flags:

?CXMBM Word mask that allows you to extract both the explicit
discoanect flag and the connection bit map.

?CXMED Bit mask for the explicit disconnect flag.

093-000335-00 Licensed Material - Property of Data General Corp. 8-7

CHAPTER 8 — CONNECTION MANAGEMENT

o ?CXBBMO Bit position of the explict disconect flag. (The
explicit disconnect flag immediately precedes the
connection bit map portion of the ?IPTL or ?IPTR
word.,)

o ?CXBVED Position of the explicit disconnect bit within the
extracted word.

NOTE: ?CXBBMO + N defines the position of the
bit that corresponds to Ring N within the
bit map. (Rings 1 through 7 are mapped
in the bit map.) You can point to the
explicit disconnect bit as if it were the
first bit in the bit map (that is, N = 0).

Fast Interprocess Synchronization

Frequently, identical local servers loaded into different processes
will use a common shared memory file for global synchronization.
A0S/VS includes a fast interprocess sychronization facility that
common local servers can use to pend and unpend tasks, depending on
the state of databases in that shared memory.

The fast interprocess synchronization mechanism, which uses the

?8IGNL, ?WISIG, and ?SIGWT system calls, provides you with another
way of synchronizing processes. Unlike the IPC system calls, the

fast interprocess synchronization system calls do not move any data.

Instead, they allow a task within a process to send and receive
task-specific signals to and from the same or another process.

Because they do not move data, ?SIGNL, ?WISIG and ?SIGWT are very
fast, and they require very little system overhead.

When a task issues a ?SIGNL or a ?SIGWT system call, the target does

not have to be waiting to receive the signal. Instead, A0S/VS
remembers the task-specific target. A subsequent ?WISIG or ?SIGWT
system call issued by the target task causes the target task to

proceed immediately. A ?WISIG system call, however, will pend the
caller if a signal for the task is not outstanding.

8-8 Licensed Material - Property of Data General Corp. 093-000335-00

CHAPTER 8 - CONNECTION MANAGEMENT

Unlike the IPC system call ?IS.R, the ?SIGWT system call does not
force the calling task to wait for a signal from the same task that
it signaled. Any signal that specifies the pended task will wake up
that task.

No privileges are necessary to issue the ?SIGNL, ?WISIG, or ?SIGWT
system calls.

Eand of Chapter

093~000335-00 Licensed Material - Property of Data General Corp. 8-9

CHAPTER 9
BINARY SYNCHRONOUS COMMUNICATIONS (BSC)

This chapter describes the following binary synchronous
comnunications (BSC) system calls:

|

I

I

| ?SDBL Disables a BSC line.

| ?SDPOL Defines a polling list or a poll address/select

| address pair.

| ?SDRT Disables a relative console.

| ?SEBL Enables a BSC line.

| ?SERT Re-enables a relative console.

| ?SGES Gets BSC error statistics.

| ?SRCV Receives data or a control sequence over a BSC line.
| ?7SSND Sends data or a control sequence over a BSC line.
I

A0S/VS supports binary synchronous communications (BSC) over
dedicated or switched communications lines. This chapter describes
the system calls you need to implement BSC communications. This

I
!
I
I
I
!
I
!
!
!
I
I
I
!

chapter is not a tutorial. In fact, this chapter assumes that you are

familiar with BSC protocol and the rules goveraing BSC.

To help you understand this chapter, you must be familiar with the
following terms:

0 Station

A station is the origin (sender) or destination (receiver) of
data over a BSC line.

o) Dedicated communications line

A dedicated communications line continuously connects two or more

stations, regardless of the amount of time the line is actually

in use. This type of line is dedicated to serving specific local

and remote stations.

093-000335-00 Licensed Material - Property of Data General Corp.

9-1

CHAPTER 9 — BINARY SYNCHRONOUS COMMUNICATIONS (BSC)

0o Switched communications line

A switched communications line is one on which you use dialing
procedures to establish a connection between the local and remote
stations.

BSC Concepts

Before you use any of the BSC system calls, make sure that your
system manager or operator has created a GSMGR (global synchronous
manager) process. This process acquaints A0OS/VS with the synchrounous
communications hardware that you specified during the system
generation dialog. 1If this process does not exist, auy BSC system
calls you issue will cause an error return. (Refer to the ‘Managing
A0S/VS’ manual for information on creating the GSMGR process.)

AOS/VS recognizes each BSC line by the device name @SLNx, where x
represents the line number. When you enable a BSC line (with the
?SEBL system call), you must supply the @SLN designator with the
correct line number. However, it is not necessary to specify whether
the enabled line is dedicated or switched.

AOS/VS assigns a channel number to each enabled BSC line and returns
this value in the ?SEBL packet. Unlike disk files, you cannot open a
BSC line on more than one channel.

To send data over an enabled BSC line, a station issues the ?SSND
system call. To receive data, a station issues the ?7SRCV system

call. BSC protocol distinguishes between Send Initial and Send
Continue system calls, and between Receive Initial and Receive

Continue system calls. A system call is an Initial system call if it
opens a communications session.

The ?SSND and ?SRCV system calls depend upon timing and upon the
interaction of the sending and receiving stations. When AOS/VS
encounters timing errors or inappropriate responses to the ?SSND and
?SRCV system calls, it begins error-recovery procedures. You must
view these error-recovery procedures in the context of the send and
receive system calls. (See "BSC Error-Recovery Procedures' in this
chapter.)

To disable a BSC line, issue the ?SDBL system call.

9-2 Licensed Material - Property of Data General Corp. 093-000335-00

CHAPTER 9 - BINARY SYNCHRONOUS COMMUNICATIONS (BSC)

Line Configurations

There are two types of BSC line configuratioans:
o Point—-to-point

On a point-to-point line, each station bids for the line; that
is, asks to use it. Only two stations can be on a point-to-point
line.

o Multipoint (also called Multidrop)

On a multipoint line, stations do not bid for the line. Instead,
one station (called the control station) has complete control
over the activities of the other statiouns (called the tributary
stations) on the line. Therefore, no coantention occurs between
stations. Usually, a multipoint line connects one local station
with more than one remote station. However, it can connect as
few as two stations.

If both stations oun a point-to-point line bid for the line at the
same time, the line is under contention. Contention occurs when one
point-to-point station bids for a line and the other station, in
response, also bids for the line. When you enable a point-to-point
line, you must designate your computer as either the primary station
or the secondary station. A0S/VS favors the primary station over the
secondary station in the following way when contention occurs:

o If your station is the primary station, AOS/VS automatically
follows your bid with another bid sequence. The secondary
station should acknowledge this additional bid sequence.

o If your station is the secondary station, A0S/VS gives you an
error return. To receive the primary station’s bid sequence, you
must issue an ?SRCV Receive Initial system call.

Unlike the secondary stations ou a point-to-point line, the tributary
stations on a multipoint line are completely subservient to the

control station. The following restrictions apply to tributary
stations:

o) Tributary stations can only send data to and receive data from
the control station.

o) A particular tributary station can send or receive data over the
line only when the control station specifically requests that it
do so.

o Tributary stations cannot communicate directly with one another.

093-000335-00 Licensed Material - Property of Data General Corp.

9-3

CHAPTER 9 - BINARY SYNCHRONOUS COMMUNICATIONS (BSC)

When you enable a BSC line with the ?SEBL system call, you must
specify whether it is a point-to-point line or a multipoint line.
Also, you must use the ?SEBL system call to specify whether your

station is a primary station, a secondary station, a control station,
or a tributary station.

Figure 9-1 shows the difference between a point-to-point line
configuration and a multipoint line configuration.

Point-to-point Communications Line

[A 1< ————— > B !
[| |]
Station A Station B
(primary) (secondary)

Multipoint Communications Line

! D 1< - - —|

| | | | |
Control station D i \ ')

|
|
!
I
!
|
|
|
I
I
I
I
|
|
I
I
I
| Tributary stations E, F, and G
!

Figure 9-1. Point-to-Point/Multipoint Line Configurations

Multipoint Line Selection and Polling

To manage the activity on a multipoint line, the control station
performs two operations:

o Polls
This means that the control station contacts its tributary

stations to see if any of them has data to send to it. There are
two types of polls: general and specific.

9-4 Licensed Material - Property of Data General Corp. 093-000335-00

CHAPTER 9 - BINARY SYNCHRONOUS COMMUNICATIONS (BSC)

In a general poll, the control station contacts each of its
tributaries in round-robin fashion, and accepts the first
positive response.

In a specific poll, the control station contacts a single
tributary to solicit data.

o) Selects

The control station selects by contacting a specific tributary to
see if it is ready to receive data from the control station.

Each tributary station on a multipiont line must have two unique
identifiers for polling and selecting to occur: a poll address and a
select address. If your computer is a tributary station, you must

define its poll address and select address by issuing the ?SDPOL
system call.

If your computer is a control station, you must issue the ?SDPOL
system call before polling or selecting to define a polling list. A
polling list is a series of contiguous words that contains each
tributary station’s poll address and device address. The device
address points to the peripheral device from which the coatrol
station will request data when it polls that tributary.

To perform polling, a control station issues the ?SRCV system call
("receive data or control characters") to specify whether the system
call is a Receive Initial or a Receive Continue system call and
whether the operation is general polling or specific polling.

In its first general poll, the control station starts with the poll
and device address entry at the top of the polling list (the lowest
relative console number), and sends this entry down the BSC line.
Each tributary station recognizes its own poll address; it responds
to the poll only if the entry matches its poll address. If the poll
address sent by the control station does not match a tributary
station’s poll address, the tributary station ignores it.

A general poll ends when a tributary station responds to its poll
address by sending data to the control station. If there is no
response to a particular poll address entry, the control station
continues to poll until it reaches the end of the polling list. At
that point, AOS/VS takes the error return from the control station’s
?SRCV system call, and passes error code EREPL (end of polling list)
to ACO.

093-000335-00 Licensed Material - Property of Data General Corp. 9-5

CHAPTER 9 - BINARY SYNCHRONOUS COMMUNICATIONS (BSC)

As we mentioned, general polling is a round-robin operation. This
means that when a general poll ends in a positive response, the next
general poll begins with the next relative console on the polling
list (that is, the tributary station immediately following the
previous respondent). Specific polling, that is, polling one and
only one tributary station, is a way to break out of the round-robin
method of general polling.

Relative Consoles

AOS/VS assigns a relative console number to each tributary station,
based on that station’s position on the polling list.

The first time you enable a multipoint line (with the ?SEBL system
call) and defime its polling list (with the ?SDPOL system call),
A0S/VS enables all relative consoles on the list for polling. To
disable a relative console without redefining the polling list,
issue the ?SDRT system call. To re—-enable a relative console, issue
the ?SERT system call.

When you disable a relative console, it does not affect the
corresponding tributary station; it simply means that the control
station ignores that tributary station when it performs general
polling, until you subsequently re—enable the relative console or
define a new polling list.

BSC Protocol

The logic behind data transmissions over a BSC line is BSC protocol.
Briefly, BSC protocol is a set of rules governing:

o The initialization of communications over a BSC line.

o The orderly exchange of data over a BSC line.

0 The termination of communications over a BSC line.

These objectives are accomplished in part by the protocol’s data-link
control characters, which are synchronization characters that both
the sending and the receiving stations recognize. Data transmissions
over a BSC line typically consist of text, header information

(optional), and data-link control characters, which delimit various
portions of the data block and control its transmission.

9-6 Licensed Material - Property of Data General Corp. 093-000335-00

CHAPTER 9 - BINARY SYNCHRONOUS COMMUNICATIONS (BSC)

None of the BSC system calls require data-link control characters as
input. AOS/VS provides the required control characters when you send
text or header information over a BSC line, and removes them when you
receive the information. However, because several of the system call
descriptions refer to the data-link control characters, Table 9-1
defines the control characters that we mention in this chapter.

Table 9-1. BSC Protocol Data-Link Control Characters (DLCC)

Character Description |
p

Affirmative Acknowledgment

Positive replies, sent in alternating sequence, to
indicate that the receiver has accepted the previous
block without error, and is ready to accept the next
block of the transmission. ACKO is also a positive
response to a line bid (ENQ) for a point-to-point
line and to a selection sequence on a multipoint
line.

Block Check Character

A value generated by the transmitting station and
sent with each data block to validate the block’s
contents. The receiving station generates its own
BCC. 1If the two values match, the block is accepted
as error-free.

A BCC follows every ITB, ETB, and ETX character.

If you transmit in the ASCII code set, the BCC is a
longitudinal redundancy check (LRC). For the EBCDIC
code set, the BCC is a cyclical redundancy check
(CRC).

Data-Link Escape

The first character in a 2-character sequence used to
signal the beginning or end of transparent text mode.
The sequence DLE STX signals the beginning of
transparent text mode. The sequence DLE ETB or DLE

!
]
|
}
|
!
|
|
[
|
|
|
|
I
I
|
|
|
!
|
I
I
|
|
|
I
!
|
|
I
|
|
|
| ETX signals the end of transparent text mode.
|

|

!

|

093-000335-00 Licensed Material - Property of Data General Corp. 9-7

CHAPTER 9 - BINARY SYNCHRONOUS COMMUNICATIONS (BSC)

Table 9-1. BSC Protocol Data-Link Control Characters (DLCC)(Cont.)

Signal the end of a data block that began with an SOH

or an STX. Both the ETB and the ETX characters
reverse the direction of the transmission. When a

station receives an ETB or an ETX, it replies with a

control character that indicates its status (that is,
ACKO, ACK1l, NAK, WACK, or RVI).

An ETB terminates every text block except the last.

| Character | Description]
| DLE EOT | Data-Link Escape, End-of-Transmission [
| ! !
| | Signals a line disconnect for a switched line. The]
] | sending or receiving station usually transmits this |
] | sequence when all message exchanges are finished.]
| I |
| ENQ | Enquiry |
I | !
} | Sent by a station on a point—to-point line to bid for |
[| the line (for transmission of data). Sent by the]
[| control station on a multipoint line to signal the]
} | end of a polling or selecting sequence. |
I | I
| | A transmitting station can also send ENQ to ask the |
] | receiver to repeat a response if the original]
! | response was garbled or not received when expected. |
I I I
| EOT | End-of~Transmission]
| I |
] | Signals the end of a message transmission (consisting |
| | of one or more separately transmitted data blocks), |
| | and resets the receiving station.]
I I I
| | On a multipoint line, a polled station sends an EQT |
| | to indicate that it has nothing to send back to the]
! | control station.]
I I]
| | EOT can also serve as an abort signal to indicate a |
| | system or transmission malfunction.]
I ! !
| ETB | End-of-Transmission Block]
| [1
| ETX | End-of-Text |
| ! |
| ! I
! | |
I ! |
I [!
! | |
I | |
I | |
I []
l | I
I I]
| | |
| ! |

9-8 Licensed Material — Property of Data General Corp. 093-000335-00

-

CHAPTER 9 - BINARY SYNCHRONOUS COMMUNICATIONS (BSC)

BSC Protocol Data-Link Control Characters (DLCC)(Cont.)

| Character

ETX
{Cont.)

ITB

NAK

RVI

SOH

STX

Description

An ETX implies an end-of-file condition; thus, it
terminates the last block of text in a message.

End-of-Intermediate-Transmission Block

Separates records within a block and/or delimits
field boundaries for error checking. ITB does not
reverse the direction of the transmission.

Negative Acknowledgment

Sent by the receiving station to indicate that it is
not ready to receive, or to request that an erroneous
block be transmitted again.

Reverse Interrupt

A positive response used instead of ACKO or ACKIl;
signals that the receiver must interrupt the
transmission to send the transmitting station a
high-priority message.

The transmitting station treats an RVI as a positive
acknowledgment and, in response, transmits all the
data that prevents it from becoming a receiving
station. The transmitting station can perform more
than one block tramsmission to empty all its buffers.

On a multipoint line, a control station can send an
RVI after it receives data from a tributary station,
to indicate that it wants to communicate with a
different tributary station.

Start of Header

Signals the start of header information (ancillary
information within a block).

Start of Text

Signals the beginning of the text (and terminates the
header information).

093-000335-00

Licensed Material - Property of Data General Corp.

CHAPTER 9 - BINARY SYNCHRONOUS COMMUNICATIONS (BSC)

Table 9-1. BSC Protocol Data-Link Control Characters (DLCC)(Cont.)

| Character Description |

Synchronization Character

Establishes and maintains character synchronization;
also serves as filler in the absence of data or
control characters. Each transmission must begin
with at least two contiguous SYN characters.

Temporary Text Delay

A 2-character sequence that consits of STX ENQ, which
the transmitting station sends to retain the line
without immediately sending data. The receiving
station responds with a NAK. The TTD/NAK sequence
can repeat, if the transmitter needs additional
delays.

Wait-Before-Transmit Positive Acknowledgment

A positive acknowledgment that the receiver sends;:
signals that the receiver 1is temporarily unable to
receive. (A receiver can send WACK as a response to
a line bid on a point-to-point line or a selection
sequence on a multipoint line, or as a response to
data.) A receiving station can send more than one
WACK until it is ready to receive. The transmitting
station can respond with ENQ, EOT, or DLE EOT.

Note that BSC protocol supports transparent text mode. Transparent
text mode causes A0S/VS to treat most control characters as bit
patterns without control significance. The exceptions are DLE STX,
which signals the end of transparent text mode, and DLE ETB or DLE
ETX, which signal the end of transparent text mode. If you are

seading data that may match the bit patterns of the control
characters, you should send it in transparent text mode.

9-10 Licensed Material -~ Property of Data General Corp. 093-000335-00

CHAPTER 9 — BINARY SYNCHRONOUS COMMUNICATIONS (BSC)

BSC Error—-Recovery Procedures

When AOS/VS receives an inappropriate response to an ?SSND or ?SRCV
system call, or does not receive a response within the time-out
interval that you specify in offset ?STOV, it enters its BSC
error-recovery procedures. The error~recovery procedures differ,
depending on which operation was underway when the error occurred.
In addition, A0S/VS’s action within each recovery procedure depends
on the cause of the error.

In most cases, AQS/VS responds to a BSC error by trying the
particular procedure again, repeatedly if necessary, until its retry
count is exhausted. The retry count is a systemmaintained variable,
which you cannot control.

Table 9-2 describes the error-recovery procedures for the various
types of send and receive system calls.

Table 9-2. BSC Error—-Recovery Procedures

] Call Type AOS/VS Action]

Send Initial

Time-out NAK or Resend ENQ, unless retry count exceeded. If

inappropriate retry count exceeded, take error return to

response ?SSND system call. (Possible errors in ACO
are ERTOF, ERNAK, ERUNI.)

ENQ If calling station is the primary, resend

ENQ. 1If calling station is the secondary,
take error return to ?SSND system call.

!
!
[
|
l
I
|
|
!
[
I
[
! (Error in ACO is ERCTN.)
— e I ——————————————————————————————————————
]
|
|
|
[
|
|
|
|
I
[
|

Send Continue

Time-out or Send ENQ, unless retry count exceeded. If

inappropriate retry count exceeded, take error return to

response ?8SND system call. (Possible errors in ACO
are ERTOF, ERUNI.)

NAK Resend data, unless retry count exceeded.

If retry count exceeded, take error return
to ?SSND system call. (Error in ACO is
ERNAK.)

093-000335-00 Licensed Material - Property of Data General Corp. 9-11

CHAPTER 9 - BINARY SYNCHRONOUS COMMUNICATIONS (BSC)

Table 9-2. BSC Error-Recovery Procedures (Cont.)

! Call Type] AOS/VS Action |
[

Receive Initial
(point-to-point
and multipoint
tributary station)

Time-out or
inappropriate
response

Retry receive initial, unless retry count
exceeded. Take error return to ?SRCV system
call. (Possible errors in ACO are ERTOF,
ERUNI.)

Receive Continue

| |
| !
! I
I !
| I
I]
| |
| |
| |
I !
| |
I |
| Time-out or If retry count exceeded, take error return

| inappropriate to ?SRCV (Possible errors in ACO are ERTOF, |
|]
| !
| |
I]
I I
] i
I |
| |
| I
!]
I]
| I
!]

response ERUNI.) Otherwise, await ENQ from sender
(assuming that the sender will issue a
time-out and send an ENQ).

ENQ Resend last response and attempt receive

continue, unless retry count exceeded. If
retry count exceeded, take error return to
?SRCV system call. (Error in ACO is ERENQ.)

CRC (block check)
error

Send NAK and attempt receive continue,
unless retry count exceeded. If retry count
exceeded, take error return to ?SRCV system
call. (Error in ACO is ERCRC.)

Receive Initial

(multipoint control
station)

Time-out or Retry receive initial, unless retry count

inappropriate for particular relative console exceeded.

response If retry count exceeded, take error return
to ?SRCV system call (Possible errors in ACO

EOT If a polled console responds with EOT, step

to the next relative console on the polling
list and continue polling. If end of the

polling list is reached, take error return
to ?SRCV system call. (Error in ACO is

!
I
I
[
I
I
!
|
are ERTOF, ERUNI.)]
I
I
I
I
!
!
EREPL.) |

I

9-12 Licensed Material - Property of Data General Corp. 093-000335-00

CHAPTER 9 - BINARY SYNCHRONOUS COMMUNICATIONS (BSC)

To get BSC error-recovery statistics, issue the ?SGES system call.
The ?SGES system call returns the number of block~check errors, the
number of time-outs, and the total number of negative acknowledgment
(NAK) characters received in response to send operations.

BSC Implementation

Figures 9~2 through 9-8 illustrate how A0S/VS implements BSC protocol
using the BSC system calls. Before you read this section, refer to
the system call descriptions for the ?SEBL, ?SSND, and ?SRCV system
calls in Chapter 13 and to the definitions of the BSC data-link
control characters in Table 9-1.

Remember, you cannot issue a send initial system call from a
multipoint tributary station, and that receive coatinue system calls
from multipoint stations and from point-to-point stations are
identical.

You will notice that each figure has three columns. The first column
represents the system calls that you issue, with their normal and
error returns. The second column illustrates AOS/VS’s actions, and
the third column shows the remote station’s actions.

093-000335-00 Licensed Material - Property of Data General Corp. 9-13

CHAPTER 9 - BINARY SYNCHRONOUS COMMUNICATIONS (BSC)

| User Task # A0S/VS # Remote Site

| s====s==s====ss=sssfsssss=sssssssssassessssfzsrssssssssssess s s 2m |
I # SYN # [
| | DATA | ——— - D e e ||
| I # - ENQ # | I I (.
| ?SSND Initial # | PAD # NARK | ENQ | ACK |
| # Retry | # | Inapp. | Pl
| # | \Y o ! | [
| # R Time-~out # | | [I
[# | ERROR | | # v v v I
[# |RECOVERY|<{~——~- jmm e e ! [
[# o [# |
[# | # [
i # \Y # EOT v | |
| Error Return {—————mmm— o e e e e e DLE EOT —==—-| | |
! #1 I
! # 1 " | 4 I
[# | SYN #]
| # 1 | : # |
I # 1 | [DLE] # |
I #] | STX # |
[# | SOH # i
[# 1 | TEXT # |
[#o | [DLE] # [
| #] ETX # |
| # | Retry ETB # I
| # 1 | CRC # [
| # | I CRC # |
| # 1 | PAD # i
| # 1 | | I
! # I i #o I I I I
| # 1 | | # o | RVI | ACKO |
[# | Y # NAK | EOT | ACK1 |
] # | Time-out # | | DLE/EOT | |
| # | | #1 | | SYN | |
I # 1 | [# o1 | I : [
| # || ERROR | | # | Inapp. | [DLE}] | |
I # | IRECOVERY | (=== | === | STX | |
| # 11 | # | SOH | |
] # 1 | # | TEXT | |
! # 1 I #] [DLE] | |
I # 1 | # 1 ETX | |
I # 1 | # | ETB | |
I # - I # | CRC | |
| # | I # | CRC V |
i # 1 ! # | PAD | |
| ¥ \/ \ T
| Normal Return < - e -—1 |
| it # [

Figure 9-2. ?SSND System Call, Initial, Point-to-Point

9-14 Licensed Material - Property of Data General Corp. 093-000335-00

CHAPTER 9 - BINARY SYNCHRONOUS COMMUNICATIONS (BSC)

| User Task # AOS/VS # Remote Site

| =======sssm==sss=ssf=smssosszsssssessssssssfessess ssz=zszzssazan===
[# it

} | DATA | #

1 | # " | i

| ?SSND Continue # | SYN i

| # ! : #

| # | [DLE] #

] # | STX #

| # | SOH #

I # [TEXT #

| # Retry [DLE] #

| # I ETX #

! # ! ETB #

] # [CRC #

| i [CRC #

] #] PAD #

I 4 I |

[# | | o | | | !
| it [| #o | RVI | ACKO
] # | \Y # NAK | EOT | ACK1
| # | Time-out # | | DLE/EOT | |
| # | | # | Inapp. | SYN |
I i | [o | | : |
| # | ERROR | \Y # v | ! [DLE] |
! # | RECOVERY |<{=——mm—m e cm | | STX |
| # o] i] SOH |
[# | it | TEXT |
| # i it | [DLE] |
| # | # | ETX |
I i i # | ETB |
| # | it | CRC |
i # | # i CRC |
| # | # | PAD |
] # ! # I | I
| # v # \Y v |
| Error Return {~———m—c———- e e e e e e e e |]
| # # \Y
I

I

Normal Return <

Figure 9-3.

093-000335-00

Licensed Material — Property of Data General Corp.

?8SND System Call, Continue, Point-to-Point

9-15

CHAPTER 9 - BINARY SYNCHRONOUS COMMUNICATIONS (BSC)

| User Task # AOS/VS i Remote Site [
| ========s===ss=====f====ssssszzsssssrsszsaxfesosssnsss oo smssss=n=== |
?SRCV Initial - -——>Wait # SYN Bid
- Bid # : SYN
| | # Inappro- :
it Retry Time-out # priate ENQ
! | # |
?SRCV Initial # | ERROR } A it |

|

!

Error Return {-—--——-- | RECOVERY [{mm——mmmmmmm e e em I v
o I # I

|
!

?7SRCV Continue < ——— —-——— -

ACKO it

ACK1

]

v

| ! | !

i Time-out # | ENQ | | SYN

ENQ | # | CRC | :

NAK | #Inapp.| Error | [DLE]

| I o i | | SIX

it \'/ | # | | | SOH

| ERROR | v v Y \ V TEXT

| RECOVERY |< ———m—————— i | [DLE]

o | #t | ETB
?7SRCV Continue # # RVI | ETX
Error Return <—mmmmoo e e e EOT --| CRC

DLE/EOT CRC

i
?SRCV Continue < e e e I
Normal Return i #

I !
! !
I I
I |
I |
! |
[I
| I
| I
! I
I I
| I
! I
I I
I [
I I
| # " [# b
I |
[I
I |
I I
! I
I !
! I
I I
I I
I I
I !
I I
I I
! I
| !

Figure 9-4. 7?SRCV System Call, Initial and Coatinue, Point-to-Point

9-16 Licensed Material - Property of Data General Corp. 093-000335-00

CHAPTER 9 - BINARY SYNCHRONOUS COMMUNICATIONS (BSC)

093-000335-00

User Task

| DATA |

|]
?SSND Initial

?7S8SND Continue

f A0S/VS # Remote Site
(Control Station) # (Tributary)
ffe============zzs==sss==fles====zzz=szzz==zss====
#
>}Select Operation|
I I # f | | |
-] # NAK | WACK | |
] Time-out # | RVI | ACKO |
Retry i o | [| Inapp
| | tf v v v \ |
| ERROR | # o |] i]
| RECOVERY |{==—=== [=== | == o == |
e e | o | | I
v # vV v v [
Error Return === —m e e e e e el | |
{
|
-— D G |
it | i
SYN
:
[DLE]
STX
SOH
TEXT
[DLE]
ETX
ETB it
CRC
CRC
!
] ~ # o | | ! |
\Y] # NAK | RVI | ACKO
Time-out Retry # | | EOT | ACK1
] | #] | DLE/EOT | |
| I o I | SYN |
#t ! [# | Inapp. | : !
1 ERROR |===-=] #o | | [DLE] |
| RECOVERY | # v ! } STX |
o [{mmmmmmm e | | SoH |
| # | TEXT |
| i | [DLE] |
] # | ETX |
| #] ETB |
| # | CRC |
| #] CRC |
v # \Y I [
I

Error Return om—mmm e e e e o e e e e e]

Normal Return s o e e e e e e e e e e

Figure 9-5. ?SSND System Call, Multipoint Control Station

Licensed Material - Property of Data General Corp.

9-17

CHAPTER 9 - BINARY SYNCHRONOUS COMMUNICATIONS (BSC)

] # A0S/VS # Remote Site I
| User Task # (Control Station) # (Tributary)]
| s===ss====sssss=sszsf=sssssssssssasmzemezzzsfossssz s s snass s s mnmaEs

| # # i
| ?SRCV Initial-————r—- >1 Poll Operation |]
| # | Io# o | ! |
! # - | # EOT Inapp. SYN |
| # | | o ! : [
| # | Time-out # | 1 [DLE] |
I #t Retry { # | STX |
[# I | # o ! SOH |
[# | \J # v ' TEXT |
| Error Return {~—====-=| ERROR RECOVERY |{—=—==~=— e | [DLE] |
] o | # ETX |
| # # ETB |
| # # CRC |
| # # CRC |
| # # | |
| Normal Return {-=———==— ———————— e e e e e - —— - |
| # # i
| ?SRCV Continue~————w==—e=~— { |
| # | # |
! # \Y # |
] # ACKO #]
| # ACK1 ##]
| # NAK # |
| # RVI # |
| # ! i |
| # [#]
| # v |
| # - | #o ! | ! I [
I # | Time-out # | ENQ I | SYN |
| # NAK | # | CRC | : |
[# | | #Inapp.] Error | [DLE] |
I # | [# ! | | STX |
# \'	#]		SOH
#	ERROR	\Y Y \Y \Y	TEXT	
#	RECOVERY	{=———==mmm=mmmmmmmmmm		[DLE]
I o	#	ETB		
# # RVI	ETX			
Error Return < e e e e EOT -—] CRC				
i # # DLE/EOT CRC				
i # # I I				
Normal Return {————-———=————e———————— ——-- - I				
# #				
] # # |

Figure 9-6. ?SRCV System Call, Multipoint Control Station

9-18 Licensed Material - Property of Data General Corp. 093-000335-00

CHAPTER 9 - BINARY SYNCHRONOUS COMMUNICATIONS (BSC)

if the

NOTE: Use ?SRCV continue if the station was selected; use ?SSND

station was polled.

| # A0S/VS it Remote Site |
| User Task # (Control Station) # (Tributary) i
| s======a==s=zzz=s==zjfcssezsszszrzamsssasssesfrossssssosss=ssas = |
| # # SYN]
[# # : [
[# # EOT I
| # # | |
| ?SRCV Initial-———m——- >] Wait for Poll or| # SYN |———0-—~| [
] # | Select Address | # :] | |
| # | | # Inapp. Poll Select |
| # - | # I Addr. Addr. |
! # | Time-out #] Seq. Seq. |
# Retry	#	: :			
# I	# v ENQ ENQ				
i	\Y # I ! I				
Error Return {~==————-	ERROR RECOVERY	<{-———--			
# o	#	I			
# # i	I				
# #	i				
#	?SPLR Set	# \Y I			
# 1=—-1 to 1	{mmmmm e o e	Lo			
[o		# [I			
#t v # [
Normal Return {=————- o #					
t " #					
! # o	?SSLR Set	# Voo			
l fol==-1 to 1	{mmmmm m e	!			
! # I	# !				
I # it f					
[
[
] I

Figure 9-7.

093-000335-00

?SRCV System Call, Multipoint Tributary Station

Licensed Material - Property of Data General Corp. 9-19

CHAPTER 9 - BINARY SYNCHRONOUS COMMUNICATIONS (BSC)

#

User Task # A0S/VS # Remote Site |

T e e e e e e e L e T e |
?SEBL >Assert Data #]
i Terminal Ready # [

| (wait for #]

| dataset ready) # |

v | # |

Error Return {~-—--Time-out [# |
| {—=—mmm— Dataset Ready Asserted]|

Normal Return {=——s———aamemm e # |
|

|

¥ #

9-20

Figure 9-8. ?SEBL System Call, Point-to-Point

End of Chapter

Licensed Material - Property of Data General Corp.

093-000335-00

CHAPTER 10
USER DEVICE SUPPORT

The system calls that support user devices are:

I I
| l
| |
| ?DDIS Disables access to all devices. |
| ?DEBL Fnables access to all devices.]
] ?IDEF Defines a user device. |
| 2IMSG Receives an interrupt message. |
| ?IRMV Removes a user device.]
| ?7IXIT Exits from an intertrupt service routine. |
| ?IXMT Transmits an interrupt message. !
| ?LEFD Disables LEF mode. !
| ?LEFE Enables LEF mode. !
| ?LEFS Returns the current LEF mode status. |
| ?STMAP Sets the data channel map. |
! |

AOS/VS supports a wide variety of user devices, such as magnetic tape
drives, disk drives, and line printers, which you usually define
during the system—generation procedure. (Refer to the ‘Managing
A0S/VS’ manual for information on the system—generation dialog.)
However, a process that has the ?PVDV privilege can define and enable
devices at execution time.

Devices that you define and enable during the system—generation
procedure are called system-defined devices. Devices that a process
with the ?PVDV privilege defines and enables at execution time are
called user-defined devices. This chapter describes those system
calls that allow you to use both system— and user—defined devices.

A0S/VS supports a maximum of 64 user (that is, system—defined and/or
user—defined) devices per system. You can use any device code in the
range from 1 through 63, as long as you do not use codes that are
already in use. (Note that A0S/VS reserves many device codes for its
own use.)

093-000335-00 Licensed Material - Property of Data General Corp. 10-1

CHAPTER 10 - USER DEVICE SUPPORT

To introduce a user-defined device to A0S/VS at execution time, you
must issue the ?IDEF system call., As input to the ?IDEF system call,
you must supply:

o A device code for the new device.

o) The address of the device control table (DCT) you defined for
the new device.

The DCT specifies the address of the user-defined device’s interrupt
service routine. (See Figure 10-1.)

] restart routine or -1
o e e e e e e |
?UDVMS | Interrupt service mask | Reserved (Set to -1.) [?UDRS

I I I
?UDLN = DCT length

0 15 16 31

e it e antdeted |

?UDVMX | Pointer to system database for task that issues |
| ?IMSG !

| o e e e e e e e e e e e]

7UDVIS | Address of interrupt service routine]
[e e e e e e e e |

?UDVBX | Mailbox for message sent via ?IXMT and ?IMSG |
| e e e e e ———]

| ?UDDRS | Address of user-defined power-failure/auto- |
|

Figure 10-1. Device Control Table (DCT)

The DCT is ?UDLN words long. Note that A0OS/VS returns most of the
DCT parameters as output to the ?IDEF system call. However, you must
perform the following steps:

l. Supply the address of the interrupt service routine (offset
?20UDVIS).

1 2. Supply the address of the power-failure/auto-restart routine or,
| if you do not want to use such a routine, -1 (offset ?UDDRS).

3. Provide the interrupt service mask (offset ?UDVMS).

10-2 Licensed Material - Property of Data General Corp. 093-000335-00

CHAPTER 10 - USER DEVICE SUPPORT

To remove a user device, issue the ?7IRMV system call.

?IDEF System Call Options

When you issue the ?IDEF system call, you can select any of the
following options:

o Burst multiplexor (BMC) I/0.
o Data channel (DCH) map A.
o DCH map B, C, or D.

o Neither BMC nor DCH I/0.

You can select either burst multiplexor (BMC) I/0 or data channel
(DCH) 1/0 for a user—defined device by selecting certain options when
you issue the ?IDEF system call. (In general, your choice depends on
the device’s design.)

If you want to use the BMC map or the DCH B, C, or D maps, you must
use an extended map table. However, you can define (issue the ?IDEF
system call against) a device that is on DCH map A without using an
extended map table. To do this, you must specify that you do not
want to use the extended map table in the accumulators when you issue
the ?IDEF system call. This option, does not allow you to specify
the first acceptable map slot. Instead, you can only specify how
many map slots your application needs.

However, if you do not want to use either DCH or BMC I/0, you must
specify this option in the accumulators when you issue ?IDEF. Also,

if you do not want to use either DCH or BMC I/0, you do not have to
use the extended map table.

Burst multiplexor I/0 requires program control only at the beginning
of each block transfer. Therefore, BMC I/0 is generally faster than
DCH I/0. Typically, the BMC rate is about half the memory rate,
although the exact transfer rate varies from implementation to
implementation. Note that not all user—-defined devices have BMC
hardware.

If you use the extended form of ?IDEF, you can select specific DCH or
BMC map slots. Each MV/8000 DCH map consists of 32 map slots,
numbered 0 through 37 (octal). The MV/8000 BMC map consists of 1024
map slots, numbered O through 1777 (octal).

093-000335-00 Licensed Material - Property of Data General Corp. 10-3

CHAPTER 10 - USER DEVICE SUPPORT

Each map slot (DCH and BMC) addresses 1K memory words. The hardware
uses these map slots to map data from the device to memory during

data transfers.

To select a particular DCH map or the BMC option, you must perform
the following steps:

1. Set up a map definition table in your logical address space.
(Figure 10-2 shows the structure of a map definition table and
its entries. See Table 10-1 for a detailed description of the
contents of each map definition table entry.

2. Issue the ?IDEF system call.

When you issue the ?IDEF system call, AOS/VS allocates—-but does not
initialize—-map slots. To initialize these map slots, you must issue
the ?STMAP system call.

If you issued the ?IDEF system call with the DCH map-A-only option,
then you can issue only one ?STMAP system call to initialize the map

slots allocated on DCH map A. However, if you issued the ?IDEF system

call with the extended-map-table option, you can issue more than one
?STMAP system call. Each ?STMAP system call, in turn, initializes a

different group of map slots. (The map definition table entries
define each group of map slots.)

When you issue the ?STMAP system call, you can initialize part of a
group of map slots that is defined in a map definition table entry.
For example, if entry 2 has allocated 10 map slots on the BMC, an
?STMAP system call only initializes 5 of the 10 map slots.

(For a detailed description of BMC I/0, DCH I/0, and the DCH maps,
refer to the ‘Principles of Operation 32-Bit ECLIPSE® Systems’
manual.)

10-4 Licensed Material - Property of Data General Corp. 093-000335-00

CHAPTER 10 - USER DEVICE SUPPORT

* If there are fewer than eight
2-word entries, the first
word following the last valid
entry must be ~1.

I]
1 e
[1 Word 1 - First Accef{ |
| [l e }o
! | |10ffset] Contents {1
I | |[s=====|====s==sss==s===s==s====} |
] 11?20DID | The format is: {1
| m===s======s==zzzzzzz==== I | o
| e I P | [Map specifier] + {1
(. | Word 1 | | 11 | [first acceptable slot]{ |
I 1 | Entry 1 |-————-—- | J=====>]] | P
| | Word 2 | | Il | The following are {1
| I BTt - || 11 | sample entries: } o
| ==========s=sszz=sss=s=== 1] { 1
| | | Word 1 | | | 2UDDC+10 {1
] | Entry 2 |==——==—- | H | ?20UDDB+2 } o
]] | Word 2 | | | ?UDBM+322 { |
| [e | I | { |
] | | Word 1 | I } I
| | Entry 3 |=——===-- [I} (See Table 10-1.) { |
I I | Word 2 | P } I
I [~ b TTTTTT T s s s e |
|] | Word 1 | |
I I Entry 4 |==—==--- | !
[I | Word 2 | |
| === | |
I ! | Word 1 | |
| | Entry 5 |=———=—— ! |
| | | Word 2 | |
| {= - |]
I] | Word 1 | |
| | Entry 6 |-—————-- | |
| i | Word 2 | |
[J=——————— mmm———————— | !
] | | Word 1 | |
I | Entry 7 j=——————- ! !
I | | Word 2 | [
| [~ m———————— | I
| | | Word 1 | |
I | Entry 8 |-———-——-| |
[| |
| |
[!
|]
| |
[!
| |

Figure 10-2. Structure of Map Definition Table

093-000335~00 Licensed Material - Property of Data General Corp. 10-5

CHAPTER 10 - USER DEVICE SUPPORT

Table 10-1. Contents of Map Definition Table Entry

[Word 1 -~ First Acceptable Map Slot]

|0ffset] Contents Comments]
| e R e e e T b R ey Y Y E T T LT TP e P ry I
?0DID { The format is: Map specifier must be one of the
following:
[Map specifier] +
[first acceptable o ?UDBM, which selects the BMC map
slot] o ?UDDA, which selects the DCH A map
o ?UDDB, which selects the DCH B map
The following are | o ?UDDC, which selects the DCH C map
sample entries: o ?UDDD, which selects the DCH D map

?UDDC+10 First acceptable slot must be:
o From 0 through 1777 (octal) if your

o From 0 through 37 (octal) if your
map specifier is ?UDDA, ?UDDB,
?20DDC, or ?UDDD

A0S/VS allocates the first contiguous
group of slots on the map, starting

with the first acceptable slot on the
map that you selected. Then, A0OS/VS
returns to you the first slot that it

!
]
|
]
|
|
|
|
|
|
I
|

?2UDDB+2 |
|
!
|
|
|
|
|
|
|
|
[
| allocated in ?UDID.
!

!

! |
I I
| I
I I
I I
I !
I |
I !
I I
! |
| I
| ?UDBM+322 I
| map specifier is ?UDBM |
I |
I I
I I
I !
l I
I I
| I
l I
| I
! !
I |

] Word 2 - Number of Map Slots Requested) |

et ety T e e |
Comments |

|
| | :
| Number of map | The sum of the first acceptable slot]
| slots requested | plus the number of slots cannot be]
| in range from O | larger than the size of the map that]
| through 37 (octal)| you requested; that is, 37 (octal) for |
[| DCH or 2000 (octal) for BMC. |
I ! |
NOTE: 1If AOS/VS cannot allocate all entries, then it does not |
allocate any entries.]

|

10-6 Licensed Material - Property of Data General Corp. 093-000335-00

CHAPTER 10 - USER DEVICE SUPPORT

To define a user device to A0S/VS, you must issue the ?IDEF system
call. Each device, such as a disk, is programmed to do a particular

job. When a device starts doing its job, the CPU and AQS/VS ignore
that device. As soon as the device completes its job, it signals the
CPU that it is done. This signal is called an interrupt.

When the CPU detects an interrupt, it stops doing whatever it is
doing, so that it can "service" the interrupt. Servicing an
interrupt means that A0S/VS passes control to the appropriate
interrupt service routine. To do this, AOS/VS must pass a vector
through the interrupt vector table, which is a hardware-defined
index.

The interrupt vector table contains an entry for each device. Each
entry points to a DCT, which contains the address of the interrupt
service routine that will service a particular interrupt.

The ?IDEF system call directs AO0S/VS to build a system DCT and enter

it in the interrupt vector table. Conversely, the ?IRMV system call
clears the device’s DCT entry from the interrupt vector table.

The device’s DCT also contains the current interrupt service mask.
The current interrupt service mask is a value that specifies the
devices that can interrupt the user-defined device.

Before AO0S/VS transfers control to an interrupt service routine, it
performs the following steps:

1. Loads AC2 with the address of the interrtupting device’s DCT.

2. Loads ACO with the current interrupt service mask.

3. Takes the current interrupt service mask and inclusively ORs it
with the interrupt service mask in the DCT.

4. Saves the current load effective address (LEF) state. LEF mode

is a CPU state that allows AOS/VS to correctly interpret MV/8000
LEF iastructions. (See "LEF Mode" in this chapter for

information on LEF mode.)

5 Turns LEF mode off.

093-000335~00 Licensed Material - Property of Data General Corp. 10-7

CHAPTER 10 - USER DEVICE SUPPORT

The inclusive-OR operation establishes which devices, if any, can
interrupt the interrupt service routine that is currently executing.
AOS/VS restores LEF mode when you issue an ?IXIT system call to
dismiss your interrupt.

A process in an interrupt service routine can issue only three system
calls:

o ?IXMT, which sends a message to a task outside the interrupt
service routine.

o ?SIGNL, which signals a task within your own or another process.
o ?IXIT, which exits from an interrupt service routine.

A0S/VS does not save the state of the MV/8000 floating-point
registers when a process enters an interrupt service routine. If
necessary (for example, if you want to use floating-point
instructions), you can save the state of the floating-point registers
when the interrupt service routine receives coatrol and restore that
state before you issue the ?IXIT system call.

User Stacks

Each user task has its own user stack. A user stack is a data
structure to which the conteats of certain Page 0 hardware locations
point. The contents of these hardware locations are called stack
pointers. Whenever a task runs, AOS/VS must first load that task’s
stack pointers into hardware locations octal 20 through 26. This
allows the task to use its stack.

When a user-defined device interrupt handler receives control at
interrupt level, the stack that A0S/VS loads into the Ring 7 hardware
registers is the stack of the last user task that was running.

AOS/VS does not set up a stack for your interrupt service routine.
Therefore, to use a stack, you must set up your own.,

Before you issue the ?IXIT system call to exit from the interrupt
service routine, you must perform the following steps:

1. Save the current hardware stack pointers.

2. Restore the current hardware stack pointers to the hardware.

10-8 Licensed Material - Property of Data General Corp. 093-000335-00

CHAPTER 10 - USER DEVICE SUPPORT

NOTE: If you use the stack that is already loaded
in Ring 7, you must also restore that stack
to the way it was when you first received
control (that is, before you issued the ?IXIT
system call).

Communicating from an Interrupt Service Routine

Multitasking halts when a device interrupt occurs. However, an
interrupt service routine can communicate with an outside task by
issuing the ?IXMT system call. The ?IXMT system call transmits a
message of up to 32 bits from the interrupt routine to a specific
receiving task outside the sending routine. There is a location in
the system DCT that serves as a mailbox for the message. The
external task receives the message by issuing a ?IMSG system call
against the DCT associated with the interrupt routine.

You can issue ?IXMT and ?IMSG system calls in any order. If the
?2IMSG system call occurs before the ?TXMT system call, AOS/VS
suspends the receiving task until the ?IXMT system call occurs. If
the ?IXMT system call occurs first, AOS/VS posts the message in the
mailbox until the receiving task issues the ?IMSG system call.

You cannot use the ?IXMT system call to broadcast a message.

Processes can issue I/0 instructions from their tasks to all system
and user devices. When a process issues a ?DEBL system call, AOS/VS
enables device I/0 and disables LEF mode, which allows tasks within
the calling process to issue I/0 instructions. Note that the 1/0
enable and LEF mode states are process wide, and therefore, affect
all tasks.

The ?DEBL and ?DDIS system calls work in parallel with the LEF mode
system calls ?LEFE, ?LEFD, and ?LEFS. Table 10-2 summarizes the
functions of the LEF mode and device access calls. (See "LEF Mode"
in this chapter for more information on LEF mode.)

093-000335-00 Licensed Material - Property of Data General Corp. 10-9

CHAPTER 10 - USER DEVICE SUPPORT

Table 10-2. LEF Mode and Device Access System Call
Functions Summary

] Function |
e e s ey
| | Enables I/0, disables LEF mode.
] [Disables I/0, but does not re—enable LEF mode.
| ?LEFE [Enables LEF mode, disables T/0.
| 7LEFD | Disables LEF mode, but does not enable 1/0.
I [
] !

| System Call
l e T

Returns the current LEF mode status.

No device I/0 can occur while the CPU is in LEF mode, because LEF
instructions and I/0 instructions use the same bit patterns.
Similarly, when LEF mode is disabled, A0S/VS executes LEF
instructions as if they were I/0 instructions. Thus, the deciding
factor for executing LEF and I/0 instructions is the state of the
CPU; that is, whether it is in LEF mode or I/0 mode.

Note that the ?DDIS system call, which disables I/0 mode, does not
automatically re-enable LEF mode. To disable I/0 mode and re—enable
LEF mode, you must issue the ?LEFE system call. Also, the ?LEFD
system call, which disables LEF mode, does not automatically
re-enable 1/0 mode. To perform these two functions, you must issue
the ?DEBL system call.

LEF Mod

LEF mode (load-effective-address mode) is the CPU state that protects

the I/0 devices from unauthorized access. 1I/0 instructions and LEF
instructions use the same bit patterns. A0S/VS decides how to

interpret these instructions by checking the LEF mode state and the
state of the complementary I/0 mode.

LEF mode and I/0 mode are mutually exclusive. When the CPU is in LEF
mode, all I/0 instructions execute as LEF instructions; therefore,
1/0 cannot take place in this state. Conversely, the CPU must be in
LEF mode to execute LEF instructions properly.,

10-10 Licensed Material - Property of Data General Corp. 093-000335-00

CHAPTER 10 -~ USER DEVICE SUPPORT

A0S/VS provides the following system calls to check and alter LEF
mode:

?7LEFD Disables LEF mode.
7LEFE Enables LEF mode.
?LEFS Returns the curreant LEF mode status.

Each process begins with LEF mode enabled. AOS/VS disables LEF mode
when a process enters a user device routine, and restores LEF mode
when the process exits from that routine.

Power-Failure/Auto~-restart Routine

If you specify an extended DCT within the ?IDEF system call--provided
you have the necessary battery backup hardware~—A0S/VS will restart
your user devices after a power failure. The DCT extension (offset
?2UDDRS) points to a power-failure/auto-restart routine. When a power
failure occurs, AQS/VS transfers control to the auto-restart troutine,
with the DCT address in AC2, and the current system mask in ACO.

A0S/VS checks to see if there are any user—defined devices that have
associated power-failure/restart routines if auto-restart is enabled.
(Refer to the ‘Managing A0S/VS’ manual.)

(During the auto-restart routine, A0OS/VS enables interrupts and masks
out all devices. This allows A0S/VS to recognize only power-failure
interrupts.) AOS/VS transfers control to the auto-restart routine
with a system mask of -1, which cannot be changed. The states of
both the devices and the data channel map are undetermined after a
power failure.

End of Chapter

093-000335-00 Licensed Material - Property of Data General Corp. 10-11

C

CHAPTER 11

MISCELLANEOUS SYSTEM CALL FUNCTIONS

093-000335-00

The system calls whose functions fall outside the specific topics
addressed in this manual are:

?BNAME

?2CDAY
?2CTOD
?DEBUG
?ENQUE
?ERMSG
?EXEC
?FDAY
?FEDFUNC
?FTOD
?GBIAS
?GDAY
?GHRZ
?GSID
?GTMES
2GTNAM

?GTOD
?GTSVL
?GVPID
7HNAME
?INTWT
?ITIME
?KINTR
?KIOFF
?KION
?KWAIT
?LOGCALLS
?LOGEV
?70DIS
?0EBL

Determines whether processname/queuename 1is on

local or
Converts
Converts

remote host.
a scalar date value.
a scalar time value.

Calls the debugger utility.

Queues a

file entry.

Reads the error message file.

Requests
Converts

a service from EXEC.
the date to a scalar value.

Interfaces to AOS/VS File Editor (FED) utility.

Converts
Gets the
Gets the
Gets the
Gets the

the time of day to a scalar value.
current bias factor values.
current date.

frequency of the system clock.
system identifier.

Gets a CLI messages.
Returns symbol closest in value to specified input

value.
Gets the

time of déy.

Gets the value of a user symbol.

Gets the

virtual PID of a process.

Gets a host name or host identifier.

Defines a console interrupt task.
Returns the AQ0S/VS-format internal time.
Simulates keyboard interrupt sequences.

Disables

control-character console interrupts.

Re-enables control-character console interrupts.
Waits for a console interrupt.

Logs system calls.

Enters an event in the system log file.

Disables

console interrupts.

Enables console interrupts.

Licensed Material - Property of Data General Corp.

CHAPTER 11 - MISCELLANEOUS SYSTEM CALL FUNCTIONS

| |
| (Cont.) [
| I
] ?RNAME Determines whether a pathname contains a reference |}
| to a remote host. |
| ?SBIAS Sets the bias factors.]
| ?SDAY Sets the system calendar. |
| ?SINFO Gets selected information about the current |
| operating system.]
| ?STOD Sets the system clock.]
| ?TPID Translates a PID. !
| ?VALAD Validates a logical address.]
| ?WDELAY Suspends a task for a specified time. |
I I

This chapter describes those system calls that fall into the

"miscellaneous" category, either because their functions extend
beyond the broad categories covered by the other chapters or because

they apply to more than one of the categories treated in the other
chapters.

Several of the system calls described in this chapter examine and/or
change system features, such as the error message file. Other system
calls return system information or perform general functions for the

calling process.

Console Interrupts

As stated previously, you can control or suspend printing at your
counsole by typing certain keyboard control characters or control
sequences.

A CTRL-C CTRL~A sequence interrupts printing at your console.
However, this sequence works only if you have already issued a ?INTWT
system call. The ?INTWI system call defines an interrupt processing
task that monitors the console keyboard for CTRL-C CTRL~A sequences.
When A0S/VS detects a CTRL-C CTRL-A sequence, it readies the
interrupt processing task and passes control to the ?INTWT system
call’s normal return. AOS/VS ignores subsequent CTRL~C CTRL-A
sequences until you re-issue the ?INTWI system call. After you

issue the ?INTWT system call, you can used the ?0EBL system call to
re-enable console interrupts.

11-2 Licensed Material - Property of Data General Corp. 093-000335-00

CHAPTER 11 - MISCELLANEOUS SYSTEM CALL FUNCTIONS

By default, AOS/VS enables CTRL-C CTRL-A interrupts when a program |
starts to execute. However, the ?0DIS system call lets you override]
this default and disable console interrupts that were caused by the |
?0EBL, ?TINTWT, or ?CHAIN system calls. |

A CTRL-C CTRL-B sequence terminates the current process, whether or
not you have defined an interrupt task with the ?INTWT system call,

A CTRL-C CTRL-E sequence terminates the curreat process and creates a
break file of its state. (See the description of break files in
Chapter 3.)

The ?KINTR, ?KWAIT, ?KIOFF, and ?KION system calls allow you to
control interrupts on virtual consoles. The ?KINTR system call
allows virtual consoles to handle console interrupts as if they

were real consoles. If you want a process to handle console
interrupts in nontraditional ways, you can issue the ?KWAIT system
call. Then, to prevent a process from being interrupted by a control
sequence, you can issue the ?KIOFF system call. To re-enable
interrupts that were disabled by the ?KIOFF system call, you can
issue the ?KION system call.

Clock/Calendar System Calls

AOS/VS maintains a 24~hour clock and a calendar. During the
system-generation procedure, you can set the clock to any one of
several real-time frequencies. (Refer to the ‘Managing AOS/VS’
manual for more information on the system~generation procedure.)

Depending on your application, you may need to know the real—-time
frequency of the system clock while your program is executing. The
?GHRZ system call returns this information to ACO as a code in the
range from O through 4. FEach digit of the code corresponds to a
specific frequency. (See the description of the ?GHRZ system call in
Chapter 13 for details.)

The system clock expresses the current time in seconds, minutes, and
hours; the values for seconds and minutes range from 0 through 59,

and the value for the hour ranges from 0 (midnight) through 23 (11
pem.). You can issue the ?ITIME system call to get an AOS/VS-format]
timestamp. !

The system calendar expresses the current date as day, month, and
year. To determine the year, the system calendar subtracts the base
year 1900 from the current year and converts the result to octal.
The notation for 1980, for example, is 120 octal.

093-000335-00 Licensed Material -~ Property of Data General Corp. 11-3

CHAPTER 11 - MISCELLANEOUS SYSTEM CALL FUNCTIONS

The system calls ?STOD and ?SDAY set the system clock and calendar,
respectively. The ?GTOD and ?GDAY system calls return the current

time and date, respectively.

In some cases, such as in the ?FSTAT packet, AOS/VS returns the time
and/or date as a scalar value. In scalar notation, the current time
equals the number of biseconds that have elapsed since midnight. The
date equals the number of days that have elapsed since 31 December
1967. The ?CTOD system call converts a scalar time to seconds,
minutes, and hours. The ?CDAY system call converts a scalar date to
month, day, and year. To convert time and date back to scalar
values, issue the ?FTOD and ?FDAY system calls, respectively.

The system file ERMES contains all the error codes, their
corresponding mnemonics, and their text messages. There are 20000
(octal) groups of error codes for A0S/VS (including user programs).
Data General Corporation reserves code groups 0 through 77 (octal)
and 200 through 7777 (octal) for the system. You caan define the
remaining groups, numbered 100 through 177 (octal) and 10000 through
17777 (octal).

The error codes are 32-bit unsigned values. Each error code contains
two fields: a group field and an error code field. 1If an error

occurs when a system call is executing, AOS/VS returns the error code
value to ACO. Each error is associated with a unique text string.

The ?ERMSG system call returns the text string associated with a
particular error code. Before you issue the ?ERMSG system call, you
must specify the error code in ACO.

To add error codes to the ERMES file, you must obtain its source
version, allocate an unused code group (or add to an existing code

group), and insert you own series of codes and descriptive messages.
You can also create a new error message file that is structured like

ERMES, but has different contents. (See the description of the
?7ERMSG system call in Chapter 13 for information on the ERMES file

structure.)

11-4 Licensed Material - Property of Data General Corp. 093-000335-00

CHAPTER 11 - MISCELLANEOUS SYSTEM CALL FUNCTIONS

Program Information/Control System Calls

The ?DEBUG system call allows you to transfer control to the Debugger
utility while your program is executing. By including the ?DEBUG
system call in your program, you can set up predefined breakpoints

for testing purposes. Another way to call the Debugger utility is to
choose the ?PFDB option in offset ?PFLG of the ?PROC packet. (See |
the description of the ?PROC system call in Chapter 13.)

You can use the ?DEBUG system call to examine or modify inner-ring
user contexts. The user debugger does not base its protection logic
upon the ring-maximization protection scheme. Instead, all access is
based upon the ACLs of the inner~-ring segment image. (See Chapter 3
for information on the ring-maximization protection scheme.)

To examine a user ring, the caller to have Read access to the segment
image file. Also, the caller must have Write access to the segment
image file to permit any modification (including setting breakpoints)
of the user ring. (To set breakpoints in any user ring, you must]
always have Write access to Ring 7.) (See Chapters 2 and 3 for |
information on segment image files.)

System Information

A0S/VS maintains a special accounting file, :SYSLOG, with the special
file type ?FLOG. You can log messages into :SYSLOG. The ?LOGEV
system call accesses this file. The ?LOGEV system call writes an
event code and, optionally, a message to the log file. A process
must be in Superuser mode to issue the ?LOGEV system call.

For more information about the system log file, refer to the
following manuals: ‘Managing AOS/VS’ and the ‘Command Line
Interpreter (CLI) User’s Manual (A0S And A0S/VS)’.

Between each major release, AOS/VS may undergo several revisions.
Therefore, it is important to know your system’s revision number and
its memory configuration. The ?SINFO system call allows you to get
this information.

The ?GSID system call lets you find out what system you are on. When |
your system is part of a network, it is very easy to lose track of]
where you are. Then, you can use the ?BNAME system call to find out |
whether a particular process or queue is on a local host or on a !
remote host. Again, this is useful if you are on a network. |

093-000335-00 Licensed Material - Property of Data General Corp. 11-5

CHAPTER 11 - MISCELLANEOUS SYSTEM CALL FUNCTIONS

Utility Interfaces

In general, the EXEC utility manages queues and magnetic tape units.
Because the EXEC utility can perform many functions for you, you must
issue the ?EXEC system call to tell it what to do. Specifically, the
7EXEC system call directs the EXEC utility to perform one of the
following functions on behalf of a calling process:

o Assign or deassign a logical name to a tape unit or an
uninitialized disk that you want to treat as a whole unit (i.e.,
a non-LD disk) and issue an operator mount or dismount message.

o) Mount labeled or unlabeled magnetic tapes.

o Dismount labeled or unlabeled magnetic tapes.

o Place a request into a queue.

o] Hold, unhold, or cancel a queue request.

o} Provide an report on the status of the EXEC utility.

The ?EXEC system call requires a packet. Therefore, to direct the
EXEC utility to perform one of these functions, you must specify in
offset ?XRFNC (the first offset) what you want the EXEC utility to

do. Although each function requires a unique packet, the ?XRFNC
offset is common to all packets.

If your system is not rvunning the EXEC utility, you can still queue
files for spooled output by issuing the ?ENQUE system call.

The ?FEDFUNC system call is similar to the ?EXEC system call in that
it provides you with a simple~to-use interface to a utility. Instead
of providing an interface to the EXEC utility, however, the ?FEDFUNC
system call provides an interface to the File Editor (FED) utility.

The ?FEDFUNC system call directs the FED utility to perform one of
the following functions on behalf of the calling process:

o Change the radix.
o} Open a symbol table file.

o Evaluate a FED string.

11-6 Licensed Material - Property of Data General Corp. 093-000335-00

CHAPTER 11 - MISCELLANEOUS SYSTEM CALL FUNCTTIONS

Like the ?EXEC system call, the ?FEDFUNC system call also requires a
unique packet for each function. 1In addition, you must define the
function you want the FED utility to perform for you in the first
offset, ?FRFNC, which is common to all packets.

Bias Factors

The ?GBIAS system call lets you determine your system’s maximum and
minimum bias factors at runtime. You can use the ?GBIAS system call
with the ?SBIAS system call, which sets the bias factor values.

CLI Messages

!

!

|

!

I

!

|

|

!

|

I

!

I

I

I

|

!
When you use a CLI command to create a new process, the CLI sends an]
edited version of that CLI command to the new process in the form of |
an initial TPC message. The ?GTMES system call allows you to access]
the initial IPC message. Depending on your input specifications, you |
can use ?GTMES to get a specific argument in the CLI command line and |
to determine which switches, if any, modify it. The ?GTMES system]
call also returns the message that another father process sends when]
it creates a son with the ?PROC system call.]
|

I

I

!

|

!

I

!

|

!

]

]

!

|

I

|

I

I

|

!

]

|

Symbols

The ?GTNAM system call lets you refer to the system-defined symbol
table (.ST) file without knowing its contents. This means that if
you do not know the symbol for a particular value, you can issue the
?GTNAM system call to search the .ST file for the symbol that is
closest in value to the value you supplied ian ACO. The ?GTSVL system
call is similar to the ?GTNAM system call, but it allows you to refer
to a particular program’s user—-defined .ST file without knowing its
contents, instead of the system—defined .ST file.

Host Information

To find a host name or host identifier (host ID), you can issue the
?HNAME system call. Then, depending on what information you supplied
as input, the ?HNAME system call returns the missing information.

093-000335-00 Licensed Material - Property of Data General Corp. 11-7

CHAPTER 11 - MISCELLANEOUS SYSTEM CALL FUNCTIONS

Some system calls require a virtual PID as input. The ?GVPID system
call translates a host ID and a PID into a virtual PID for use in

these system calls. Conversely, to break down a virtual PID into its
components, a host ID and a PID, you can issue the ?TPID system call.

To detect references to remote hosts in pathnames, you can issue the
?RNAME system call.

Address/Access Validation

To verify that a particular address is valid or that a caller has the
proper access privilege for a particular address, you can issue the
?VALAD system call.

11-8 Licensed Material - Property of Data General Corp. 093-000335-00

CHAPTER 11 - MISCELLANEOUS SYSTEM CALL FUNCTIONS

Sample Program

The following program, TIMEOUT, uses the ?GIMES system call to get a
number from your console command line, then it delays itself for the
number of seconds that you specified. The programs BOOMER (see
Chapter 6) and DLIST (see Chapter 5) also contain examples of the
?GTMES system call.

LTITLE TIMEOUT
«ENT TIMEOUT
-NREL

;Use the ?GTMES system call to get the number of seconds that you
;typed at your console. Then, put the ASCII value of that number of
;seconds in AC2, and put its binary value in ACl.

TIMEOUT: ?GTMES CLIMSG ;Get the number of seconds
;from the console.
WBR ERROR 3If there is an error,

;process it.

;Check to make sure that the number you typed, which is returned in
;ACl, is between 0 and 20 (decimal):

WCLM 1,1 ;s If the number you typed is
;jnot in the following range:
0 slower limit of 0O
20. ;and upper limit of 20,
WBR BADVAL sexit and print the "illegal
;delay" message on the console.
NLDAI 1000.,0 ;Put 1000. in ACO.
WMUL 1,0 ;Get the number of

;milliseconds in ACO.

?WDELAY ;Delay for the number of
;seconds that you specified.
WBR ERROR ;If there is an error,
;process it.
WSUB 2,2 ;Set for good return.
WBR BYE ;Goodbye.
ERROR: NLDAI ?RFEC! ?7RFCF! ?RFER, 2 ;Error flags: Error code is

;in ACO (?RFEC), message is
;in CLI format (?RFCF), and
;father process should handle
sthis as an error (?RFER).

093-00035-00 Licensed Material - Property of Data General Corp. 11-9

CHAPTER 11

— MISCELLANEOUS SYSTEM CALL FUNCTIONS

TIMEOUT Program (Cont.)

BYE:

BADVAL:

BMSG:
s 7GTMES

CLIMSG:

«END

?RETURN sReturn to CLI.
WBR ERROR sReturn error.
XLEFB 1,BMSG*2 ;Set up a byte pointer to the

;"illegal delay" message.
NLDAI (CLIMSG~BMSG)*2! ?RFCF, 2 sLEN + FLGS.

WBR BYE ;Done. Print message and
;depart.
.TXT "Delay specified is outside legal range (0 - 20.)"

packet to get number of secs from CLI:

.BLK ?GTLN ;Allocate enough space for
;packet,

.LOC CLIMSG+?GREQ sRequest type.

«WORD ?GARG ;Copy the argument specified

;in offset ?GNUM, Argument 1,
;into offset ?GRES.

.L0C CLIMSG+?GNUM sArgument number.

«WORD 1 sArgument 1 is the number of
;yseconds to delay (Argument 0
;is the name of the program).

.L0C CLIMSG+?GRES sByte pointer to buffer that
;receives the results.

.DWORD -1 ;No buffer is necessary.

.LOC CLIMSG+?GTLN sEnd of packet.

SWORD O ;Use default values for other
;offsets.

TIMEOUT ;End of TIMEQUT program.

End of Chapter

11-10 Licensed Material — Property of Data General Corp. 093-000335-00

CHAPTER 12
16~BIT PROCESSES

?DELAY
?GCRB
?IDSTAT

?IESS
?TIHIST

?KCALL

?0VEX
?0VKIL
?70VLOD
?70VREL
?RCALL
?RCHAIN
?SERMSG
7UNWIND

?WALKBACK

The system calls that are unique to 16-bit processes are:

Suspends a 16-bit task for a specified interval.
Gets the base of the current resource.

Returns task status word.

Initializes an extended state save (ESS) area.
Starts a histogram for a 16-bit process.

Keeps the calling resource and acquires a new
resource.

Releases an overlay and returns.

Exits from n overlay and kill the calling task.
Loads and goes to an overlay.

Releases an overlay area.

Releases one resource and acquires a new one.
Chains to a new procedure.

Returns text for associated error code.

Unwinds the stack and restores the previous
environment.

Returns information about previous frames in the
stack.

A0S/VS allows you to execute 16-bit programs in addition to 32-bit

programs. These can be programs you developed under A0S/VS or under

the Advanced Operating System (AO0OS); in the latter case, you must

relink to execute the programs under A0S/VS. In some cases,
reassembling or recompiling AOS programs may also be necessary.

093-000335-00

Licensed Material - Property of Data General Corp.

12-1

CHAPTER 12 - 16-BIT PROCESSES

Sixteen-bit programs have a more restricted address space than 32-bit
programs (32K words or less). Therefore, to augment a 16-bit
process’s logical address space, you must call in shared or unshared
overlays. There are two types of system calls for this purpose:
resource system calls, which automatically load and release overlay
procedures, and primitive overlay system calls.

Most 16-~bit applications use the resource system calls, because they
simplify resource management. These system calls let you postpone

the decision to include the resources in your root program or in one
or more overlay areas until link time.

The primitive overlay system calls give you greater control of
overlays, but to use them, you must be willing to explicitly load,
release, and control overlays.

Overlay Concepts

Overlays are useful in a small logical address space because they
allow you to re-use the same portion of memory, called an overlay
area, for different portions of code. 1In general, at link time, you
define two or more overlays for each overlay area. The Link utility
classifies the elements of a 16~bit program into two resource types:

o The root, which is the memory-resident portion of the program.
o Overlays.

Link reserves space in the .PR file for overlays, but diverts the
actual overlay code to an overlay (.0L) file. As your program calls
overlays during execution, AO0S/VS reads them from the overlay areas
in the .0OL file to the designated overlay areas in memory.

You can define as many as 63 overlay areas per program. Each overlay

area can accommodate a maximum of 511 separate overlays. An overlay
area can consist of either shared or unshared overlays, but not both.
Link builds shared overlay areas in multiples of 1K words and builds
unshared overlays in multiples of 256 words.

Normally, the basic size of an overlay area equals the size of its

largest overlay, plus any padding Link provides to fill out the area
to a multiple of 1K or 256 words. As a result, AOS/VS reads only one

overlay into the overlay area at that time. (See Figure 12-1.)

12-2 Licensed Material - Property of Data General Corp. 093-000335-00

CHAPTER 12 - 16-BIT PROCESSES

| [
| Memory .0L File i
| \ !
I ARRRRRRRRNNY ! Pl !
I FANAANAANNNANNY ! | Overlay 0 | | |
l | | |] [1]
I /1 I I I | | Overlay I
] Overlay | | | {=—=1] Overlay 1 | | Area 0 |
| Area | | R itttk 11]
I \ ! | Overlay 2 | | !
I FANVANANNANNNNY ! I} I
| | | | |/ |
| (Overlay area 1) i
| |
| |
| |
| |

Figure 12-1. Basic Overlay Area Equals Size of Largest Overlay

You can increase an overlay area to a multiple of its basic size at
link time. This results in a total overlay area that can
simultaneously accommodate more than one overlay of the basic size.
During execution, AOS/VS can place these overlays into any of the
basic areas within the total overlay area.

Therefore, overlays destined for a multiple-overlay area must be

position-independent; that is, you must write them so that all
internal procedure references are relative to some point in the same
overlay. Figure 12-2 shows an overlay area with a total size that is

double its basic size.

As Figure 12-2 shows, doubling the basic size of the overlay area in
memory allows A0S/VS to simultaneously read in two overlays of the
basic size (Overlay 0 and Overlay 2). Note that A0S/VS could also
fit both Overlay ! (which is smaller than the basic size) and Overlay
2, or both Overlay 0 and Overlay 1 in the total overlay area.

Usually, you use special overlay designators to define object modules
as overlays in the Link command line. Link assigns a number to each
overlay area and to each of the overlays that make up that overlay
area. Link bases these numbers on the order in which the overlay
areas and the individual overlays appear in the Link command line.

093-000335-00 Licensed Material — Property of Data General Corp. 12-3

CHAPTER 12 - 16-BIT PROCESSES

ARRRRRRNRNNNNY (Overlay Area 1)

l [
| Memory .OL File !
| \ !
| ANARRRRRRNNNY ! (I |
! FNVAAANAANNY I | Overlay 0 | | |
[| I | | P |
| /1 I | = | | Overlay I
| | 1 j <~——| | Overlay 1 | | Area 0 |
| Overlay | | ! I ———- | I
| Area I I | Overlay 2 | | I
I I o | P |
| (. I | |1 I
I \ | / |
| |]
| !
l |
l [
| |

Figure 12-2. Multiple Overlay Area (total area = basic size * 2)

For example, to link six object modules, A, B, C, E, and F, to form
the program file A.PR, the command line is:

X LINK A B !*C DI!E F*!

The overlay designators (!*, !, and *!) define one overlay area
(Overlay Area 0) with two distinct overlays: modules C and D make up
Overlay 0, while modules E and F make up Overlay 1.

You can use the pseudo-ops .ENTO and .EXTN to refer symbolically to
overlay areas and overlays. (For more information on .ENTO and
-EXTN, refer to the "AOS/VS Macroassembler Reference Manual." Also,

for more information on how Link handles overlays, refer to the
"AOS/VS Link and Library File Editor (LFE) User’s Manual.")

Resource System Calls

AOS/VS provides access to overlays and other procedures through a
generalized procedure/system call mechanism implemented by the

?RCALL, ?KCALL, and ?RCHAIN system calls. You must define the
procedure you want to call with the .PENT (procedure entry)

12-4 Licensed Material - Property of Data General Corp. 093-000335-00

CHAPTER 12 -~ 16-BIT PROCESSES

pseudo-op. For the ?RCALL and ?KCALL system calls, the calling
procedure must begin with an ?RSAVE macro instruction and end with
RTN. (The ?RCHAIN caller must begin with ?RSAVE. Only the last
procedure in the chain should end with a RTN.)

The ?RCALL system call releases the calling resource and then loads
the new resource. Because the calling resource is released on an
?7RCALL, you can load the new resource into the caller’s memory area.
Thus, A0S/VS preserves the state of the ?RCALL caller so that it can
reload the caller, if necessary, after it executes the new procedure.

The ?KCALL system call loads a new resource and transfers control to
its entry point. Unlike the ?RCALL system call, the ?KCALL system
call does not release the calling resource. Use the ?KCALL system
call carefully, however, because if you use it indiscriminately, you
can cause a resource deadlock.

A resource deadlock occurs when every task that requires overlays is
suspended waiting for overlay areas to become available. (If the
overlays have issued ?KCALL system calls, A0S/VS cannot release their
overlay areas.) A resource deadlock can occur if an overlay ?KCALLs
another overlay to the same basic (non-multiple) overlay area.
Therefore, we recommend that you use the ?RCALL system call instead
of the ?KCALL system call to load procedures.

The ?RCHAIN system call releases the calling resource and acquires
the new resource before it leaves the calling procedure. Typically,
you use the ?RCHAIN system call to join resources that you split into
small sequential pieces. Only procedures within resources that have
been ?RCALLed or ?KCALLed can issue the ?RCHAIN system call.

In effect, the ?RCHAIN system call allows you to chain from an
?RCALLed or ?KCALLed procedure to a new procedure. After A0S/VS
executes the new procedure, it returns control to the original
procedure, not to the ?RCHAIN caller.

Link resolves each resource system call and, if necessary, binds the
appropriate resource handler routines into the program file. These
routines, which are part of the runtime library URT16.LB, load the
called procedures as they are needed at execution time.

If a resource deadlock or error occurs while AO0S/VS is executing a
resource system call, it transfers control to an error-processing
module with the entry ?BOMB. Unless you write your own
error-handling routine with a ?BOMB entry, AOS/VS uses the default
routine in URT16.LB. The default routine terminates the calling
process and passes the appropriate error code to the caller’s father.

093-000335-00 Licensed Material - Property of Data General Corp. 12-5

CHAPTER 12 - 16~BIT PROCESSES

If you use your own ?BOMB routine, AOS/VS transfers control to that
routine, and supplies the following error-handling information:

o) An error code in ACO.
o The procedure descriptor entry in ACl.

o The fault address on the stack.

Procedure Entries

Usually, you pass procedure entries as arguments to the resource
system calls; for example, ?RCALL procedure entry. As an
alternative, you can pass procedure entry descriptors on the stack.
AOS/VS then pops the procedure entry descriptor off the stack before
you execute the resource system call.

The .PTARG pseudo-op translates the name of a procedure to a
procedure eutry descriptor. Figure 12-3 shows a sample ?RCALL
sequence that uses the descriptor method.

;off the stack, release calling

;resource, and acquire resource
;that contains FIRST.

I [
| NAME: +PTARG FIRST ;Define a procedure entry]
] . ;descriptor for FIRST. |
I . !
| . |
|} LDA 0,NAME ;Load ACO with the descriptor. |
| PSH 0,0 ;Push the descriptor onto the]
| ;stack.]
| LDA 0,ARGI1 ;Pass ARGI, !
[LDA 1,ARG2 ;ARG2, and]
| | LDA 2,ARG3 3ARG3 to FIRST.]
| ?RCALL ;Pop procedure entry descriptor I
I !
l]
! I
| I

Figure 12-3. Passing a Procedure Entry Descriptor via the Stack

12-6 Licensed Material - Property of Data General Corp. 093-000335-00

CHAPTER 12 - 16-BIT PROCESSES

Alternate Return from Resources

After AOS/VS executes a new procedure, it returns control to the word
that immediately follows the resource system call. To return control
to the second word after the resource system call, issue the
following instruction sequence from the calling procedure:

ISZ ?0RTN,3
RTN

The first statement (ISZ ?0RTN,3) increments the caller’s return
address. The RTN instruction returns to the incremented address.

System Management of Resource System Calls

The ?RCALL, ?KCALL, and ?RCHAIN system calls require two extra words
on the user stack. These words must be located between the caller’s
return block and the called procedure’s temporary variables. Do not
alter these words, because A0S/VS uses them to store information from
the called procedure.

The ?RSAVE macro instruction reserves these two extra words.
Therefore, all procedures that issue ?RCALL or ?KCALL system calls
must begin with an ?RSAVE instruction and end with a RIN instruction.
Every procedure that the ?7RCHAIN system call acquired must also begin
with an ?RSAVE instruction, but only the last procedure in the chain
should end with RTN.

Figure 12-4 shows the contents of the stack after the execution of an
7RSAVE instruction. Also, Figure 12-4 lists the parametric names of
the stack locations. Note that these parameters apply to the stack
for 16-bit programs (standard ECLIPSE stack), not the stack for
32-bit programs (the MV/8000 stack). The user parameter file,
PARU16, defines these and the other 16-bit parameters. For more
information on stacks, refer to the ‘Principles of Operation 32-Bit
ECLIPSE Systems’ manual.

093-~-000335-00 Licensed Material - Property of Data General Corp. 12-7

CHAPTER 12 - 16-BIT PROCESSES

! !
I \ !
I ?0ACO | Caller’s ACO | 1 |
| e e e e e e (. I
| ?0AC1 | Caller’s ACl b |
| | - | | Caller’s |
] ?20AC2 | Caller’s AC2 | > return

| = e e e ! | block]
| ?0FP | Caller’s frame pointer 1 |
[| T S e e e | I
I (Also ?0RTN | 01d Carry | 01d pPC | 1]
| New FP)————- > | (program counter) /]
] === - -1\ |
| ?VRTN | First reserved word | | Virtual |
! | - | > return]
] ?DESC | Second reserved word | | information |
| [=== - i I/ |
I 7TMP | Temp 1 I\ I
| e - I]
] | Temp 2 | | Called |
! | -1 > procedure’s |
|] Temp 3 | | temporary]
| et | | area !
| | Temp 4 I]
| | - - - -1/ !
| New SP~———-—- > | I
|] 1 |
| |
| KEY: 7?0RTN = Caller’s carry and return address |
| FP = Stack frame pointer]
| SP = Stack pointer]
I |

Figure 12-4. Resource System Call Stack after ?RSAVE System Call

Runtime Relocatability Requirements

If they are part of multiple overlay areas, the overlays you call
with the ?RCALL, ?KCALL, and ?RCHAIN system calls must be
position-independent, because A0S/VS may reload them into different
portions of the overlay area after it executes the resource system

call.

12-8 Licensed Material - Property of Data General Corp. 093-000335-00

CHAPTER 12 ~ 16-BIT PROCESSES

Moreover, overlays within multiple areas must be runtime relocatable
to issue ?RCALL system calls. This means that you cannot issue any
assembly language reference to a fixed address before the ?RCALL
system call, because the address could be invalid when the calling
overlay is reloaded. The ECLIPSE instructions subject to this
restriction are JSR, EJSR, LEF, ELEF, PSHJ, POPJ, XOP, and PSHR.
Figure 12-5 shows a JSR instruction whose return value will be
invalid if the procedure that issues the ?RCALL system call is
reloaded into a different memory area.

I |
I I
I |
I .]
| C: JSR A ;Jump to Subroutine A.]
| . ;Return address is C+l. |
I . I
| . !
| A: ?7RSAVE ;Save the return address of C. |
I .]
| . |
I . !
| ?RCALL B ;Release C, acquire B, and go to

] . ;target procedure in B. |
| . I
| . |
| RTN ;Return to C+l. |
| I
| !

Figure 12-5. 1Invalid Return Address from ?RCALL System Call

The return address from the ?RCALL system call in Figure 12-5 is
"C+1", which is the first word that follows the JSR A instruction.
The return address will be invalid, however, if A0S/VS relocated
procedure A after it executed procedure B. If procedure A issued a
?KCALL system call to B instead, the return would be valid, because
the ?KCALL system call keeps the calling resource (A) before it
acquires the new resource and transfers control to its correct entry
point (B).

093-000335-00 Licensed Material - Property of Data General Corp. 12-9

CHAPTER 12 - 16-BIT PROCESSES

Primitive Overlay System Calls

As an alternative to the resource system calls, you can use the
primitive overlay system calls, ?0VLOD, ?0VREL, ?0VEX, and ?0VKIL, to
call and release overlays. These system calls give you greater
control over the overlay environment, but require you to explicitly
load and release the overlays. Because the resource system calls
manage overlays automatically, you should use them rather than using
the primitive overlay system calls.

To use the primitive overlay system calls, you must define each
overlay with the .ENTO (overlay entry) pseudo-op. The system
maintains an overlay use count (QUC) for every memory-resident
overlay. The OUC specifies the number of tasks currently using the
overlay. When the OUC value reaches 0, the overlay area is freed for
use by another overlay.

As long as any task is using an overlay (that is, OUC is not 0), no
other overlay can be loaded into the same basic overlay area. This
is true even if another high~priority task issues an overlay load

request in the meantime. TIf the overlay area is a multiple of its
basic size, however, another task can use any free basic area in the

total area.

The ?0VLOD system call loads an overlay and passes control either to
the beginning of that overlay or to some offset within it. In
addition, your input to the ?0VLOD system call determines whether the
loading is conditional or unconditional.

If you specify unconditional loading, A0S/VS loads the overlay that
you request, even if it is already resident. If you specify
conditional loading, AOS/VS first checks whether the target overlay

is already in the overlay area. If it is, A0S/VS does not load the
overlay, but simply increments the overlay’s OUC. If the overlay is

not resident, AOS/VS loads it into the overlay area and sets its OUC
to 1.

To release an overlay that was loaded with the ?0VLOD system call,
you must use one of the following release system calls:

o ?0VREL

The ?0VREL system call decrements the overlay’s OUC and frees the
overlay area if the OUC equals 0. Note that you cannot issue
?70VREL from the overlay you want to release. Instead, issue
?0VREL from some point outside that overlay.

12-10 Licensed Material - Property of Data General Corp. 093-000335-00

CHAPTER 12 - 16-BIT PROCESSES

o 70VEX

The ?0VEX system call decrements the overlay’s 0OUC, frees the
overlay area if the OUC equals 0 and transfers control to a
specific nonoverlay address. You can use the ?0VEX system call

to return from a subroutine within an overlay.

o ?0VKIL

The ?0VKIL system call decrements the overlay’s 0OUC, releases the
overlay area if the OUC equals 0 and kills the calling task.

Extended State Save Area

AOS/VS allows each 16-bit process to set up an extended state save
area (ESS) for each task in the unshared portion of the logical
address space. The ESS area holds task-specific information, such as
the value of the program counter and its carry bit, and the current
contents of the accumulators. However, you can use the ESS area to
store any information you feel is relevant to a task.

Before you can use an ESS area, you must initialize it with the ?TIESS
system call. Input to the ?IESS system call includes the starting
address of the ESS (in the unshared area of your logical address
space), and a pointer to a block of page zero locations in your
logical address space. When AO0S/VS schedules a 16-bit task, it
copies the ESS information to the designated page zero area. When
rescheduling occurs, A0S/VS transfers the ESS information back to

the ESS block in the unshared area of your logical address space.

End of Chapter

093-000335-00 Licensed Material - Property of Data General Corp. 12-11

INDEX

Aborting process and generating console interrupt with CTRL-C CTRL-B,

5-21

Aborting ?TASK while ?UTSK task-initiation routine is executing, 6-6

" "
>
(See also, '"Tasks".)

Accepting next character as literal with CTRL-P, 5-20 (See also,

"Control characters'.
Access,
Controls on file, 3-9
Coordinating, to common resource, 2-7
Disabling device with ?DDIS, 13-65f
Enabling device with ?DEBL, 13-69f

Permitting to protected shared file (See "?PMTPF system call".)

Privileges (See "Access privileges".)
Shared (See "Shared access".
Access control list (ACL), 2-7, 3-12, 4-15ff
Changing default with ?DACL, 4-15, 13-59f
Defining with ?CREATE, 4-15
Definition of, 4-15
Examining default with ?DACL, 4-15, 13-59f
Format, 13-60
Getting for file entry with ?GACL, 13-149f
Getting for specific file and username, 13-205f
Getting with ?GACL, 4~15
Setting default with ?DACL, 4-15, 13-59f
Setting for files or directories with ?SACL, 4-15, 13-507f
Specifications, 13-43
Format, 13-508
Templates, 4-16
Asterisk (*), 4-16
Plus sign (+), 4-16
Minus sign (-), 4-16
Access control privileges, getting with ?GTACP, 13-205f

Access control specifications (See "Access control list (ACL)".)

Access field (ANSI-standard labeled magnetic tapes), 5-25 (See also,

"Labeled magnetic tape'.

093-000335-00 Licensed Material-Property of Data General Corp.

Index-1

INDEX (Cont.)

Access privileges, 2-8, 3-7, 3-12, 4-13f (See also, "File access".)
File, 2-8, 3-7, 3-12
Append (?FACA), 4-13ff, 13-60, 13-206, 13-508
Execute (?FACE), 4-13ff, 13-60, 13-79, 13-206, 13-508
Owner (?FACO), 4-13ff, 4-17, 13-60, 13-306, 13-508f
Read (?FACR), 4-13ff, 13-60, 13-79, 13-138, 13-149, 13-206,
13-508
Verifying caller’s, 11-8
Write (?FACW), 3-19, 4-13ff, 5-5, 13-60, 13-90, 13-149, 13-206,
13-508
Accessing
all devices, 10~-9f (See also, "User device support".)
directories, 4-7f
files, 4-13f (See also, "File access" and "Access privileges".)
files outside current working directory with ?DIR, 13-79f
initial IPC messages with ?GTMES, 11-7
protected files, 13-389ff
user devices, 3-10 (See also, "Devices'".)
Accounting file, :SYSLOG, 11-5
ACKO (positive acknowledgment), 9-7f, 13-539ff, 13-590, 13-607f (See
also, "Data-link control characters (DLCC)".)
ACK1 (positive acknowledgment), 13-539ff, 13-590, 13-607f (See also,
"Data-1link control characters (DLCC)".)
Acknowledgments,
Negative (See "Negative acknowledgments'.
Positive (See "Positive acknowledgments".
ACL (access control list) (See "Access control list (ACL)".)
Acquiring resource and releasing old one with ?RCALL, 13-441f
Address, validating logical with ?VALAD, 13-669f
Address, verifying validity of with ?VALAD, 11-8
Address of file elements, 4-2
Address range, monitoring in calling or other process, 13-679ff
Address space,
Logical (See "Logical address space".)
Virtual, 2-4, 3-3f
Illustration of, 2-5
Advantages of multitasking, 6-3f
?ALLOCATE system call, 5-1, 5-7, 13-7f
Allocating
blocks for specific data elements, 5-7 (See also, "Disk
blocks".)
disk blocks, 5-1, 13-7f (See also, "Disk blocks".
stack space, 6-7f (See also, "Stacks".)
Allocation, controlling disk space, 4-19
ALM (Asynchronous Line Multiplexor), 5-10 (See also, "Devices".)
Alternate return from resource system calls, 12-7
ANSI-standard
format, 5-22, 5-28f, 5-31f
terminals, 13-158 (See also, "Consoles".)

Index—2 Licensed Material-Property of Data General Corp. 093-000335-00

INDEX (Cont.)

AOS operating system,
Format labeled magnetic tapes, 5-24
Program files (file type ?FPRG), 4-5ff, 5-5 (See also, "Program
files".
AOS~format intermnal time, getting, 13-295
A0OS/VS operating system,

Establishing interface between unsupported device and (See "?7IDEF

system call".)

File structure, 4-1

Program files (file type ?FPRV), 4-5ff, 5-5 (See also, "Program

files".

Task-protection model, 6-4f (See also, "Tasks".

?7APND mask (in offset ?ISTI), 5-6

Append (?FACA) access, 4-13ff, 13-60, 13-206, 13-508

Append option, 3-19, 5-6

Array, external gate, 3-20

Array structure for 16-bit processes (See "?TIHIST system call'.)
ASCII character set, 5~23

ASCII code, 5-5, 5-9, 5-17, 13-542, 13-537f

Assembly language instructions,

DIA, 5-8

DIB, 5-8

DIC, 5-8
Assembly language source files, 4-9 (See also, "Files".)

?ASSIGN system call, 3-67, 5-1, 5-~18, 13-9f
Assigning
device to process for record I/0, 5-1, 13-9f (See also, "Record
input/output (I/0)".)

son higher priority, 3-10 (See also, "Processes".)

Superprocess privilege, 3-13 (See also, '"Processes".)
Assignment, breaking file’s channel, 13-160 (See also, 'Consoles'".)
Asterisk (*) template, 4-16 (See also, "Access control list (ACL)".)
Asynchronous Line Multiplexor (ALM), 5-10 (See also, "Devices™".)

At sign (@) pathname prefix, 4-10, 5-9, 5~11 (See also, '"Pathnames'.)
Attribute, permanent (See '"Permanent attribute".

Attributes transferred to new program by ?CHAIN, 3-19

Auto—answer modems, 5-15f (See also, '"Modems (full-duplex)".)

Operating sequence, 5-15f
Auto-restart/power—-failure routine, 10-2, 10-10f

/B specifications string switch, 13-94
Bad blocks, 5-8
Base, getting current resource, 13-163f

093~-000335~-00 Licensed Material-Property of Data General Corp. Index-3

INDEX (Cont.)

BASIC, 6-3
Basic overlay area, illustration of, 12-3 (See also, "Sixteen-bit
processes".
Batch process information (See "?LOGEV system call".)
BCC (block check character), 9-7, 13-538f, 13-605 (See also,
"Data-link control characters (DLCC)".)
Becoming customer of specified process, 13-33ff
Becoming server with ?SERVE, 13-555f (See also, "Connection-
management facility".)
Beginning control sequence with CTRL-C, 5-20 (See also, "Control
characters".)
Bias factors, 3-5, 11-7
Getting current values for, 13-151f
Setting with ?SBIAS, 13-511f
Binary mode, 5-18f
Binary syachronous communications (BSC), Chapter 9
Concepts, 9-2
Definition of terms, 9-1f
Dedicated communications line, 9-1
Station, 9-1
Switched communications line, 9-2
Disabling line with ?SDBL, 9-2, 13-523
Enabling line with ?SEBL, 9-2, 13-536ff
Error-recovery procedures, 9-2, 9-11ff, 13-591, 13-607f
Error-recovery statistics, 9-13
Getting error statistics with ?SGES, 13-557ff
Illustration of point—to-point/multipoint line configuration,
9-4
Implementation, 9-13ff
Illustration of, 9-14ff
Line, 13-357
Line configurations, 9-3ff
Multipoint, 9-3ff
Point-to-point, 9-3ff
Protocol, 9-1 9-6ff, 13-538, 13-590
Receiving data or control sequences over lines with ?SRCV, 9-2
13-585ff
Sending data over enabled line with ?SSND, 9-2
Sending text over line, 9-7
System calls, 9-1 (See individual system call entries for
additional references.)
?SDBL, 9-1
?SDPOL, 9-1
?SDRT, 9-1
7SEBL, 9-1
?SERT, 9-1
?SGES, 9-1
?SRCV, 9-1
?SSND, 9-1

Index-4 Licensed Material-Property of Data General Corp. 093-000335-00

INDEX (Cont.)

Binding pages to working set (See "?WIRE system call".)

Bit masks, Returned on ?SRCV system calls, 13-593

Bit masks for ACL specifications, 4-15 (See also, "Access control
list (ACL)".)

?FACA, 4-15

?7FACE, 4-15

?FACO, 4-15

?FACR, 4-15

7FACW, 4-~15

Combining (See "?CREATE system call', "?DACL system call", or
"?8ACL system call".)

Bits,

Flag, 8-6

Privilege (?PROC system call), 13-419

Severity, 13-488f

?BLKPR system call, 3-1, 3-6, 3-12, 3-14f, 6-12, 13-619, 13-659f
(See also, Blocking Processes".

Block, time (See "?CREATE system call, Time block™".)

Block check (CRC) error, 9-12 (See also, "Binary synchronous
communications (BSC), Error-recovery
procedures'.,)

Block check character (BCC), 13-538f, 13-605 (See also, 'Data-link
control characters (DLCC)".)

Block count, 5-6

Block input/output (I/0), 5-2f, 5-6f, 13-357 (See also, "File
input/output (I/0)".)

Closing file previously opened for, 13-159f
Definition of, 5-6
Differences between physical block I/0 and, 5-7f
Opening file for, 13-185ff
Packet, 13-220
Performing on magnetic tapes, 13-447ff
Performing on MCAs, 13-449f
Physical (See "Physical block input/output (I/0)".)
Reading/writing, 13-445ff
System calls, 5-3, 5-38

Blocking processes, 3-6, 3-14f (See also, "?BLKPR system call".)
Definition of blocked process, 6-12
Voluntarily, 3~14
When it occurs, 3-14f

Blocks, releasing disk, 13-478 (See also, '"Disk blocks".)

?BNAME system call, 11-5, 13-13f

?BOMB routine, 12-5f, 13-163

Bootstraps, disk, 4~4

BRAN program, 13-346

093-000335~00 Licensed Material-Property of Data General Corp. Index-5

INDEX (Cont.)

Break files, 3-17ff
Contents, 3-18
Creating after terminating process with ?BRKFL (See "?BRKFL
system call".)
Creating for every process trap, 3-18
Creating for specified user ring, 3-19
Default pathname of, 3-19
Enabling, 13-89ff (See also, "?ENBRK system call" and '?MDUMP
system call".)
Examining, 3-17
Terminating processes and creating, 3-18f
Words copied to, 3-18
Breaking
connection in inner ring, 13-85f
connection in Ring 7, 13-63f
customer/server connection, 13-53f (See also, "Connection-
management facility".)
file’s channel assignment, 13-160 (See also, "Channels".
?BRKFL system call, 3-1, 3-13, 13-15ff, 13-19, 13-54, 13-330, 13-346
13-485, 13-619 (See also, "Break files".
Broadcast option, 13-693, 13-696
Broadcasting messages with ?XMT and ?XMIW, 6-18
BSC (binary synchronous communications) line (See "Binary
synchronous communications (BSC)".) \
Buffer, emptying type-ahead and echoing “C*C on console with CTRL-C -/
CTRL-C, 5~21 (See also, '"Control sequences".
Burst multiplexor (BMC) I/0 ?IDEF option, 10-3f
Burst multiplexor channel (BMC) ?IDEF option, 13~235ff (See also,
"?IDEF system call".)
Bypassing retries for disk errors, 5-7
Bytes,
Moving from customer’s buffer, 8-4, 13-337ff
Moving to customer’s buffer, 8-4, 13-341ff

?C8BT (bit control) characteristic, 13-154, 13-157, 13-515

?CACP offset, 13-41ff, 13-47f
Calendar, system (See "System calendar".
Calling Debugger utility with ?DEBUG, 13-71

Index-6 Licensed Material-Property of Data General Corp. 093-000335-00

INDEX (Cont.)

Calling process,
Getting full process name of, 3-~7 (See also, "?PNAME system

call".)
Getting PID of with ?PNAME, 3-7 (See also, "?PNAME system
call".)
Setting search list for calling process with ?SLIST,
13-569f£

Terminating and passing termination message to
father with ?RETURN, 13-487ff
Calling task,
Changing priority of, 13-403f
Getting priority and TID of, 13-351
Killing, 13-307f
Suspending with ?8US, 13-621
Calls,
Receive continue (See "Receive continue calls".
Receive initial (See "Receive initial calls".)
Send continue (See "Send continue calls".
Send initial (See "Send initial calls".)
System (See Chapter 13.)
Canceling, holding, unholding queue requests, 13-117ff
Card readers, 5-10, 5-17f (See also, "Character devices".)
(file type 277, 4-7
Carriage control, file type of FORTRAN, 4-7
Causes of process trapping, 3-17 (See also, "Processes™.)
?2CCPS offset, 13-47f
CD modem flag, 5~15, 5-17
?CDAY system call, 13-127
?CDEH offset, 13-47
?CDEL offset, 13-47f
?2CDT0 (device type) characteristic, 13-155, 13-157, 13-516
?7CDT2 characteristic, 13-157
?CEBO (echo-mode control) characteristic, 13-155f, 13-515
?7CEOL (carriage-return/line-feed control) characteristic, 13-154,
13-515
?CESC (interrupt control) characteristic, 13-155, 13-516
?CFF (form-feed control) characteristic, 13-155, 13-515
?CFKT (delimiter control) characteristic, 13-155, 13-516
?CFTYP offset 4-19ff, 13-41ff, 13-138
?CGNAM system call, 4-1, 4-10
Chain, LRU (least recently used), 13-501
?CHAIN system call, 3-1, 11-3, 13-23ff, 13-338, 13-353
Attributes transferred to new program, 3-19
Linking programs together with, 3-19f
Chaining customer processes, 8-7

093-000335-00 Licensed Material-Property of Data General Corp. Index—7

INDEX (Cont.)

Chaining to new procedure with ?RCHAIN, 13-443f
Chains,
Free memory, 2-4
LRU (least recently used), 2-6, 13-501
Changing
calling task priority with ?PRI, 13-403f
number of unshared memory pages (See "?MEMI system call" and
see also, "Pages".
number of unshared pages in logical address space, 13-349f
priority of tasks specified by TIDs with ?IDPRI, 13-245f
process priority, 3-10
process priority with ?PRIPR, 13-15, 13-405ff (See also,
"?PRIPR system call.)
process type, 13-57f
process type with ?CTYPE, 3-10 (See also, "?CTYPE system
call".)
radix using FED utility (See "?FEDFUNC system call".)
state of another process with Superprocess mode, 3-12 (See
also, "Processes".
working directory, 4-8 (See also, "Working directory".)
working directory with ?DIR, 13-79f
Channel assignment, breaking file’s, 13-160 (See also, '"Channels".)
Channel numbers (See '"Channels".
Channels, 5-3, 9-2, 13-186
Breaking file’s channel assignment, 13-160
Closing, 13-29ff
Data (See '"Data channels".)
Definition of, 5~3
Disassociating chaannel number from file, 5-3
Numbers, 4-10, 9-2
Opening, 13-357ff
Character devices, 4-2, 5-13ff
Assignment of, 5-18
Card readers, 5-17f
Characteristics of, 5-13f
Defining, 5-14
Getting, 5-14
Overriding, 5-14
Consoles, 4-2
Characteristics words, 13-515f (See also, "Characteristics
words".
Deassigning with ?DEASSIGN, 13-67f
Definition of, 5-13
Extended characteristics of, 5-14
?XIFC, 5-14
?XOFC, 5-14
Getting extended charactevistics of, 13-167ff
Reading device characteristics, 13-153ff
Setting extended characteristics, 13-545ff
Setting characteristics with ?SCHR, 13-513ff
Text mode, 5-13

Index-8 Licensed Material-Property of Data General Corp. 093-000335-00

INDEX (Cont.)

Character 1/0, managing with PMGR, 3-8 (See also, "Input/output
(1/0)".)
Character sets,
ASCIT, 5-23
EBCDIC, 5-23f, 13-537f, 13-542
Characteristics,
Character device (See "Character devices".)
Extended character device (See "Character devices".)
Setting character device’s, 13-513ff
Characteristics words (See also, "Character devices".)
?C8BT (bit control), 13-515
?7CDTO0 (device type), 13-516
?CEBO (echo-mode control), 13-515
?7CEOL (carriage-return/line-feed control), 13-515
?7CESC (interrupt control), 13-516
?7CFF (form-feed control), 13-515
?CFKT (delimiter control), 13-516
?7CLT (blanks control), 13-515
2CMOD (modem control), 5-16, 13-516
?CMRI (monitor ring indicator), 5-16, 13-516
?CNAS (non—-ANSI-standard device), 13-515
?CNNL, 5-18, 13-157
?CNRM (message control), 13-516
?2COTT (escape—key control), 13-515
?2CPBN (column control), 13-516
?CPM (page mode), 13-516
?CRAC (rubout control), 13-515
?CRAF (rubout control), 13-515
?CRAT (rubout coatrol), 13-515
?7CSFF (form-feed simulation), 13-515
?7CST (tab simulation), 13-515
?CTO (device time-out), 13-516
?2CTSP (blanks control), 5-18, 13-516
?2CUCO (case control), 13-515
?2CULC (case control), 13-516
?7CWRP (wraparound control), 13-516
Characters,
Accepting as literal with CTRL-P, 5-20 (See also, "Control
characters".
Console control, 5-13 (See also, "Control characters'".)
Control (See "Control characters'.)
Data-link control, 9-6ff (See also, 'Data-link control
characters (DLCC)".)
Prefix, 13-76
valid filename, 3-6, 4-8
Checking process creation parameters, steps AOS/VS takes, 3-11 (See
also, "Processes".)
Checking volume ID of labeled magnetic tape, 13-27f (See also,
"Labeled magnetic tape".

093-000335-00 Licensed Material-Property of Data General Corp. Index—9

INDEX (Cont.)

Checkpointing shared memory pages, 2-8f (See also, "Pages".)

?CHFS offset, 13-44f

Circumstances under which A0S/VS reschedules tasks, 6-10 (See also,

"Tasks".)
?CKVOL system call, 13-27f

Clearing, setting, or examining default ACL with ?DACL, 4-15, 13-59
(See also, "Access control list (ACL)".)
Clearing, setting, or examining execute-protection status, 13-123ff

(See also, "?EXPO system call".)

CLI, 4-2, 5-14

CODE macro, 13-99

DISMOUNT command, 5-35

DUMP command, 5-36

Syntax, 5-36

FILESTATUS command, 13-183

Format, 13-488

/FORMS switch, 5-19

Getting CLI messages, 13-207ff

INITIALIZE command, 4-17

LABEL utility, 5-22, 13-372

Macro files, 4-9 (See also, "Files".)

Messages, 11~7

MOUNT command, 5-38

Syntax, 5-35

.CLT files, 4-9 (See also, "Files".
CLI forms control utility (FCU), 13-453
CLI INITIALIZE command, 13-269
CLI LABEL utility, 13-319
Clock,

Real-time, 13-295, 13-677

System (See "System clock".)
Clock frequency, getting system, 13-171f
Clock/calendar system calls, 11-3

?2CTOD, 11-4

?FDAY, 11-4

?FTOD, 11-4

?GDAY, 11-4

?GHRZ, 11-3

?GTOD, 11-4

?2ITIME, 11-3

?SDAY, 11-4

?STOD, 11-4

?CLOSE system call, 5-1, 5-4, 5-18, 13-29ff, 13-67, 13-144, 13~160,

13-358, 13-455, 13-477
Extended packet, 13-30
Packet structure, 13-30

Index~10 Licensed Material-Property of Data General Corp.

093-000335-00

INDEX (Cont.)

Closing
file opened for block 1/0, 13-159f
files previously opened for shared access with ?SCLOSE, 13-519f
open channels, 13-29ff
shared file (See "?SCLOSE system call" and see also, "Files".)

?7CLT (blanks control) characteristic, 13-154, 13-515

?CLTH offset, 13-41, 13-44, 13-46

?CMIL offset, 13-44ff, 13-47f, 13-138

2CMOD (modem control) characteristic, 5-16, 13-155, 13-157, 13-514,
13-516

?CMRI (monitor ring indicator) characteristic, 5-16, 13-155, 13-157,
13-514, 13-516

?CMRS offset, 13-44ff

7CMSH offset, 13-44f

?7CNAS (non—ANSI-standard device) characteristic, 13-154, 13-154,
13-158, 13-515

?7CNNL characteristic, 5-18, 13-157

?7CNRM (message control) characteristic, 13-155, 13-515

?COBIT bit, 8-5

Code,

16-bit process termination, 7-12 (See also, "Interprocess
communications (IPC) facility".)

ASCIli, 5-5, 5-9, 5-17

Error (See "Error codes'".)

Protected, 3-17

Re~entrant 2-6 (See "Re-entrant code or data'.

Source, 4-9, 4-15

Termination (in offset ?IUFL for ?IREC and ?ISEND headers), 7-11
(See also, "Interprocess communications (IPC)
facility".)

CODE CLI macro, 13-99

Colon (:) pathname prefix, 4-10 (See also, '"Pathnames".

Combining bit masks for ACL specifications (See "?CREATE system
call™, "7DACL system call’, or "?SACL system
call".)

Command, CLI INITIALIZE, 4~17, 13-269

Common local servers, using to pend/unpend tasks (See "Fast
interprocess synchrounization'.

Common resource, Coordinating access to, 2-7

Commonly used device characteristics, 13-156f

Communicating

across data channel, 5-12f

between console and task, 6-17 (See also, "Tasks".

between tasks, 6-17f (See also, "Tasks".)

from interrupt service routine, 10-9 (See also, "User device
support”.)

with customer via IPC system calls, 8-4 (See also, "Connection-
management facility" and "Binary synchronous
communications (BSC)".)

093-000335-00 Licensed Material-Property of Data General Corp. Index—1l

INDEX (Cont.)

Communications device, using the IPC facility as, 5-21f (See also,
"Interprocess communications (IPC) facility".)
Communications facility, intertask, 6-17f (See also, "Tasks".
Communications lines,
Dedicated, 9-1
File type of synchronous, 4-7
Switched, 9-1
Communications paths, full-duplex, 7-2 (See also, "Modems'".)
Communications unit, file type of multiprocessor, 4-7
Complete pathname, getting with ?GNAME, 13-179f
?CON system call, 8-1ff, 8-6, 13-33ff, 13-485, 13-555
Concepts,
Binary synchronous communications (BSC), 9-2 (See also, "Binary
synchronous communications (BSC)".)
File input/output (I/0), 5-2ff (See also, "File input/output
(T/0)".)
Overlays, 12-2ff
Tasks and multitasking, 6-3 (See also, "Tasks".
Conditions,
Page-fault, 3-3
Race, 6-19, 8-6
Conditions under which A0S/VS blocks processes, 3-14f
Conditions under which A0S/VS unblocks processes, 3-15
Configuration, illustration of model customer/server, 8-2 (See also,
"Connection-management facility".)
Configurations, line, 9-3ff (See also, Binary synchronous
communications (BSC)".)
@CoNn, 5-10 (See also, '"Devices'.)
Connecting two or more stations (See '"Dedicated communications
line".
Connection (See also, '"Connection-management facility".)
Breaking customer/server, 13-53f
Breaking inner-ring, 13-85f
Breaking Ring 7, 13-63f
Creating, 8-2ff
Establishing between customer and existing server, 8-2
Passing to another server in any ring with ?PRCNX, 8-4, 13-395f
Passing to another server in Ring 7 with ?PCNX, 8-4, 13-387f
Terminating, 8-5
Connection table, 8-2, 8-4f
Clearing entry from, 8-5

Index-12 Licensed Material-Property of Data General Corp. 093-000335-00

INDEX (Cont.)

_

Connection-management facility, 6-4, Chapter 8
Chaining customer processes, 8-7
Creating connections, 8-2ff
Description of, 8-1
Double connections, 8-3
Illustration of, 8-3
Identifying connections in inner rings, 8-6
Inner-ring connection management, 8-6ff
Managing exchanges between customers and servers, 8-2
Model customer/server configuration, Illustration of, 8-2
Moving bytes to/from customer’s logical address space with ?MBTC
or ?MBFC, 8-4
Multilevel connections, 8-2
Illustration of, 8-3
Obituary messages, 8-5f
Passing customer/server connection to another server in Ring 7
with ?PCNX, 8-4
Passing customer/server connection to another server with
?PRCNX, 8-4
Server process, 8-4
Server-only system call (?CTERM), 8-5
Signaling server resignation with ?RESIGN, 8-4
Status of inner—-ring connections, 8-6
System calls, 8-1 (See individual system call entries for
K_/ additional references.)
?7CON, 8-1
?CTERM, 8~1
?DCON, 8-1
?DRCON, 8-1
?MBFC, 8-1
?MBTC, 8-1
?PCNX, 8-1
?PRCNX, 8-1
?RESIGN, 8-1
?SERVE, 8-1
?SIGNL, 8-1
?SIGWT, 8-1
?VCUST, 8-1
?VRCUST, 8-1
?WISIG, 8~1
Terminating connections, 8«5
Terminating customer processes with ?CTERM, 8-4

093~-000335-00 Licensed Material-Property of Data General Corp. Index-13

INDEX (Cont.)

Console (file type), 4-7
Console control characters (See "Control characters'".)
Console control sequences (See "Control sequences'".)
Console format control, 5-19
@CONSOLE generic filename, 5-11f (See also, "Generic files".
Console input line, erasing with CTRL-U, 5-20 (See also, "Control
characters".)
Console interrupts, 11-2f
Controlling on virtual consoles, 11-3
Defining task to handle, 13-271f
Disabling with ?0DIS, 13-353f
Enabling, 13-335
Generating and aborting process with CTRL-C CTRL-B, 5-21 (See
also, '"Control sequences".)
Generating with CTRIL-C CTRL-A, 5-21 (See also, "Control
sequences".
Waiting for, 13-315f
Console output,
Emptying type—ahead buffer and echoing “C”C with CTRL-C CIRL-C,
5-21 (See also, '"Control sequences".)
Freezing with CTRL-S, 5-20 (See also, '"Control characters".
Suppressing with CTRL-0, 5-20 (See also, "Control characters".)
Console port number, getting with ?GCPN, 13-161f
Console~to-task communication, 6-17 (See also, "Tasks".
Consoles,
ANSI-standard, 13-158
CRT display, 5-10, 5-13
Non-ANSI-standard, 13-158
Relative, 9-6
relative (See "Relative consoles'.)
Sending messages to, 13-549ff
Virtual, 11-3, 13-309
Contention,
Memory, 3-15
Definition of line, 9-3
Contents,
Break file, 3-18
Getting link entry, 13-173f
Getting search list, 13-175f
IPC send and receive headers, 7-7
Map definition table entry, 13-237
Parameter packets (See '"Packet contents".
System flag word (offset ?ISFL), 7-8
VOL1 volume labels, 5-28
Context,
Logical, 2-1f
Memory, Illustration of, 2-10
User, 2-9ff

Index-14 Licensed Material-Property of Data General Corp. 093-000335-00

INDEX (Cont.)

Context-management system calls, 2-10 (See individual system call
entries for additional references.)
?ESFF, 2-10
?GSHPT, 2-10
?MEM, 2-10
?MEMI, 2~10
?PMTPF, 2~10
?RPAGE, 2-10
?SCLOSE, 2-10
?SOPEN, 2-10
?S0PPF, 2-10
?SPAGE, 2-11
?8SHPT, 2-11
Contiguous disk blocks, definition of, 4-2
Control,
Console format, 5-19
Disk space allocation, 4-19f
File access, 3-9
File type of FORTRAN carriage, 4-7
Line-printer format, 5-19
Passing to new process (See "?CHAIN system call".)
Working set, 3-3
Control characters, 5-19f
Accepting next character as literal with CTRL-P, 5-20
Beginning control sequence with CTRL-C, 5~20 (See also, 'Control
sequences".
CIRL-C, 5-20
CTRL~-D, 5-20
CTRL-0, 5-20
CTRL~P, 5-19f
CTRL-Q, 5-13, 5-20
CTRL-S, 5-20
CTRL-T, 5-20
CTRL-U, 5-20
CTRL-V, 5-20
Data—link (See '"Data-link control characters (DLCC)".)
Definition of, 5~19
Disabling CTRL-S with CTRL-Q, 5-20
Erasing current console input line with CTRL-U, 5-20
Freezing console output with CTRL-S, 5-20
Function, 5-20
Suppressing console output with CTRL-0, 5-20
Terminating current read with end-of-file using CTRL-D,5-20
Control list, access (See "Access control list (ACL)".)
Control point directories (CPDs), 4-19f, 5-7
Current space (CS), 4-19f
File type ?FCPD, 4-6, 5-5, 13-43
Illustration of, 4-20
Maximum space (MS), 4-19f
Setting maximum size of, 13-37f

093-000335~-00 Licensed Material-Property of Data General Corp. Index—15

INDEX (Cont.)

Control privileges, getting access, 13-205f
Control sequences, 5-19, 5-21
Beginning with CTRL-C, 5-20 (See also, "Control characters".
CTRL~C CTRL-A, 13-242, 13-271, 13-353, 13-355
CTRL-C CTRL-B, 7-11, 7-13, 11-3
CTRL-C CTRL-D through CTRL-C CTRL-Z (reserved), 5-21
CTRL-C CTRL-E, 11-3, 13-90
Definition of, 5-20
Echoing “C"C on console with CTRL-C CTRL-C, 5-21
Generating console interrupt and aborting process with CTRL-C
CTRL-B, 5-21
Generating console interrupt with CTRL-C CTRL-A, 5-21
Receiving over BSC lines with ?SRCV, 13-585ff (See also, "Binary
synchronous communications (BSC)".)
Sending over BSC lines with ?SSND, 13-601ff (See also, "Binary
synchronous communications (BSC)".)
Control station, 9-4f (See also, "Binary synchronous communications
(BSC)Y".)
Controller status words for ?PRDB/?PWRB packet, 13-400
Controllers,
Magnetic tape, 5-10 (See also, "Devices".
Multiprocessor communications adapter (MCA), 5-10 (See also,
"Devices".
Controlling console interrupts on virtual consoles, 11-3
Conventions, filename, 4-8f
Converting
date to scalar value with ?FDAY, 13-127f
scalar time value with ?CTOD, 13-55f
time of day to scalar value with ?FTOD, 13-147
Coordinating
access to common resource, 2-7
shared-file update, 2-8f
?COTT (escape-key control) characteristic, 13-154, 13-156, 13-515
Count,
Block, 5-6
Overlay use, 12-10
Use (See "Use Count".)
?CPBN (column control) characteristiec, 13-155, 13-157, 13-516
CPD (control point directory) (see "Control point directories".)
?CPM (page mode) characteristic, 13-155, 13-157, 13-516
?CPMAX system call, 4-1, 4-19, 13-37f
?7CPOR offset, 13-41f
CPU time, 3-3
Setting maximum for processes, 13-420
@CRA, 5-10 (See also, "Devices".)
@CRA1l, 5-10 (See also, "Devices".)
?CRAC (rubout countrol) characteristic, 13-154, 13-515
?CRAF (rubout control) characteristic, 13-154, 13-515

Index—16 Licensed Material-Property of Data General Corp. 093-000335-00

INDEX (Cont.)

Crash, system, 5-6
?CRAT (rubout control) characteristic, 13-154, 13-515
CRC (block check) error, 9-12 (See also, "Binary synchronous
communications (BSC)".)
?CREATE system call, 4-1f, 4-13, 4-15, 7-3f, 13-39ff, 13-55, 13-128,
13-478, 13-508
Directory packet, 13-43ff
IPC entry packet, 13-41ff
Other file types packet, 13-45ff
Time block, 13-55, 13-138
Packet structure, 13-43
Valid file types, 13-40
Creating
break files after terminating processes, 3-18f (See "?BRKFL
system call".)
break files for every process trap, 3-18
break files of specified user ring, 3-19
connections, 8-2ff
directories, 4-4, 13-39ff
files (See "File creation and management'".)
IPC files with ?CREATE, 7-3 (See also, "Interprocess
communications (IPC) facility".)
labels for magnetic tapes with ?LABEL, 13-317ff
link entries, 4-13
processes, 3-8ff, 13-411ff
queued task manager with /IQTSK, 13-273f
search list with ?SLIST, 4-8
son processes, 3-11
of any process type, 3-10
of different program file type, 3-10
with different usernames, 3-10
unlimited number of sons, 3-10f
user data area (UDA) with ?CRUDA, 13-51f
Creation and termination detection (tasks), 6-16 (See also, "Tasks".)
Creation options, file, 5-4, 5-21, 13-364
Creation parameters,
Process, 3-11
Steps A0S/VS takes to check process, 3-11
Critical regions, locking/unlocking, 6-18f (See also, "Tasks".
Crossing from outer ring to inner ring, 3-20
CRT consoles (See "Consoles".)
?CRUDA system call, 5-1, 5-19, 13-51f, 13~453
CS (current space), 4-19f (See also, "Control point directories
(cpps)™".)
?CSFF (form-feed simulation) characteristic, 13-154, 13-515
?CST (tab simulation) characteristic, 13-154, 13-515
?CTERM system call, 8-1, 8-4f, 13-53f, 13-485 (See also, "Disconnect
system calls".)

093-000335-00 Licensed Material-Property of Data General Corp. Index—-17

INDEX (Cont.)

?CTIM offset, 13-41ff
?CT0 (device time-out) characteristic, 13-155, 13-516
?CTOD system call, 11-3, 13-55f
CTRL key, 5-19
CTRI~C control character, 5-20 (See also, 'Control characters".)
CTRL-C CTRL-A control sequence, 5-21, 6-13, 13-242, 13-271, 13-353,
13-355 (See also, "Control sequences".)
CTRL-C CTRL-B control sequence, 5-21, 7-11, 7-13, 11-3, 13-31, 13-330
(See also, "Control sequences".)
CTRL-C CTRL-C control sequence, 5-21 (See also, "Control sequences".)
CTRL-C CTRL-D control sequence, 5-21 (See also, "Control sequences'.)
CTRL-C CTRL-E control sequence, 11-3
CTRL-C CTRL-E control sequence, 3-18f, 11-3, 13-90 (See also,
"Control sequences'.
CTRIL~D control character, 5-20 (See also, '"Control characters".)
CTRL-0 control character, 5-20 (See also, "Control characters".)
CTRL-P control character, 5-19f (See also, "Control characters".,)
CTRL-Q control character, 5-13, 5-20 (See also, '"Control
characters".
CTRL-S control character, 5-20 (See also, "Control characters”.)
Disabling with CTRL-Q, 5-20
Enabling console line to recognize, 5-14
Enabling console line to send, 5-14
CTRL-T control character, 5-20 (See also, "Control characters".)
CTRL-U control character, 5-20 (See also, "Control characters".)
CTRL-V control character, 5-20 (See also, "Control characters".
?CTSP (blanks control) characteristic, 5-18, 13-155 13-157, 13-516
?CTYPE system call, 3-1, 3-10, 3-13, 13-57, 13-406, 13-419, 13-619
?7CUCO (case control) characteristic, 13-154, 13-515
?CULC (case control) characteristic, 13-155f, 13-516
Current bias factor values, getting with ?GBIAS, 13-151f
Current date, getting with ?GDAY, 13-165
Current LEF mode status, returning, 13-325f
Curreunt number of undedicated pages, Returning (See "GMEM system
call".)
Current operating system information, getting with ?SINFO, 13-565ff
Current resource base, getting with ?GCRB, 13-163f
Current search list, examining with ?GLIST, 4-8 (See also, "Search
list".
Current shared partition size, listing with ?GSHPT, 13-20if
Current size of shared partition, Listing (See "GSHPT system call".)
Current space (CS), 4-19f (See also, "Control point directories
(CPDs)".)
Current time slice, rescheduling, 13-483f
Current unshared memory parameters, Listing with ?MEM, 13-347f
Current working directory (See "Working directory".)

Index~18 Licensed Material-Property of Data General Corp. 093-000335-00

INDEX (Cont.)

Customer,
Establishing logical connection between existing server and, 8-2
Managing exchanges between server and, 8-2
Servers concurrently connected to multiple rings within, 8-6
Communicating with via IPC system calls, 8-4
Verifying inner-ring, 13-673f
Verifying Ring 7, 13-671f
Customer of specified process, becoming, 13-33ff
Customer processes,
Chaining, 8-7
Defining, 8-2
Terminating with ?CTERM, 8-4, 13-53f
Customer/server configuration, illustration of model, 8-2 (See also,
"Connection-management facility".)
Customer/server connection,
Breaking, 13-53f
Passing to another customer in Ring 7 with ?PCNX, 8-4
Passing to another customer with ?PRCNX, 8-4
Customer/server relationship, process termination messages in, 7-9ff
(See also, '"Connection-management facility".)
?CWRP (wraparound control) characteristic, 13-155, 13-516

/D specifications string switch, 13-94
?DAC2 offset, 13-82, 13-628ff, 13-632f
?DACL system call, 4-1, 4-15, 13-59f, 13-149f, 13-206
?DADID system call, 3-1, 3-8
Data,
Deleting following file pointer, 5-6
Illustration of on magnetic tape, 5-26 (See also, '"Labeled
magnetic tape".)
Receiving over BSC lines with ?SRCV, 9-2, 13-585ff (See also,
"Binary synchronous communications (BSC)".)
Re-entrant, 2-6 (See also, "Re-entrant code or data".
Sending over BSC lines with ?SSND, 9-2, 13-601ff (See also,
"Binary synchronous communications (BSC)".)
Data channel, communicating across, 5-12f
Data channel (DCH) ?IDEF option, 13-235ff (See also, "?7IDEF system
call.)
Data channel (DCH) map, 10-11
?1IDEF option, 10-3f
Setting, 13-611ff

093-000335-00 Licensed Material-Property of Data General Corp. Index—-19

INDEX (Cont.

)

Data channel line printers, 5-10 (See also, "Character devices".)
Data elements, allocating blocks for specific, 5-7
Data files,
File type of system, 4-6
File type of user, 4-6
User, 4-5
@DATA generic filename, 3-19, 5-11f (See also, "Generic files".)

Data set

flag DSR, 13~543

Data-link control characters (DLCC), 9-6ff, 13-538, 13-587ff, 13-602,

13-604 (See also, "Binary synchronous
communications (BSC)".)

ACKO (affirmative acknowledgment), 9-7f, 13-539ff, 13-590,

13-607£f

ACKl (affirmative acknowledgment), 9-7f, 13-539ff, 13-590

BCC
DLE
DLE

DLE

DLE
DLF.
ENQ
EOT

ETB
ETX
ITB

NAK

(block check character), 9-7, 13-539, 13-605

(data~link escape), 9-7, 9-10, 13-539

ETB (data-link escape, end-of-transmission block), 13-539,
13-604F

EOT (data-link escape, end of transmission), 9-8, 5-39,
13-608

ETX (data-link escape, end of text), 13-539, 13-604f

STX (data—-link escape, start of text), 13-539, 13-605

(enquiry), 9-7f, 9-11f, 13-539f, 13-542, 13-607

(end of transmission), 9-8, 9-12, 13-540, 13-542, 13-588,
13-591, 13-604

(end-of-transmission block), 9-7f, 9-10, 13-539f, 13-605

(end of text), 9-7ff, 13-539f, 13-605

(end-of-intermediate-transmission block), 9-9, 13-539,
13-541, 13-594, 13-604

(negative acknowledgment), 9-8f, 9-11f, 13-540ff, 13-557,
13-588, 13-590, 13 608

Receiving over enabled BSC line with ?SRCV, 13-585ff

RVI

SOH
STX

SYN
TTD

(reverse interrupt), 9-8f, 13-540f, 13-587f, 13-590f, 13-604
(start of header), 9-8f, 13-541

(start of text), 9-8f, 13-541

(synchronization character), 9-10, 13-542

(temporary text delay), 9-10, 13-542, 13-604

WACK (wait-before-transmitting positive acknowledgment), 9-8,

9-10, 13-540, 13-588, 13-593, 13-604

Data-link escape, end-of-text (DLE ETX), 13-539, 13-604f (See also,

"Data—link control characters (DLCC)".)

Data-link escape, end-of-transmission (DLE EOT), 9-8, 13-539, 13-608

(See also, "Data-link control characters
(pLcehH".)

Data-link escape, end-of-transmission block (DLE ETB), 13-539,

13-604f (See also, "Data-link control characters
{(dpLce)".)

Data-link escape, start of text (DLE STX), 13-539, 13-605 (See also,

"Data-link control characters (DLCC)".)

Index-20 Licensed Material-Property of Data General Corp. 093-000335-00

INDEX (Cont.)

Data-link escape (DLE), 9-7, 9-10, 13-539 (See also, "Data-link
control characters (DLCC)".)
Data-sensitive records, 5-9
Date,
Converting to scalar value with ?FDAY, 13-127f
Getting current with ?GDAY, 13-165
Day, Getting time of, 13-217
?DCC offset, 13~-82, 13-632ff
?DCI offset, 13-82, 13-632ff
?DCON system call, 8-1, 8-5, 13-54, 13-63f, 13-85, 13-485, 13-671,
13-673
DCT (device control table) (See "Device control table (DCT)".)

?DDIS system call, 10-1, 10-10, 13-65f
Deadlock, resource, 12-5
Deadlock, system, 13-177
?DEASSIGN system call, 5-1, 5~18, 13-67f
Deassigning character device with ?DEASSIGN, 13-67f
?DEBL system call, 10-1, 10-10, 13-65, 13-69f
?DEBUG system call, 11-5, 13-71
Debugger utility, 11-5
Calling with ?DEBUG, 13-71
Decoding PID into local PID and host ID with ?TPID, 13-647f
Decreasing or increasing number of unshared pages in Ring 7, 2-10
(See "?MEMI system call.)
Decrementing use count and releasing shared page (See "RPAGE system
call,)
Dedicated communications line, 9~1 (See also, "Binary synchronous
communications (BSC)".)
Dedicated memory pages, 2~-8 (See also, "Pages".)
Definition of, 2-9
Default pathname of break files, 3-19 (See also, "Break files".)
Default user riang, 2-3
Defining
access control list (ACL) with ?CREATE, 4-15
characteristics of charatter device, 5~14
console interrupt task with ?INTWT, 13-271f
customer process, 8-2
kill-processing routines with ?KILAD, 13-305ff
map slots, 13-235 (See also, "?IDEF system call".)
partitions in NREL memory with .PART pseudo-op, 2-7
polling list or poll address/select address pair with ?SDPOL,
13-529£ff
server process, 8-2 -
shared area with assembly language pseudo-ops, 2-6f
stacks, 6-7f (See also, "Stacks".
system devices during system—generation procedure, 10-1
unique kill-processing routine with ?KILAD, 6-15
user devices, 3-10
user devices with ?IDEF, 13-233ff
user devices with ?PVDV, 10-1
working-set parameters for sons, 3-10

093-000335-00 Licensed Material-Property of Data General Corp. Index-21

INDEX (Cont.)

Definition table, map (See '"Map definition table".)
Definitions (See Glossary for additional definitions.)
Access control list (ACL), 4-15
Block input/output (I/0), 5-6
Blocks, 5-3
Channels, 5-3
Character devices, 5-13
Contention, 9-3
Contiguous disk blocks, 4-2
Control characters, 5-19
Control sequences, 5-20
Dedicated communications line, 9-1
Directories, 4-4
Double connection, 8-3
File elements, 4-2
File input/output (I/0), 5-2
Filenames, 4-2, 4-8
Files, 4-2
Global port numbers, 7-2
Index levels, 4-2
Labeled magnetic tapes, 5-22
Link entries, 4-12
Local port numbers, 7-2
Logical address space, 2-1
Logical disks (LDs), 4-17
Memory-management terms, 2-1f
Movable resource, 13-163
Multilevel connection, 8-2
Pathnames, 4-9
Physical block input/output (I/0), 5-7
PID/ring tandems, 8-6
Polling, 9-4f
Primary station, 9-3
Processes, 3-2
Programs, 3-2
Record input/output (I/0), 5-8
Search lists, 4-8
Secondary station, 9-3
Segments, 2-2
Selecting, 9-5
Shared pages, 2-2
Station, 9-1
Switched communications line, 9-2
Tasks, 3-2
Unshared pages, 2-2
Unused page, 2-2
Working directory, 4-7
Working set, 2-2

Index-22 Licensed Material-Property of Data General Corp. 093-000335-00

INDEX (Cont.)

?DELAY system call, 13-73f
?DELETE system call, 4-1, 4-13, 13-75f, 13-4783, 13-508
Deleting data following file pointer with ?TRUNCATE, 5-6
Deleting file entries, 13-75f
Deleting (and creating) link entries, 4-13 (See also, "Link
entries".,
Delimiter tables,
Sample, 13-367
Setting, 13-367f, 13-525ff
Demand paging, 2-4
Dequeuing queued tasks with ?DQTSK, 13-81ff
Description of file input/output (I/0) sample programs, 5-2 (See
also, "File input/output (I/0)".)
Descriptor, procedure entry (See "Procedure entry descriptor'.)
Detecting
references to remote hosts in pathnames with ?RNAME, 11-7
task creation and termination, 6-16 (See also, '"Tasks'".
Determining
bias factors at runtime with ?GBIAS, 11-7
form names, 13-117
whether pathname references remote host with ?RNAME, 13-493f
Device access,
Disabling with ?DDIS, 13-65f
Device access, Enabling with ?DEBL, 13-69f
Device characteristics,
Common, 13~156£f
Reading character device, 13-153ff
Device codes, 10-1
Device control table (DCT), 10-2, 10-6, 10-9, 10-11, 13-234, 13-265,
13-299
Illustration of, 10-2
Length of (?UDLN), 10-2
Packet structure for 16-bit processes, 13-235
Packet structure for 32-bit processes, 13-234
Removing entry from interrupt vector table with ?IRMV, 13-281f
Device I/0, 10-10 (See also, "Input/output (I/0)".)
Device interrupt, 10-9
Device names, 5-9f (See also, '"Devices'".)
Devices, 4-2, 5-10
Accessing all, 10-9f (See also, "User device support".)
Assigning to processes for record 1/0, 5-1 (See also, "Record
input/output (I/0)".)
Character, 4-2, 5-13ff (See also, "Character devices".)
Communications (See "Communications device".
Defining and accessing user, 3-10, 13-233ff
Input/output (I/0), 4-10, 5-2
Multifile, 4-2

093-000335-00 Licensed Material-Property of Data General Corp. Index-23

INDEX (Cont.)

Devices (Cont.)
Names of, 5-9f
@CONn, 5-10
@CRA, 5-10
@CcrAl, 5-10
@DKBn, 5-10
@LMT, 5-10
@LPB, 5-10
@LPBn, 5-10
@MCA, 5-10
@Mcal, 5-10
@MTBn, 5-10
@pra, 5-10
@PLAl, 5-10
@sLNx, 9-2
Opening for exclusive use of one process, 5-18
Opening for I/0, 13-357ff
Setting time-out value for, 13-617f
System, 4-10
User (See "User devices".)
User-defined, 10-3
?DFLGS offset, 13-82, 13-628f, 13-632f
?DFLRC flag, 13-629, 13-633
DFMIR utility, 5-8
?DFRSCH system call, 6-1, 6-11, 6-18f, 13-77f
DIA assembly language instruction, 5-8
Dialogue, system~generation, 4-2
DIB assembly language instruction, 5-8
DIC assembly language instruction, 5-8
?DID offset, 13-82, 13-628ff, 13-632f
Differences between
?GRNAME and ?GNAME, 4-12, 13-180
fast interprocess communication and IPC, 8-8f
physical block I/0 and block I1/0, 5-7f (See also, "Block
input/output (I/0)".)
Different usernames, creating sons with, 3-10
?DIR system call, 4-1, 13-79f
Directories, 4-4f, 4-7f
Accessing, 4-7f
Changing working, 4-8, 13-79f
Control point (See "Control point directory (CPD)".)
Creating, 4-4, 13-39ff
Definition of, 4-4
Entries, 4-4
File type of control point, 4-6
File type of disk, 4-6
File type of spoolable peripheral, 4-6

Index-24 Licensed Material-Property of Data Gemeral Corp. 093-000335-00

INDEX (Cont.)

Directories (Cont.)
Illustration of
control point, 4-20
directory structure, 4-11
sample directory tree, 4-5
Information (See '"?FSTAT system call".)
Levels, 4-17
Names, 4-4
Peripheral (See "Peripheral directory (:PER)".)
Root, 4-10
Setting access control list (ACL) with ?SACL, 4-15
Setting or removing permanent attribute from, 13-509f
Working, 4-7, 4-10
Directory, peripheral (:PER), 13-39
Directory entries, listing, 13-181ff
Disabling
access to all devices with ?DDIS, 13-65f
and enabling access to all devices, 10-9f (See also, "User
device support".)
BSC line with ?SDBL, 9-2, 13-523 (See also, "Binary synchronous
communications (BSC)".)
console interrupts with ?0DIS, 13-353f
control-character console interrupts, 13-311
CTRL-S with CTRL-Q, 5-20 (See also, "Control characters".)
LEF mode with ?LEFD, 13-69, 13-321f
relative consoles with ?SDRT, 13-533f
task scheduling with ?DRSCH, 6-11, 6-18f, 13-77f, 13-87f
Disassociating channel number from file, 5-3
Disconnect flag, explicit (See "Explicit disconnect flag".)
Discounnect system calls, 13-54 (See individual system call entries
for additional references.)
?BRKFL, 13-54
2CTERM, 13-54
?DCON, 13-54
PRESIGN, 13-54
?RETURN, 13-54
?TERM, 13-54
Disk blocks, 4-2, 4-19, 5-3
Allocating, 5-1, 13-7f
Allocating for specific data elements, 5-7
Bad, 5-8
Contiguous, 4-2
Definition of, 5-3
Length of, 5-7
Releasing, 13-478
Disk bootstraps, 4-4
Disk directory file (file type ?FDIR), 4~6, 5-5

093-000335-00 Licensed Material-Property of Data General Corp. Index-25

INDEX (Cont.)

Disk drives, 10-1 (See also, "User device support".)
Disk errors, bypassing retries for, 5-7
Disk file structures, 4-2ff
Disk files, 4-4
Truncating, 13-219ff
Disk images, memory modification with, 12-2
Disk size, reducing, 5-7
Disk space, 4-2
Controlling, 4-19f
How A0S/VS allocates, 4-2
Disk units, 5-10 (See also, "Devices".)
File type, 4-6
Disks,
File type of logical, 4-6
Flushing contents of shared page to, 13-135f
Flushing shared file memory pages to (See "?ESFF system call'.)
Logical (See "Logical disks (LDs)".)
Moving logical pages on demand to memory from (See "Demand
paging".)
Reading/writing physical blocks on, 13-397ff
Reducing size while using block I1/0, 5-7
DISMOUNT command (CLI), 5-35
Dismounting
labeled magnetic tapes with the CLI DISMOUNT command, 5-35
magnetic tapes, 13-109ff
Display consoles, 5-10 (See also, '"Devices".)
Displaying next page in page mode, 5-13
@DKBn, 5-10 (See also, "Devices".
DLCC (data-link control characters) (See "Data-link control
characters (DLCC)".)
DLE (data-link escape), 9-7, 9-10, 13-539 (See also, "Data-link
control characters (DLCC)".)
DLE EOT (data-link escape, end-of-transmission), 9-8, 13-539, 13-608
(See also, "Data-link control characters
(DLCC)".)
DLE ETB (data-link escape, end-of-transmission block), 13-539,
13-604f (See also, "Data—-link control characters
(DLCC)".)
DLE ETX (data-link escape, end-of-text), 13-539, 13-604f (See also,
"Data—-link control characters (DLCC)".)
DLE STX (data-link escape, start of text), 13-539, 13-605 (See also,
"Data-link control characters (DLCC)".)
?DLNK offset, 13-82, 13-628f, 13-632f
?DLNKB offset, 13-82, 13-628f, 13-632f
?DLNKL offset, 13-82
?DNUM offset, 13-82, 13-628f, 13-632f
Double connection, definition of, 8-3
?DPC offset (?TASK system call), 6-10, 13-82, 13-628ff, 13-632f

Index—-26 Licensed Material-Property of Data General Corp. 093-000335-00

INDEX (Cont.)

?DPRI offset, 13-82, 13-628ff, 13-632f
?DQTSK system call, 6-1, 13-81ff, 13-631
Extended task definition packet, 13-82
?DRCON system call, 8-1, 8-5, 13-63, 13-85f
?DRES offset, 13-82, 13-628f, 13-632f
?DRSCH system call, 6-1, 6-11, 6-18f, 13-87f, 13-101
?DSCH flag, 13-77
?DSFLT offset (?TASK system call), 6-9, 13-82, 13-628f, 13-631ff
?DSH offset, 13-82, 13-632f
?DSMS offset, 13-82, 13-632f
DSR data set (modem) flag, 5-15, 5-17, 13-543
?DSSZ offset (?TASK system call), 6-10, 13-82, 13-628ff, 13-632f
?DSTB offset (?TASK system call), 6-9, 13-82, 13-628ff, 13-632f
DTR modem flag, 5~15
Dump, memory, 3-17f
DUMP command (CLI), 5-36
Syntax of, 5-36
Dump file default pathname format, 13-346
Dumping
memory image from specified ring to file (See "?MDUMP system
call™,)
memory image to file, 13-345f
particular ring with ?MDUMP, 3-18
Dynamic-length records, 5-8
Format (?RTDY), 13-330

EBCDIC character set, 5-23f, 13-537f, 13-542

ECC (error-correction code), 5-8

Echoing “C"C on console and emptying type-ahead buffer with CTRL-C
CTRL-C, 5-21 (See also, "Control sequences".

Editors, text, 4-2

?EFFP offset, 13-456, 13-467ff

?EFLN offset, 13-456, 13-467ff

?7EFNF offset, 13-456, 13-467ff

?EFTL offset, 13-456, 13-467ff

?EFTY offset, 13-456, 13-467ff

EJSR instruction, 12-9

?7ELAC offset, 13-370, 13-372

?ELCR offset, 13-370f

?ELCT offset, 13-370f

ELEF instruction, 12-9

093-000335-00 Licensed Material-Property of Data General Corp. Index-27

INDEX (Cont.)

Elements,

Allocating blocks for specific data, 5-7
Illustration of file growth stages with file, 4-3
Keeping track of file, 4-2

Specifying size of file, 4-2

?ELFS offset, 13-370, 13-372

?ELGN offset, 13-370f

Eligible process state, 3-13f (See also, "Processes".)

?ELRE offset, 13-370f

?ELUH offset, 13-370, 13-372

?ELUT offset, 13-31, 13-370ff

?ELVL offset, 13-370f

?ELVR offset, 13-370f

Emptying type-ahead buffer and echoing “C"C on console with CTRI~C
CTRL-C, 5-21 (See also, '"Control sequences'.)

Enable console interrupts, 13-355

Enabled BSC line, sending data over, 9-2

Enabling

access to all devices with ?DEBL, 13-69f

and disabling access to all devices, 10-9f (See also, "User
device support".)

break files, 13-89ff (See also, "?ENBRK system call" and
"?MDUMP system call".)

BSC lines with ?SEBL, 9-2, 13-536ff (See also, "Binary
synchronous communications (BSC)".)

console line to recognize CTRL~-S with ?XIFC, 5-14 (See also,
"Character devices'.

console line to send CTRL~S with ?XOFC, 5-14 (See also,
"Character devices".)

LEF mode with ?LEFE, 13-323f

multitask scheduling with ?ERSCH, 13-101f

?ENBRK system call, 3-1, 3-19, 13-89ff

Packet contents, 13-91f

Packet structure, 13-91

End~of-file character, terminating curreat read with ?CTRL-D, 5-20
(See also, "Control characters'.)

End-of-file labels (See "Labels".

End-of-intermediate-transmission block (ITB), 9-9, 13-539, 13-541,
13-594, 13-604f (See also, '"Data-link control
characters (DLCC)".)

Illustration of receive buffer format, 13-594 (See also, "Data~-
link control characters (DLCC)".)

End-of-text (ETX), 9-7ff, 13-539f, 13-605 (See also, "Data-link
control characters (DLCC)".) :

End-of-transmission (EOT), 9-8, 9-12, 13-540, 13-588, 13-591, 13-604
(See also, "Data-link control characters
(DLCC)".)

Index-28 Licensed Material-Property of Data General Corp. 093-000335-00

INDEX (Cont.)

End-of-transmission block (ETB), 9-7f, 9-10, 13-539f, 13-605 (See
also, "Data~link control characters (DLCC)".)
End-of-volume, Forcing on labeled magnetic tape with ?FEQV, 13-133f
End-of-volume labels (See '"Labels".
?ENEL offset, 13-359
?ENESH offset, 13-91f
?ENET offset, 13-359, 13-363
?7ENEUS offset, 13-91f
?ENFLG offset, 13-91
?ENFNP offset, 13-91f
ENQ (enquiry), 9-7f, 9-11, 13-539f, 13-607 (See also, "Data-link
control characters (DLCC)".)
?7ENQUE system call, 11-6, 13-93ff
Specifications string format, 13-93
Specifications string messages, 13-94f
Specifications string switches, 13-94
Enquiry (ENQ), 9-7f, 9-11f, 13-539f, 13-607 (See also, "Data-link
control characters (DLCC)".)
?ENSSH offset, 13-91f
?ENSUS offset, 13-91
+ENT pseudo~op, 3-20
Entering, leaving, or examining Superprocess mode with ?SUPROC,
13-619f (See also, "?SUPROC system call".)
Entering, leaving, or examining Superuser mode with ?SUSER, 13-623f
(See also, '"?SUSER system call".)
Entering events in system log file with ?LOGEV, 13-333ff
.ENTO (overlay error) pseudo-op, 12~4, 12-10, 13-382
Entries,
Deleting file, 13-75f
Directory, 4-4
File (See "File entries".
File type of IPC port, 4-6
File type of queue, 4-6
Link, 4-12f (See also, "Link entries.)
Listing directory, 13-181ff
Procedure, 12-6
Entry descriptor, procedure (See "Procedure entry descriptor".)
Environment, Unwinding stacks and restoring previous, 13-663
EOT (end-of-transmission), 9-8, 9-12, 13-540, 13-588, 13-591, 13-604
(See also, "Data-link control characters
(DLCC)".)
Equal sign (=) pathname prefix, 4-10 (See also, '"Pathnames".
Erasing current coansole input line with CTRL-U, 5-20 (See also,
"Control characters".)
?ERBA offset, 13-554
?7ERCH offset, 13-554
?7ERCS offset, 13-554

093-000335-00 Licensed Material-Property of Data General Corp. Index-29

INDEX (Cont.)

?ERFT offset, 13-30
ERMES file, 11-4, 13-97
Error code structure in, 13-98
?ERMSG system call, 11-4, 13-97ff, 13-553
Error, CRC (block check), 9-12 (See also, "Binary synchronous
communications (BSC)".)
Error codes, 11-4 (See also, Appendix A.)
Getting text associated with, 11-4, 13-553f
Structure in ERMES file, 13-98
Error message file, 11-4
Reading, 13-97ff
Error statistics, getting BSC with ?SGES, 13-557ff (See also, "Binary
synchronous communications (BSC)".)
Error-correction code (ECC), 5-8
Error-recovery procedures, binary synchronous communications (BSC),
9-11ff (See also, "Binary synchronous
communications (BSC)".)
Error-recovery statistics, getting BSC, 9-13 (See also, "Binary
synchronous communications (BSC)".)
Errors, disk (See '"Disk errors".)
?ERSCH system call, 6-1, 6-11, 6-~18, 13-101f
?ESCR offset, 13-456, 13-463
?ESEP offset, 13-456, 13-463
?7ESFC offset, 13-456, 13-463
?ESFF system call, 2-1, 2-8ff, 13-103f
ESS (extended state save) area (See "Extended state save (ESS)
area".)
Establishing
connection between local and remote stations, 9-2
interface between A0S/VS and unsupported device (See "?IDEF
system call".)
logical connection between customer and existing server, 8-2
new shared partition size (See "?SSHPT system call".)
new shared partition with ?SSHPT, 13-597f
ETB (end-of-transmission block), 9-7f, 9-10, 13-539f, 13-605 (See
also, '"Data-link control characters (DLCC)".)
?ETER offset, 13-359, 13-363
?ETFL offset, 13-456
?ETFT offset, 13-194, 13-359, 13-456, 13-466
?ETLL offset, 13-456
?ETLT offset, 13-30, 13-194, 13-359, 13-456, 13-462
?ETSL offset, 13-456
?ETSP offset, 13-30, 13~-194, 13-359, 13-456, 13-462
ETX (end-of-text), 9-7ff, 13-539f, 13-605 (See also, '"Data~-link
control characters (DLCC)".)
Evaluating FED string using ?FEDFUNC, 13-130f (See also, "?FEDFUNC
system call".)
Event logging format, illustration of, 13-334

Index-30 Licensed Material-Property of Data General Corp. 093-000335-00

INDEX (Cont.)

-

Events in system log file, entering with ?LOGEV, 13-333ff
Examining
break files, 3-17 (See also, "Break files'".)
current search list with ?GLIST, 4-8
default ACL with ?DACL, 4-15, 13-59f (See also, "Access control
list (ACL)".)
execute-protection status with ?EXP0O, 13-123ff (See also, "?EXPO
system call®.)
Superprocess mode with ?SUPROC, 13-619f (See also, "?SUPROC
system call".)
Superuser mode with ?SUSER, 13-623f (See also, "?SUSER system
call".)
Exchanges between customers and servers, managing, 8-2
Exclusive Open option, 5-4f
Exclusive use, Opening device for, 5-18
?EXEC system call, 11-6, 13-105ff
Packet contents,
Packet structure,
?XFDUN, 13-109
?XFMLT (labeled), 13-108
?XFMUN (unlabeled), 13-107
?XFXML (labeled extended), 13-108
?XFXUN (unlabeled extended), 13-107
Queues, 13-110ff, 13-118
K~,w Status information, 13-119f
EXEC utility, 5-19, 5-35ff, 11-6, 13~52, 13-454, 13-488, 13-600,
13-626
Functiouns, 11-6
Interface to, 11~6
Obtaining status information, 13-119f
Requesting services from, 13-105ff
Execute (?FACE) access, 4-13ff, 13-60, 13-79, 13-206, 13-508
Execute-protection status, 3-16
Examining, clearing, or setting with ?EXPO, 13-123ff (See also,
"?EXPO system call".)
Execution, scheduling another process for with ?RESCHED, 3-14 (See
"?RESCHED system call".)
Execution path, redirecting task’s, 13-241f
Existing server, establishing logical connection between customer
and, 8-2 (See also, "Connection-management
facility".)
Exiting from interrupt service routines with ?IXIT, 13-297f
Exits from overlay and kills calling task with ?0VKIL, 13-379f
Explicit disconnect flag, 8-6ff
Bit position, 8-8
?7EXPO system call, 3-1, 3-16, 13-123ff

093-000335~-00 Licensed Material-Property of Data General Corp. Index~31

INDEX (Cont.)

Extended characteristics of character device (See also, ''Character
devices".
Getting, 13-167ff
Setting, 13-545ff
Extended packet (?CLOSE system call), 13-30
Extended state save (ESS) area, 12-11
Initializing with ?IESS, 13-253f
Use of, 13-253
Extensions to I/0 packet, 13-359
Extetrnal gate array, 3-20
.EXTG pseudo~op, 3-20
.EXTN pseudo—~op, 12-4
Extracting ring field from global port number, 7-4 (See also,
"Interprocess communications (IPC) facility".)

?FACA (Append) access, 4-13ff, 13-60, 13-206, 13-508 (See also,
"Access control list (ACL)".)
?FACE (Execute) access, 4-13ff, 13-60, 13-79, 13-206, 13-508 (See
also, "Access control list (ACL)".)
?FACO (Owner) access, 4-13ff, 4-17, 13-60, 13-206, 13-508f (See also,
"Access control list (ACL)".)
?FACR (Read) access, 4-13ff, 13-60, 13-79, 13-138, 13-149, 13-206,
13-508 (See also, '"Access control list (ACL)".)
Factors, bias, 11-7 (See also, '"Bias factors".)
?FACW (Write) access, 3-19, 4-13ff, 505, 13-60, 13-90, 13-149,
13-206, 13-508 (See also, "Access control list
(ACL)",)
Fast interprocess communications (See "Fast interprocess
synchronization".)
Fast interprocess synchronization, 8-8f (See also, "Interprocess
communications (IPC) facility".)
System calls, 8-4f (See inidividual system call entries for
additional references.)
?SIGNL, 8-4
?SIGWT, 8-5
IWISIG, 8~4
Differences between IPC and, 8-8f
Father processes, 3-7 (See '"Processes".
?FBEX offset, 13-130f
?FBSTF offset, 13-130
?FCON file type, 4-7
?FCPC offset, 13-130f

Index-32 Licensed Material-Property of Data General Corp. 093-000335-00

INDEX (Cont.)

?FCPD file type (control point directory file), 4-6, 5-5, 13-40,
13~-141
?FCRA file type, 4-7
FCU (forms control) utility, 5-19
?FDAY system call, 11-3, 13-127f
?FDBA offset, 13-130f
?FDBL offset, 13-130f
?FDIR file type (disk directory file), 4-6, 5-5, 13-40
?FDKU file type, 4-6
FED (file editor) utility (See "File editor (FED) utility".)
?FEDFUNC system call, 11-6, 13-129ff
Packet structures,
Packet to change radix, 13-129
Packet to open symbol table file, 13-130
Packet to evaluate FED string, 13-130
Packet contents,
Packet to evaluate FED string, 13-131
?FEOV system call, 13-133f
?FFCC file type, 4-7
?FFLAG offset, 13-129ff
?FGFN file type, 4-6
?FGLT file type, 4-6, 5-37
Field,
Access (ANSI-standard labeled magnetic tapes), 5-25
Owner Name (labeled magnetic tapes), 5~28
Ring, 6-5
Version Number (labeled magnetic tapes), 5-28
File access, 4-13f
Controls, 3-9
Files outside current working directory, 13-79f
Methods for file imput/output (I/0), 5-3
Privileges (See "Access privileges".
File creation and management, Chapter 4
Sample programs, 4-21ff
System calls, 4~1 (See individual system call entries for
additional references.)
?CGNAM, 4-1
?CPMAX, 4-1
?CREATE, 4-1
?DACL, 4-1
?DELETE, 4-1
?DIR, 4-1
?FSTAT, 4-1
?GACL, 4-1
?GLINK, 4-1
?7GLIST, 4-1
2GNAME, 4-1
7GNFN, 4-1

093-000335-00 Licensed Material-Property of Data General Corp. Index—33

INDEX (Cont.)

File

File
File

File

File

File

File
File
File

creation and management (Cont.)
System calls (Cont.)
?GRNAME, 4-1
?GTACP, 4-1
?INIT, 4-1
7RECREATE, 4-1
?RELEASE, 4-1
?RENAME, 4-1
?SACL, 4-1
?SATR, 4-1
?SLIST, 4-1
creation options, 13-357ff, 13-364f
descriptor information, 5-6
Flushing with ?UPDATE, 13-667f
editor (FED) utility, 11-6, 13-129, 13-345 (See also, "?FEDFUNC
system call".)
Evaluating FED string with ?FEDFUNC, 13-130f
Functions, 11-6
Interfacing to with ?FEDFUNC, 11-6, 13-129ff
elements,
Address, 4-2
Definition of, 4~2
Illustration of file growth stages, 4-3
Keeping track of, 4-2
Specifying size of, 4-2
entries,
Deleting, 13-75f
Getting access control list (ACL) for, 13-149
Queuing, 13-93ff, 13-110ff (See also, "?EXQUE system call".)
format specification, 5-19
information (See "?FSTAT system call".)
input/output (1/0), 4-2, Chapter 5
Operation sequence, 5-3
System calls, 5-1 (See individual system call entries for
additional references.)
?ALLOCATE, 5-1
?ASSIGN, 5-1
?CLOSE, 5-1
?CRUDA, 5-1
?7DEASSIGN, 5-1
?GCHR, 5-1
?GCLOSE, 5-1
?GECHR, 5-1
?GOPEN, 5-1
?GP0OS, 5-1
?GTRUNCATE, 5-1
?LABEL, 5-1
?0PEN, 5-1

Index-34 Licensed Material-Property of Data General Corp. 093-000335-00

N\

INDEX {(Cont.)

File input/output (I/0) (Cont.)
System calls (Cont.)
?PRDB, 5-1
7PWRB, 5-1
?RDUDA, 5-1
?READ, 5-1
?RELEASE, 5-1
?SCHR, 5-1
?7SDLM, 5-1
?SECHR, 5-1
?SEND, 5-1
?8P0S, 5-1
?STOM, 5-1
?TRUNCATE, 5-1
?UPDATE, 5-1
?WRITE, 5-1
?WRUDA, 5-1
Concepts, 5-2ff
Definition of, 5-2
File access methods, 5-3
Block I/0, 5-3 (See also, "Block input/output (I/0)".)
Record 1/0, 5-3 (See also, "Record input/output (I/0)".)
Labeled magnetic tapes, 5-35, 13-193, 13-369ff (See also,
"Labeled magnetic tapes".)
Operation sequence, 5-4ff
Sample programs, 5-38
Description of, 5-2
Unlabeled magnetic tapes, 5-37f, 13-368 (See also, "Magnetic
tapes".
File poianter, 5-6
Deleting following data with ?TRUNCATE, 5-6
Getting position of with ?GPOS, 5-6, 13-193ff
Positioning with ?SP0S, 5-6, 13-195, 13-581ff
File specification packets, 5-4
File specifications word, 13-363ff
File structures,
A0S/VS, 4-1
Disk, 4-2ff
File trailer labels (See '"Labels'".)
File types, 4-4f
AOS program file, 4-6f
AOS/VS program file, 4-6
Card reader, 4-7
Console (hard-copy or video display), 4-7
Control point directory (CPD), 4-6, 13-43
Created with ?0PEN, 5-5, 13-365
Creating sons of different program, 3-10
Data channel line printer, 4-7

093-000335-00 Licensed Material-Property of Data General Corp. Index—35

INDEX (Cont.)

File types (Cont.)
Disk directory, 4-6
Disk unit, 4-6
?FCON, 4-7
?FCPD (control point directory file), 4-6, 5~5
?FCRA, 4~7
?FDIR (disk directory file), 4-6, 5-5
?FDKU, 4-6
?FFCC, 4-7
?FGFN, 4-6
?FGLT, 4-6, 5-37
?FIPC (IPC file), 4-6, 5-5, 5-21, 7-4
?FLDU (logical disk), 4~6, 13-141
?FLNK, 4-6
?FLOG, 11-5, 13-626
?FLPU, 4-7
?FMCU, 4-7
?FMIF, 4-6
?FMTU, 4-7
?FNCC, 4-7
?FOCC, 4-7
FORTRAN carriage control, 4-7
?FPCC, 4-7
7FPLA, 4-7
?FPRG (A0S program file), 4-5ff, 5-5
?FPRV (AOS/VS program file), 4-5f, 5-5
7FQUE, 4-6
?FSDF, 4-6
?FSPR, 4-6
?FSTF, 4-6
?FSYN, 4-7
?FTXT (text file), 4=6, 5~5
?FUDF (user data file), 4-5f, 5-5
?FUPF, 4-6
Generic filename, 4-6
Generic labeled tape, 4-6
IPC port entry, 4-6
Link file, 4-6
List of, 4-6f
Logical disk, 4-6
Magnetic tape file, 4-6
Magnetic tape unit, 4-7
Multiprocessor communications unit, 4-7
Plotter, 4-7
Queue entry, 4-6
Standard directory, 13-43
Spoolable peripheral directory, 4-6
Symbol table file, 4-6

Index-36 Licensed Material-Property of Data General Corp. 093-000335-00

INDEX (Cont.)

File types (Cont.)
Synchronous communications line, 4-7
System data file, 4-6
Text file, 4-6
User data file, 4-6
User profile file, 4-6
Valid ?CREATE system call, 13-40
File’s requirements for indexes, 4-4
File-pointer position,
Current, 13-193ff
Setting with ?S5P0S, 5-6, 13-195, 13-581ff
Settings, 13-582
Filenames, 4-4, 4-8f
Conventions, 4-8f
Definition of, 4-2, 4-8
Generic, 4-10, 5-9, 5-11f
File type, 4-6
Getting .PR for ring (See "?RNGPR system call".)

Legal characters for use in, 4-8
Valid characters, 3-6
Files,

A0S program (See "File types'".)

A0S/VS program (See "File types'.)

Assembly language source (.SR), 4-9

Break, 3-17f (See also, "Break files".)

CLI macro (.CLI), 4-9

Closing block I/0, 13-159f

Closing shared with ?SCLOSE, 13-519f (See also, "?SCLOSE system

call.)

Control point directory (See "File types".)

Creating, 13-39ff

Definition of, 4-2

Disassociating channel number from, 5-3

Disk, 4-4 (See also, "Disk files".)

Disk directory (See "File types".

Dumping memory image from specified ring to (See "IMDUMP system
call.)

Dumping memory images to, 13-345f

Enabling break (See "?ENBRK system call".)

Error message (ERMES), l1-4

File type of A0S program, 4-6

File type of A0S/VS program, 4-6

File type of disk unit, 4-6

File type of generic labeled tape, 4-6

File type of Link, 4-6

File type of logical disk, 4-6

File type of symbol table, 4-6

File type of system data, 4-6

093-000335-00 Licensed Material-Property of Data General Corp. Index-37

INDEX (Cont.)

Files (Cont.)
File type of text, 4-6
File type of user data, 4-6
File type of user profile, 4-6
Generic, 5~-11f (See also, "Generic files".)
Getting pathnames of generic files with ?GRNAME, 4-12
Getting pathnames of with ?GNAME, 4-12
Getting status information with ?FSTAT, 13-137ff
Illustration of growth stages, 4-3
IPC (See '"File types'".
Library (.LB), 4-9
Linking object modules to form program, 12-4
Loading into specific rings with ?RINGLD, 3-20
Object (.0B), 4-9
Opening, 13-357f
For shared access, 13-571f
For block I/0 with ?GOPEN, 13-185ff
Protected shared, 2-7f, 13-573ff (See also, "?SOPPF system
call".)
Overlay (.OL), 13-2
Program (.PR), 4-5, 4-9, 6-3, 12-2 (See also, "Program file".)
Protected shared, 2-7f, 3-20
Opening, 2-7f, 13-573ff (See also, "7?SOPPF system call".)
Permitting access to protected shared (See "?PMTPF system
call".)
Recreating with ?RECREATE, 13-477f
Renaming with ?RENAME, 4-8, 13~481f
Sample creation and management programs, 4-21ff
Setting access control list (ACL) with ?SACL, 4-15
Setting or removing permanent attribute from, 13-509f
Status, 3-17
Symbol table (.ST)(See "Symbol table file".
System log (See '"System log file".)
Temporary (.TMP), 4-9
Text (See "File types".)
Truncating, 13-219ff
Types of program, 4-5
Unshared, 13-667
User data, 4-5 (See "File types".)
FILESTATUS CLI command, 13-183
Finding global port number’s owner, 13-287f
?FIPC file type (IPC file), 4-6, 5-5, 5-21, 7-4
First opener, 2-8
Fixed-length records, 5-8

Index—~38 Licensed Material-Property of Data General Corp. 093-000335-00

INDEX (Cont.)

_

Flag bits, 8-6
Inner-ring connection management, 8-7f
Flag word, user, 7-9
Flags,
Data set (DSR), 13-543
Explicit disconnect (See "Explicit disconnect flag".)
?IFBNK, 7-8f
?IFNSP, 7-8f
?1FPR, 7-8f
?1FRFM, 7-8
?IFRING, 7-8f
?IFSov, 7-8f
?1IFSTM, 7-8
?ISELF (offset ?IUFL), 7-10
?70ANS (?IRES offset of ?0PEN), 5-24
?20IBM (?IRES offset of ?0PEN), 5-24
?TMYRING (?TLOCK system call), 6-14
System and user (IPC), 7-7ff
?FLDU (logical disk) file type, 4-6, 13-141
?FLEX offset, 13-130f
?FLNK file type, 4-6
Floating-point status registers, 10-8
Initializing with ?IFPU, 6-19
Floating-point unit, initializing with ?IFPU, 13-255f
K~/ ?FLOG file type, 11-5, 13-626
?FLPU file type, 4-7
?FLUSH system call, 13-135f, 13-502, 13-667
Flushing
contents of shared page to disk with ?FLUSH, 13-135f
file descriptor information with ?UPDATE, 13-667f
shared file memory pages to disk wth ?ESFF, 2-8ff, 13-103f (See
also, "?ESFF system call".)
?FMCU file type, 4-7
7FMIF file type, 4-6
?FMTU file type, 4-7
?FNCC file type, 4-7
?7FNIR offset, 13-129
?7F0CC file type, 4-7
Forcing AOS/VS to initialize common inner-ring stack, 6-9 (See also,
"Inner rings".
Forcing end-of-volume on labeled magnetic tape with ?FEOV, 13-133f
Form names, determining, 13-117
Format control for line printers, 5-19

093-000335-00 Licensed Material-Property of Data General Corp. Index-39

INDEX (Cont.)

Formats,
Access control list (ACL) specifications, 13-508 (See also,
"Access control list (ACL)".)
ANSTI-standard, 5-22, 5-28, 5-31f
CLI, 13~488
Controlling console, 5-19
IBM, 5-22, 5-31f
Illustration of event logging, 13-334
Messages sent with ?SEND, 13-550
Search list, 13-569
Specifying file, 5-19
Tailored line-printer output, 5-19
Task messages, 13-652
Forms control utility (FCU), 13-454
/FORMS switch, CLI, 5-19
FORTRAN, 6-3
FORTRAN carriage control (file type), 4-7
?FPCC file type, 4-7
?FPLA file type, 4-7
?FPRG file type (AOS program file), 4-5ff, 5-5
?FPRV file type (A0S/VS program file), 4-5f, 5-5
?7FQUE file type, 4-6
Frame pointer, 6-9, 6-15
Frames in stack, getting information about previous, 13-675f

Free memory chain, 2-4
Freezing console output with CTRL-S, 5-20 (See also, "Control
characters".)
Frequency,
Getting system clock, 13-171f
Real-time clock, 13-677
?FRESD offset, 13-130f
?FRESS offset, 13-129
?FRFNC offset, 11-6, 13-129ff
?FSDF file type, 4-6
?FSPR file type, 4-6
?FSTAT system call, 4-1, 4-17, 13-55, 13-137ff, 13-453, 13-510
Description of directory/remaining type packets, 13-140ff
Description of unit file/IPC file packets, 13-138
Packet structure,
Directory file packet, 13-141
IPC file packet, 13-140
Unit file packet, 13-139
Sample packet, 13-144
?FSTF file type, 4-6
?FSYN file type, 4-7
?FTOD system call, 11-3, 13-147
?FTXT file type (text file), 4-6, 5~5

Index-40 Licensed Material-Property of Data General Corp. 093-000335-00

INDEX (Cont.)

?FUDF file type (user data file), 4~5f, 5-5
Full process name, 3-6f, 13-226

Getting, 3-7, 13-393f (See also, "?PNAME system call.)
Full-duplex communications paths, 7-2
Full-duplex modems, 5-15ff (See also, '"Modems (full-duplex)".)
Function of control characters, 5-20 (See also, "Control

characters".)

?FUPF file type, 4-6

?7GACL system call, 4-1, 4-15, 13-149f, 13-508
Gate array, external, 3-20
?GBIAS system call, 11-7, 13-151f, 13-512
?GCHR system call, 5-1, 5-14, 5-16, 5-18, 13-153ff, 13-168
?GCLOSE system call, 5-1, 5-4, 13-159f
?GCPN system call, 7-1, 7-4, 13-161f
?GCRB system call, 13-163f
?GDAY system call, 11-3, 13-165
?7GECHR system call, 5-1, 5-14, 5-18, 13-167ff
Generating
console interrupt and aborting process with CTRL-C CTRL-B
5-21 (See also, 'Control sequences".)
console interrupt with CTRL-C CTRL-A, 5-21 (See also,
"Control sequences".)
histograms with ?WHIST, 3-16

’

Generic files, 3-19, 5-11f, 13-24
@DATA, 13-24
File type, 4-6
Labeled magnetic tape files, 4-6
Filenames, 4-10, 5~-9, 5-11f
@CONSOLE, 5-11f
@DATA, 5-11f
@INPUT, 5-11f
@NULL, S5-11f
@OUTPUT, 5-11f
Getting complete pathname, 13-199f
Getting pathnames of with ?GRNAME, 4-12
@INPUT, 13-24
@LIST, 13-24
@QOUTPUT, 13-24
?PROC packet parameters for, 5-12
Sample pathname, 5-11

093-000335-00 Licensed Material-Property of Data General Corp. Index-41

INDEX (Cont.)

Getting

access control list (ACL) with ?GACL, 4-15, 13-149f

access control privileges with ?GTACP, 13-205f

AOS—-format internal time, 13-295

BSC error statistics with ?SGES, 13-557ff (See also, "Binary
syanchronous communications (BSC)".)

BSC error-recovery statistics, 9-13 (See also, "Binary
synchronous communications (BSC)".)

characteristics of character device, 5-14

CLI message, 13-207ff

complete pathname of generic file, 13-199f

complete pathname with ?GNAME, 13-179f

console port number with ?GCPN, 13-161f

curreant bias factor values with ?GBIAS, 13-151f

current date with ?GDAY, 13-165

current file pointer position with ?GP0OS, 5-6, 13-193ff

current resource base with ?GCRB, 13-163f

extended characteristics of a character device, 13-167ff

file status information with ?FSTAT, 13-137ff

full process name with ?PNAME, 3-7, 13-393f

global port number, 13-261f

host name or host identifier with ?HNAME, 11-7, 13-229ff

information about current operating system with ?SINFO, 13-565ff

information about previous frames in stack with ?WALKBACK,
13-675f

information on processes/queues with ?BNAME, 11-5

Link entry coatents with ?GLINK, 13-173f

number of undedicated memory pages with ?GMEM, 13-177f

pathnames of files with ?GNAME, 4-12

pathnames of generic files with ?GRNAME, 4-12

PID associated with global port number using ?GPORT, 13-191f

PID of calling process with ?PNAME, 3-7

PID of father process with ?DADID, 3-8 (See also, "?DADID system
call".

+PR filename for ring (See "?RNGPR system call".)

priority and TID of calling task with ?MYTID, 13-351

process name (See "?PNAME system call'.)

process runtime statistics (See "?RUNTM system call'.)

process username with ?GUNM, 13-225f (See also, "?GUNM system
call™.)

program’s pathname with ?GPRNM, 13-197f

runtime statistics for process with ?RUNTM, 13-503ff

search list contents with ?GLIST, 13-175f

status information for process (See "?PROC system call".)

symbol closest in value to specified input value with ?GTNAM,
13-215f

system clock frequency with ?GHRZ, 13-171f

system identifier with ?GSID, 13-203f

Index-42 Licensed Material-Property of Data General Corp. 093-000335-00

INDEX (Cont.)

Getting (Cont.)
task status, 13-641, 13-661f
text string associated with particular error code, 11-4, 13-553f
time of day with ?GTOD, 13-217
unambiguous task identifier, 13-661f
username associated with PID using ?GUNM, 3-8
username associated with simple process name with ?GUNM, 3-8
value of user symbol with ?GTSVL, 13-223f
virtual PID of process with ?GVPID, 13-227
?GHRZ system call, 11-3, 13-73, 13-171f, 13-677
?GLINK system call, 4-1, 4-13, 13-173f
?GLIST system call, 4-1, 4-8, 13-175, 13-569
Buffer format, 13-175
Global IPC port ?SPTM, 13-53f
Global port numbers, 7-2ff, 13-162 (See also, "Interprocess
communications (IPC) facility".)
Definition of, 7-2
Extracting ring field from, 7-4
Finding owner, 13-287f
Getting, 13-2261f
Getting PID associated with, 13-191f
Identifying PID associated with (with ?GPORT), 7-4
Interpreting ring fields within, 7-4
Modifying ring field within, 7-4, 13-263f
Predefined origin port for obituary messages (?SPTM), 7-9
Translating local port numbers into equivalent, 13-649
Global ports, ?SPTM, 13-53f
Global synchronous manager (GSMGR) process, 9-2
?GMEM system call, 2-1, 13-177f
?GNAME system call, 4-1, 4-10ff, 13-179f
Differences between ?GNAME and ?GRNAME, 4-12
?GNFN system call, 4-1, 13-181ff
Packet contents, 13-182
Packet structure, 13-182
7GNUM offset, 13-208f, 13-213
?GOPEN system call, 5-1, 5-4, 5-7, 13-8, 13-159, 13-185ff, 13-397,
13-446, 13-448ff, 13-520
Options, 13-188
Packet contents,
IPC file packet, 13-186
Standard packet, 13-187
Packet structure,
IPC file packet, 13-186
Standard packet, 13-187
Sample packet, 13-189
?GPORT system call, 7-1, 7-4, 13-191f
?7GP0OS system call, 5-1, 5-6, 13-193ff
?GPRNM system call, 13-197f

093-000335-00 Licensed Material-Property of Data General Corp. Index—43

INDEX (Cont.)

Grant, Access, 2-8
?GRCH offset, 13-504
?GREQ offset, 13-208ff
?7GRES offset, 13-208, 13-210f
?GRIH offset, 13-504
?GRNAME system call, 4-1, 4-12, 13-180, 13-199f
Differences between ?GRNAME and ?GNAME, 4-12, 13-180
Growth stages, illustration of file, 4-3
GRP CLT macro, 13-99
?GRPH offset, 13-504
?GRRH offset, 13-504
?GSHPT system call, 2-1, 2-10, 13-201f, 13-598
?GSID system call, 11-5, 13-203f, 13-600
GSMGR (global synchronous manager) process, 9-2
?7GSW offset, 13-208f, 13-213
?GTACP system call, .3-13, 4-1, 4-15, 13-205, 13-619
?GTMES system call, 11-7, 11-9, 13-207ff, 13-214
Input parameters for offset ?GREQ, 13-210f
Output from requests, 13-212f
Packet contents, 13-209
Packet structure, 13-208
Request types, 13-208ff
?GARG, 13-208ff
?GCMD, 13-208ff
?GCNT, 13-208ff
?GMES, 13-208ff
?GSWS, 13-208ff
?GTSW, 13-208ff
Sample program, 11-8
?GTNAM system call, 11-7, 13-215f, 13-224
?GTOD system call, 11-3, 13-217
?GTRUNCATE system call, 5-1, 5-7, 13-219ff
Packet contents, 13-220
Packet structure, 13-220
?GTSVL system call, 11-7, 13-223f
?GUNM system call, 3-1, 3-8, 13-225f
?GVPID system call, 11~7, 13-227

/H specifications string switch, 13-94
Handler, stack fault, 6-7f (See also, "Stacks'".

Index-44 Licensed Material-Property of Data General Corp. 093-000335-00

INDEX (Cont.)

Hardware errors, 3-17
Hardware protection rings, 2-2 (See also, "Rings".)
Hash frame size, 13-140
HASP multileaving, 13-538
Header 1 labels, 5-29ff
Header 2 labels, 5-30f
Headers,
?IREC (See "?IREC system call.)
?IS.R (See "?IS.R system call".)
?ISEND (See "?ISEND system call.)
?HIBUF offset, 13-258
?7HIEND offset, 13-258
Hierarchy,
I1llustration of process, 3-9
System, 3-8
?HIST offset, 13-258
Histograms,
Array structure, 13-681
Array structure for 16-bit processes, 13-259
Generating with ?WHIST, 3-16 (See also, "?WHIST system call".)
Killing with ?KHIST
Starting for 16-bit processes with ?IHIST, 13-257ff
Starting with ?WHIST, 13-679ff
Statistics, 13-681
Terminating with ?KHIST, 3-16 (See also, "?KHIST system call".)
Updated, 3-16
7HIWDS offset, 13-258
?7HNAME system call, 11-7, 13-117ff
Holding, unholding, canceling queue requests, 13-117ff
Host identifier (host ID),
Getting, 13-229ff
Translating virtual PID into PID and, 11-7
Translatiag with PID into virtual PID, 11-7
Host information, 11-7
Host name, getting, 13-229ff
Hosts,
Determining whether pathnames reference remote, 13-493f
Local, 11-5
Remote, 11-5
Detecting references to with ?RNAME, 11-7
How A0S/VS allocates disk space, controlling, 4-19
?HWBUF offset, 13-680
?HWEND offset, 13-630
?HWST offset, 13-680
?HWWDS offset, 13-680

093-000335~00 Licensed Material-Property of Data General Corp. Index~45

INDEX (Cont.)

?IBAD offset, 13-30, 13-194, 13-359, 13-366, 13-456, 13-459
?IBIN flag, 13-330, 13-461
IBM format, 5-22, 5-28, 5-31f
?ICH offset, 13-29f, 13-194, 13-358ff, 13-456, 13-458
?1DEF system call, 10-1f, 10-7, 10-11, 13-233ff, 13-265, 13-281
Options, 10-3f, 13-235ff
Burst multiplexor channel (BMC), 10-3f, 13-235ff
Data channel (DCH) maps A through D, 10-3f, 13-235ff
Neither BMC nor DCH, 10-3
Contents of map definition table entry, 13-237
Illustration of map definition table structure, 13-326
Revoking previous ?IDEFs, 13-281f
Sample packet, 13-239
?IDEL offset, 13-30, 13-194, 1-359, 13-363, 13-367, 13-456, 13-460
Identifiers,
Process, 3-6f
System (See '"System identifier".)
Task, 6~5
Volume, 5-22
Identifying
connections in inner rings, 8-6
PID associated with global port number (w1th ?GPORT), 7-4 (See
also, "Global port numbers"
system with ?GSID, 11-5
?IDGOTO system call, 6-1, 6-13f, 13-241f
?IDKIL system call, 6-1, 6-13£ff, 13-307f, 13-243f, 13-305
?IDPH offset, 7-3, 7-5ff, 13-284f, 13-290ff
?IDPN offset, 7-5ff, 8-6, 13-276f
?IDPRI system call, 6-1, 6-5, 6-10, 13-245f, 13-403
?IDRDY system call, 6-1, 6-5, 6-13, 13-87, 13-247f, 13-427
?IDSTAT system call, 6-1, 6-5, 13-249, 13-661
?1IDSUS system call, 6~1, 6-5, 6~11ff, 13-87, 13-241, 13-409, 13-425,
13-473, 13-475
?1ESS system call, 12-11, 13-253f
?IFBNK flag, 7-8f
?1IFNP offset, 13-30, 13-194, 13-359, 13-363, 13-456, 13-460

?1IFNSP flag, 7-8f
?IFPR flag, 7-8f

?IFPU system call, 6-1, 6-19, 13-255f

?IFRFM flag, 7-8
?IFRING flag, 7-8f

?IFSov flag, 7-8f
?IFSTM flag, 7-8

Index-46 Licensed Material-Property of Data General Corp. 093-000335-00

INDEX (Cont.)

— ?THIST system call, 13-257ff
Array structure, 13-259
Packet structure, 13-258
?ILKUP system call, 7-1, 7-3f, 13-285, 13-287f
Illustrations,
Basic overlay area, 12-3
BSC implementation, 9-14ff
Control point directories (CPDs), 4-20 (See also, "Control point
directories (CPDs)".)
Device control table (DCT), 10-2
Directory structure, 4-11
Double connection, 8-3 (See also, '"Connection-management
facility".)
Event logging format, 13-334
File growth stages, 4-3
Initializing a logical disk, 4-18
Invalid return address from ?RCALL, 12-9
?IUFL offset structure (?IREC system call), 13-278
ITB (end-of-intermediate-transmission block) receive buffer
format, 13-594 (See also, "Data-link control
characters (DLCC)".)
Labels and data on labeled magnetic tape, 5-26
?LOGEV event logging format, 13-334
Map definition table structure, 13-236
g Model customer/server configuration, 8-2 (See also, "Connection-
management facility".)
Multilevel customer/server configuration, 8-3
Multiple overlay area, 12-4
Passing procedure entry descriptor via the stack, 12-6
Point-to-point/multipoint line configurations, 9-4 (See also,
"Binary synchronous communications (BSC)".)
Process hierarchy, 3-9
Process names, 3-7
Process spanning rings, 3-22
Resource system call stack after ?RSAVE, 12-8
Sample directory tree, 4-5
Sample process tree, 3-12
Segments and their protection rings, 2-3 (See also, "Rings".)
Structure of map definition table, 10-5
Structure of offset ?IUFL, 7-10
Task states, 6-11 (See also, "Tasks".
Working sets in memory, 2-5
?ILTH offset, 7-5ff, 13-276f, 13-284f, 13-290f
Image,
Memory (See "Memory image'.)
Process, 6-8
Segment (See '"Segment image'".)

093-000335-00 Licensed Material-Property of Data General Corp. Index—47

INDEX (Cont.)

?IMERGE system call, 7-1, 7-4, 13-263f, 13-288
?IMRS offset, 13-30, 13-194, 13-359, 13-362, 13-368, 13-456, 13-459
?IMSG system call, 10-1, 10-9, 13-234f, 13-265f, 13-299f
Inclusive~OR operation, 10-8
Increasing or decreasing number of unshared pages in Ring 7, 2-10
(See "?MEMI system call".)
Incrementing use count and reading shared page (See "?SPAGE systenm
call'.)
Index levels, 13-141
Indexes,
Definition of, 4-2
File’s requirements for, 4-4
Indicator, monitor ring, 5-16f£
Indirection, levels of, 3-17
Ineligible process state, 3-13
Influencing task scheduling, 6-6 (See also, "Tasks".
Information,
Current operating system, 13-565ff
Directory (See "?FSTAT system call'.)
EXEC status, 13-119f
File (See "?FSTAT system call".)
File descriptor, 5-6
File status, 13-137ff
Flushing file descriptor, 13-667f
Host, 11-7
Previous frames in stack, 13-675f
Process, 3-15, 11-5 (See also, "?PROC system call".)
Process status, 13-429ff
Queue, 11-5
System, 11-5
System calls that describe program, 11-5
User console or batch process (See "?LOGEV system call'.)
?INIT system call, 4-1, 4-17, 13-267ff, 13-479
Packet contents, 13-268
Initial (operator) process (PID 2), 3-8f, 5-14, 5-16
Initial IPC messages,
Accessing with ?GTMES, 11-7
Definition of, 11-7
Initial stacks, specifying size of, 6~8f (See also, "Stacks".
Initial task, 6-6 (See also, "Tasks".
INITIALIZE command (CLI), 4-17, 13-269
Initialized logical disks, releasing with ?RELEASE, 13-479f
Initializing
extended state save (ESS) area with ?IESS, 13-253f
floating—-point status register with ?IFPU, 6~19
floating-point unit with ?IFPU, 13-255f
logical disks with ?INIT, 13-267ff
Illustration of, 4-18

Index—-48 Licensed Material-Property of Data General Corp. 093-000335-00

INDEX (Cont.)

Initiating tasks, 6-6, 13-627ff (See also, "Tasks".
Inner rings, 3-20f, 6-16
Breaking a connection in, 13-85f
Identifying connections in, 8«6
Task-redirection protection for, 6-13ff (See also, "Tasks".
Servers, 2-7f, 6-16
Stacks, 6-8ff
Forcing AOS/VS to initialize common, 6-9
Inner-ring connection management, 8~6ff
Flag bits, 8-7f
?CXBBMO 8-8
?CXBVED, 8-8
7CXMBM, 8-7
?CXMED, 8-7
Identifying connections in inner rings, 8-6
@INPUT generic filename, 5-11f (See also, "Generic Files".
Input line, erasing from console with CTRL-U, 5-20 (See also,
"Control characters",
Input parameters for offset ?GREQ (?GTMES system call), 13-210f
Input/output (I1/0), 13-321, 13-325, 13-357, 13-581ff
Assigning device to process for record, 5~1
Block, 5-2f, 5-6f, 13-445ff
Definition of, 5-6
System calls, 5-3
Concepts of file, 5-2ff
Data channel (See '"Data channel ?IDEF option".)
Device, 10-10
Devices, 4-10, 5-2
Differences between physical block I/0 and block I/0, 5~7f (See
also, "Block input/output (I/0)".)
File (See "File input/output (I/0)".)
Instructions, 3-17
Managing character 1/0 with PMGR, 3-8
Operation sequence for file, 5-4ff
Packet extensions, 13-358
Physical block, 5-2, 5-7f (See also, "Physical block I1/0".)
Record, 5-8f, 13-455ff (See also, "Record input/output (I/0)".)
System calls, 5-3
Instructions,
Assembly language,
DIA, 5-8
DIB, 5-8
DIC, 5-8
EJSR, 12-9
ELEF, 12-9
1/0, 3-17
ISZ, 13-301, 13-441
JSR, 12-9

093-000335-00 Licensed Material-Property of Data General Corp. Index-49

INDEX (Cont.)

Instructions (Cont.)
LCALL, 6-16
LEF, 12-9
POPJ, 12-9
Privileged, 3-17
PSHJ, 12~-9
PSHR, 12-9
RTN, 12-5, 12-7
Wide~save, 6-15
WRTN, 13-305
Xop, 12-9
Interfaces,
Establishing between A0S/VS and unsupported device (See "?IDEF
system call".)
Utility, 11-6
Interfacing to file editor (FED) utility with ?FEDFUNC, 13-129ff (See
also, "?FEDFUNC system call".)
Interpreting ring fields (within global port number) with ?IREC, 7-4
(See also, "Global port numbers".
Interprocess communications (IPC) facility, 3-17, 6-5, Chapter 7,
11-7, 13-93, 13-192
Block I/0 packet contents, 13-186
Block I/0 packet structure, 13-186
Connection status messages, 8-6 (See also, '"Connection-
management facility".)
Contents of send and receive headers, 7-7
Contents of system flag word, 7-8
Creating files with ?CREATE, 7-3
Differences between fast interprocess synchronization and, 8-8f
Entry packet, 13-41f
File status information, 13-138
File type ?FIPC, 5-5
Files, creating with ?CREATE, 7-3
Global port ?SPTM, 13-53f
Illustration of user flag word structure,7-10
Initial IPC messages, 11-7
Looping messages, 7-8f
Messages, 6-5, 8-6, 13-208, 13-214, 13-264
Opening ports with ?ISEND, 13-283 (See also, "?ISEND system
call™.)
Packets, 7-2
Port entry file type, 4-6
Process termination messages in customer/server relationship,
7-9ff (See also, "Connection-management
facility".)
Receiving messages with ?IREC, 13-275ff (See also, ?IREC system
call.)
Sample programs, 7-19ff

Index-50 Licensed Material-Property of Data General Corp. 093-000335-00

—

INDEX (Cont.)

Interprocess communications (IPC) facility (Cont.)
Send and receive headers, 7-5ff
Contents of, 7-7
Sending messages between ports, 7-2ff
Structure of send and receive headers,7-6
System and user flags, 7-7ff
System calls, 7-1 (See individual system call entries for
additional references.)
Communicating with customer via, 8-4
Privilege to issue, 3-10
7GCPN, 7-1
?GPORT, 7-1
?21LKUP, 7-1
?IMERGE, 7-1
?IREC, 7-1
?IS.R, 7-1
?ISEND, 7-1
?ISPLIT, 7-1
?TPORT, 7-1
Termination messages, 13-638
Typical system call sequence, 7-4f
User flag word, 7-9
Using as communications device, 5-21f
Interprocess synchronization, fast, 8-8f (See also, "Fast
interprocess syanchronization".
Interrupt sequences,
Disabling with ?KIOFF, 13-311
Re—-enabling with ?KION, 13-313
Simulating keyboard, 13-309f
Waiting for with ?KWAIT, 13-315f
Interrupt service mask, 10-2
Interrupt service messages, receiving with ?IMSG, 13-265f
Interrupt service routines, 10-9
Communicating from, 10-9
Exiting from with ?IXIT, 13-297f
Transmitting messages from, 13-299f
Interrupt vector table, 10-7
Removing user devices from, 13-281f

Interrupts,
Console (See "Console interrupts'".)
Device, 10-9
Disabling console, 13-353f
Enabling console, 13-355
Generating and aborting process with CTRL-C CTRL-B, 5-21 (See
also, "Control sequences".)
Generating CTRL-C CTRL-A, 5-21 (See also, "Control sequences'.)
Reverse (See "Reverse interrupt (RVI)".)
Intertask communications facility, 6-17f (See also, "Tasks".)

093~-000335~00 Licensed Material—Property of Data General Corp. Index-51

INDEX (Cont.)

Intertask messages,
Receiving with ?REC, 13-473f
Receiving without waiting, 13-475f
Sending and waiting for receipt with ?XMIW, 13-695f
Sending with ?XMT, 13-693f
Introducing user-defined devices to AOS/VS at execution time, 10-2
?INTWT system call, 11-2f, 13-242, 13-271f, 13-353, 13-355
Invalid return address from ?RCALL, illustration of, 12-9
Investigating prior state of rescheduling, 13-77
?I0PH offset, 7-4ff, 8-6, 13-276ff, 13-284
?I0PL offset, 8-6
?10PN offset, 7-5ff, 13-290ff
IPC (interprocess communications) facility (See "Interprocess
communications (IPC) facility".)
?IPKL parameter, 13-29f
?IPLTH (length of ?ISEND and ?IREC headers), 7-5
?IPRLTH (length of ?IS.R header), 7-5
?21IPTL word, 8-6
?IPIR offset, 7-5, 7-7, 7-11, 13-276f, 13-284f, 13-290ff
?IQTSK system call, 6-1, 6-7, 13-81f, 13-273f, 13-631
?IRCL offset, 13-30, 13-194, 13-359, 13-362, 13-366, 13-373, 13-456,
13~459
?IREC system call, 3-15, 5-21, 7-1ff, 7-5, 7-8f, 8-4, 8-6, 13-34,
13-54, 13-262, 13-275ff, 13-292, 13-350, 13-488,
13-691
Header, 7-6ff, 7-11
Contents, 13-277
Structure, 13-276
Illustration of ?IUFL offset structure, 13-278
Logic of, 7-14, 7-17f
Sample header, 13-279
?IRES offset, 5-24, 13-30, 13-194, 13-359, 13-456, 13-459
?IRLR offset, 13-30, 13-194, 13-359, 13-363, 13-456, 13-460
?IRLT offset, 7-6f, 13-290ff
?7IRMV system call, 10-1, 13-281f
?IRNH offset, 13-30, 13-193f, 13-359, 13-363, 13-456, 13-460
?IRNW offset, 13-30, 13-359, 13-363, 13-456, 13-460
?IRPT offset, 7-6f, 13-290ff
?IRSV offset, 7-6f, 13-290ff

Index~52 Licensed Material-Property of Data General Corp. 093-000335-00

INDEX (Cont.)

?1S.R system call, 3-10, 7-1ff, 7-5, 8-4, 13-34, 13-209ff, 13-419,
13-563, 13-649
Header, 7-6f
Sample header, 13-292
?ISEND system call, 3-10, 5-22, 7-1ff, 7-5, 7-8, 13-34, 13-262,
13-278, 13-283ff, 13-289, 13-292, 13-419, 13-561
(See also, "Interprocess communications (IPC)
facility".)
Header, 7-6ff, 7-11
Contents, 13-284
Structure, 13-284
Logic of, 7~14, 7-17f
Sample header, 13-285
?ISFL offset, 7-6f, 13-276ff, 13-284, 13-290ff
?ISPLIT system call, 7-1, 7-4, 13-287f
?2ISTI offset, 5-33, 13-30, 13-194, 13-358ff, 13-363ff, 13-456ff,
13-466
?APND mask, 5-6
?7ISTO offset, 5-5, 13-30, 13-194, 13-359, 13-361f, 13-366, 13-456,
13-459
ISZ instruction, 13-301, 13-441
ITB (end-of-intermediate-transmission block), 9-9, 13-539, 13-541,
13-594, 13-604f (See also, "Data-link control
characters (DLCC)".)
Illustration of receive buffer format, 13-594 (See also,
"Data-link control characters (DLCC)".)
?ITIME system call, 11-3, 13-295
?IUFL offset, 7-6f, 7-9, 7-12, 8-6, 13-54, 13-276ff, 13-284, 13-290ff
Illustration of structure, 7-10
Process termination codes for ?IREC and ?ISEND headers, 7-11
?IXIT system call, 10-1, 10-8f, 13-266, 13-299
?IXMT system call, 13-234f, 13-265f, 13-297f, 13-299f

JSR instruction, 12-9

093-000335-00 Licensed Material-Property of Data General Corp. Index—-53

INDEX (Cont.)

?KCALL system call, 12-4f, 12-7ff, 13-301f, 13-383, 13-442f, 13-676
Keeping track of file elements, 4-2
Kernel, monitoring, 2-4, 13-327f (See also, "?LMAP system call".)
Key, CTRL, 5-19
Keyboard interrupt sequences,
Disabling with ?KIOFF, 13-311
Re-enabling with ?KION, 13-313
Simulating with ?KINTR, 13-309f
Waiting for with ?KWAIT, 13-315f
?KHIST system call, 3-1, 13-303
?KILAD system call, 6~1, 6-15, 13-243, 13-305f
?KILL system call, 6-1, 6~15, 13-77, 13-101, 13-243, 13-305ff
Kill-processing routines,
Defining with ?KILAD, 13-305ff
?U0KIL, 6-15f, 13-243, 13-306f, 13-409
Killing
calling task, 13-307f
calling task and exiting from overlay, 13-379f
histograms with ?KHIST, 13-303 (See also, "?7KHIST system call".)
tasks, 6-15 (See also, "Tasks".
tasks of specified priority with ?PRKIL, 13-409f
tasks specified by TIDs with ?IDKIL, 13-243f
?KINTR system call, 11-3, 13-309f
?KIOFF system call, 11-3, 13-311
?KION system call, 11-3, 13-313
?7KWAIT system call, 11-3, 13-315f

LABEL CLTI utility, 13-319

?LABEL system call, 5-1, 5-22, 5-24, 13-317ff, 13-372
Packet contents, 13-319
Packet structure, 13-318
Sample packet, 13-320

Label types for labeled magnetic tapes, 5-24

LABEL utility (CLI), 5-22, 13-372

Labeled magnetic tapes, 5-10, 5-22ff, 13-582 (See also, "Devices".)
Advantages of, 5-22
ANST format, 5-24
AOS format, 5-24

Index-54 Licensed Material-Property of Data General Corp. 093-000335-00

INDEX (Cont.)

Labeled magnetic tapes (Cont.)
Checking volume ID, 13-27f
Contents of extended ?0PEN packet, 13-371ff
Creating labels for, 13-317ff
Definition of, 5-22
File I1/0 on, 5-35
File type of generic, 4-6
Forcing end-of-volume with ?FEQOV, 13-133f
Formats, 5-23
IBM format, 5-24
Illustration of labels and data, 5-26
Label types, 5-24ff (See also, "Labels".)
End~of-file labels, 5-25ff
End-of~volume labels, 5-25ff
File header labels, 5-24, 5-26f
Volume labels, 5-24ff
Labeling levels, 5-23
Mounting, 13-106ff
Mounting explicitly with CLI MOUNT command, 5-35f
Mounting implicitly with ?0PEN system call, 5-35f
?0PEN system call packet extension for, 5-34
Structure of ?EXEC packet for ?XFDUN, 13-109
Structure of ?EXEC packet for ?XFMLT, 13-108
Structure of ?EXEC packet for ?XFXML (extended), 13-108

Structure of extended ?0PEN packet, 13-370
Volume sets, 5-23

Labeling levels for magnetic tapes, 5-23
Labeling magnetic tape with ?LABEL, 13-317ff
Labels,
End-of-volume (EOV), end-of-file (EOF), 5-25, 5-27, 5-34
File header, 5-29ff (See also, 'Labeled magnetic tape'.
File trailer, 5-25
User header (UHL), 5-34
User trailer (UTL), 5-27, 5-34
User volume (UVL), 5-27f
Labels and data on labeled magnetic tape, illustration of, 5-26
.LB files, 4-9 (See also, "Files'".)
?7LBAC offset, 13-318f
?7LBDV offset, 13-318f
?7LBFG offset, 13-317ff
?LBOI offset, 13-318f
?LBST offset, 13-318f
?LBUV offset, 13-318f
?LBVD offset, 13-318f
LCALL instruction, 6-16
LD (See "Logical disks (LDs".)
Least recently used (LRU) chain (See "LRU chain".)

093-000335-00 Licensed Material-Property of Data General Corp. Index—55

INDEX (Cont.)

Leaving, entering, or examining Superprocess mode with ?SUPROC,
13-619f (See also, "Superprocess mode".
Leaving, entering, or examining Superuser mode with ?SUSER, 13-623f
(See also, "Superuser mode".
LEF (load-effective address) mode (See "Load-effective address (LEF)
mode" .
?LEFD system call, 10-1, 10-10f, 13-321ff (See also, "Load-effective
address (LEF) mode'.
?LEFE system call, 10~1, 10-10f, 13-69, 13-323f (See also, "Load-
effective address (LEF) mode".
?LEFS system call, 10-1, 10-10f, 13-325 (See also, "Load-effective
address (LEF) mode".
Legal filename characters, 4-8
Length of ?ISEND and ?IREC headers (?IPLTH), 7-5
Length of blocks, 5-7
Levels, index, 13-141
Levels of indirection, 3-17
?LFOP flag word, 13-330
Library, user runtime (URT32.LB), 6-6
Library files, 4-9 (See also, "Files".
Lifting task suspensions, 13-241f
Limit, stack, 6-8f
Line configurations, binary synchronous communications (BSC), 9-3ff
(See also, "Binary synchronous communications
(BsSC)".)
Line printers, 10-1 (See also, "User device support".)
Data channel, 5-10
File type of data channel, 4-7
Format countrol, 5-19
Tailoring output format, 5-19
Line selection and polling, multipoint, 9-4ff
Lines,
Dedicated communications, 9-1
Enabling binary synchronous communications (BSC), 9-2, 13-536ff
(See also, "Binary synchronous communications
(BSCY".)
Erasing current input from console with CTRL~U, 5-20 (See also,
"Control characters".)
File type of synchronous communications, 4-7
Sending data over enabled BSC, 9-2
Switched communications, 9-1
Link entries, 4-12f
Creating and deleting with ?CREATE and ?DELETE, 4-13
Definition of, 4-12
Finding out what a link entry represents, 4-13
Getting contents of with ?GLINK, 13-173f
Link files (file type), 4-6
Link aumber, 5-13

Index~56 Licensed Material-Property of Data General Corp. 093-000335-00

INDEX (Cont.)

Link utility, 2-7, 3-2, 4-7, 6-6f
Link~-to-1link references, 4-12f, 12-2ff
Linking
object modules to form program file, 12-4
programs together with ?CHAIN, 3-19f
List, search (See '"Search list".)
@LIST generic file, 3-19, 5-11f (See also, "Generic files".)
Listing
current shared partition size with ?GSHPT, 13-201f
current unshared memory parameters with ?MEM, 13-347f
directory entries, 13-181ff
Lists,
Access control (See "Access control list (ACL)".)
Polling (See "Polling".)
Search (See "Search list".)
Literal, accepting next character as with CTRL-P, 5-20 (See also,
"Control characters".
?7LMAP system call, 2-1, 2-4, 13-327f
@LMT, 5-10, 5-35f (See also, '"Devices".
Load-effective address (LEF) mode, 3-17, 10-7f, 10-10f, 13-69,
13-321ff
Disabling with ?LEFD, 13-69, 13-321f
Enabling with ?LEFE, 13-321f
Instructions, 12-9
Returning curreant LEF mode status with ?LEFS, 13-325f
Loading and going to overlay with ?0VLOD, 13-381ff
Loading lower rings, preventing ?RINGLD system call from, 13-499f
Loading program files into specific rings with ?RINGLD, 3-20, 13-491f
(See also, "?RINGLD system call.)
Local hosts, 11-5, 13-13f
Local port numbers, 4-4, 6-5
Translating to global equivalent with ?TPORT, 7-2, 13-649
Definition of, 7-2 (See also, '"Interprocess communications (IPC)
facility".)
Range, 13-42f
Local root, 4-~17, 4-20
Local servers, 2-7, 6-16
Using common local servers to pend/unpend tasks (See "Fast
interprocess synchronization",.
Locking/unlocking critical regions, 6~18f (See also, "Tasks".
Log file, system (See "System log file".
?7LOGCALLS system call, 13-329ff
?7LOGEV system call, 11-5, 13-333ff, 13-626
Restrictions, 13-334
Logging
messages into system log file with ?LOGEV, 11-5
system calls, 13-329ff

093-000335-00 Licensed Material-Property of Data General Corp. Index~57

INDEX (Cont.)

Logic,
?IREC system call, 7-14, 7-17f
?ISEND system call, 7-14, 7-17f
Logical address, validating with ?VALAD, 13-669f
Logical address space, 2-1, 2-4, 3-2f, 3-17
Changing number of unshared pages in, 13-349f
Definition of, 2-1
Moving bytes to/from customer’s, 8-4
Sixteen-bit programs, 12-2
User-visible, 3-3
Logical connection between customer aund existing server,
establishing, 8-2 (See also, "Connection-
management facility".)
Logical context, 2-1f
Logical disks (LDs), 4-17, 4-19f, 13-481, 13-565
Definition of, 4-17
File type, 4-6
Illustration of initialization, 4-18
Initializing with ?INIT, 13-267ff
Master, 4-17
Releasing with ?RELEASE, 4-18
Root, 4-19f
Looping IPC messages, 7-8f
Lower rings,
Mapping, 13-327f (See also, "?LMAP system call".)
Stopping from being ringloaded (See "?RNGST system call”.,)
@LPB, 5-10 (See also, "Devices'.
LRU (least recently used) chain, 2-6, 13-501, 13-577
?LSTART flag word, 13-330

M

Macroassembler (MASM) (See "MASM (macroassembler)".)

Macros,
CODE, 13-99
GRP, 13-99

Magnetic tape drives (See '"Magnetic tape units".

Magnetic tape units, 10-1 (See also, "User device support".)
Opening, 5-37
Magnetic tape units, managing with EXEC utility, 11-6

Index-58 Licensed Material-Property of Data General Corp. 093-000335~00

INDEX (Cont.)

N

Magnetic tapes, 5-2, 13-368ff
Controllers, 5-10 (See also, '"Devices".)
Dismounting, 13-109ff
File type of, 4-6f
File type of generic labeled, 4-6
Labeled, 5-10, 5-22ff, 13-193, 13-369ff (See also, "Labeled
magnetic tapes" and "Devices'".)
Opening magnetic tape unit for use with, 5-37
Performing block I/0 on, 13-448f
Unlabeled,
Mounting, 13-106ff
Structure of ?EXEC packet for ?XFMUN, 13-107
Structure of ?EXEC packet for ?XFXUN (extended), 13-107
Mailboxes, 6-17f, 13-473ff, 13-693, 13-695 (See also, "Tasks".
Maintaining and creating files, Chapter 4
Manager, queued task, 6-7 (See also, "Tasks'" and "Queued tasks".
Managing
and creating files, sample programs, 4-21ff (See also, "Files".)
character 1/0 with PMGR, 3-8
customer/server connections, Chapter 8 (See also, "Conunection-
management facility".)
exchanges between customers and servers, 8-2
multiprocessing enviroument, 3-5 (See also, "Processes".)
queues and magnetic tape units with EXEC utility, 11-6
N Manipulating system log file with ?SYLOG, 13-625f (See also, "System
log file".)
Map, setting data channel, 13-611f
Map definition table, 13-235ff (See also, ?IDEF system call".)
Contents of entry, 13-237
Illustration of structure, 13-236
Structure of, 10-5f
Map slots, 10-3ff
Defining, 13-235 (See also, "?IDEF system call".)
Mapping lower rings, 13-327f (See also, "?LMAP system call".)
Mask, interrupt service, 10-2
Mask ?APND (in offset ?ISTI), 5-6
Masking process privileges, 13-418
Masks,
Record format (See "Record format masks".
ACL specifications, 4-15 (See also, '"Access control list
(ac)".)
MASM (macroassembler), 2-6f
Master logical disks (LDs), 4-17
Maximum CPU time for processes, setting, 13-420
Maximum size for coatrol point directory, 13-37f

093-000335-00 Licensed Material-Property of Data General Corp. Index-59

INDEX (Cont.)

Maximum space (MS), 4-19f (See also, "Control point directories
(CPDs)".)
?MBAH offset, 13-338, 13-342
?MBBC offset, 13-338, 13-342
?MBCH offset, 13-338, 13-342
?MBFC system call (See "?MBFC/?MBTC system call'.)
?MBFC/?MBTC system call, 8-1, 8-4, 13-25, 13-337ff, 13-341ff
Packet structure, 13-338, 13-342
Sample packet, 13-339
?MBID offset, 13-338, 13-342
?MBTC system call (See "?MBFC/?MBTC system call".)
?MBTC/?MBFC system call ((See "?MBFC/?MBTC system call".)
@MCA, 5-10 (See also, '"Devices'".)
MCA (Multiprocessor communications adapter) (See "Multiprocessor
communications adapters (MCAs)".)
@MCAl, 5-10 (See also, "Devices".
MCAs, performing block I/0 on, 13-449f
?MCOBIT bit mask, 13-33f
?MCPID bit mask, 13-33
?MCRNG bit mask, 13-33
?MDUMP system call, 3-1, 3-18, 13-345f
Mechanisms, protection (See "Protection mechanisms".)
?MEM system call, 2-1, 2-10, 13-347f
?MEMI system call, 2-1, 2-9f, 13-348ff
Memory, Chapter 2, 3-3f
I1lustration of working sets in, 2-5
Moving logical pages on demand from disk to (See "Demand
paging".)
NREL (normal relocatable), Defining partitions in, 2-7
Memory and process sample programs, 3-23ff
Memory contention, 3~15
Memory descriptor structure for ?PSTAT system call, 13-434
Memory dumps, 3-17f
Memory image, dumping from specified ring to file with ?MDUMP,
13-345¢
Memory management, Chapter 2
Definition of terms, 2-1f
Logical address space, 2-1 (See also, "Logical address space".)
Logical context, 2-1 (See also, "Logical context".)
Shared page, 2-2 (See also, "Shared page'".)
System calls, 2~1 (See individual system call entries for
additional references.)
7ESFF, 2-1
?GMEM, 2-1
?GSHPT, 2-1
?LMAP, 2-1
?MEM, 2-1
IMEMI, 2-1

Index-60 Licensed Material-Property of Data General Corp. 093-000335-00

INDEX (Cont.)

b

Memory management (Cont.)
System calls (Cont.)
?PMTPF, 2-1 ‘
?RPAGE, 2-1
?SCLOSE, 2-1
?SOPEN, 2-1
?80PPF, 2-1
?SPAGE, 2-1
?8SHPT, 2-1
Unshared page, 2-2 (See also, '"Unshared page".)
Unused page, 2-2 (See also, "Unused page".
Working set, 2-2 (See also, "Working set".)
Memory modification with disk images, 12-2
Memory organization, Chapter 2
Memory pages,]
Flushing to disk (shared file), 13-103f (See also "Pages".)
Getting number of undedicated, 13-177f
Memory parameters,
Listing current unshared with ?MEM, 13-347f
Saving state of, 3-17
Memory-resident processes, 2-2
/MES=message specifications string switch, 13-94
Messages,
16-bit process termination, 7-10ff
K\‘/ 32-bit process termination, 7-14ff
?TRAP termination for 16-bit processes, 7-13
Broadcast option, 13-693, 13-696
Broadcasting with ?XMT and ?XMTW, 6-18
CLI, 11-7 (See also, "CLI messages".)
Error (See "Error Codes".
Format for seanding with ?SEND, 13-550
Format for task, 13-652
Interrupt service (See "Interrupt service messages".
IPC, 6-5, 8-6 (See also, "Interprocess communications (IPC
facility".)
Initial, 11-7
Sending between IPC ports, 7-2ff
Sending IPC to itself, 7-8f
IPC connection status, 8-6 (See also, "Connection-management
facility".)
Length of 32-bit termination, 7-14
Looping IPC, 7-8f
Message—-manager task, 13-651f
Obituary, 7-9, 8-5f, 13~34, 13-53f, 13-27
Receiving with ?IREC, 8-6
Operator, 13-106, 13-110
Passing from console to individual tasks, 6-17 (See also,
"Tasks".

093-000335-00 Licensed Material-Property of Data General Corp. Index-61

INDEX (Cont.)

Messages (Cont.)
Passing termination, 13-487ff
Process termination in customer/server relationship, 7-9ff
Receiving intertask, 13-473f
Receiving intertask without waiting, 13-475f
Sending from process console to task, 13-651ff
Sending intertask and waiting for receipt with ?XMTW, 13-695f
Sending intertask with ?XMT, 13-693f
Sending to consoles with ?SEND, 13-549ff
Specifications string, 13-94f
Transmitting from interrupt service routines with ?IXMT, 13-299f
Minus sign (-) template, 4-16 (See also, "Access control list
(ACLY".)
Miscellaneous system calls, Chapter 11 (See individual system call
entries for additional references.)
?BNAME, 11-1
2ChAY, 11-1
?CTOD, 11-1
?DEBUG, 11-1
?ENQUE, 11-1
?7ERMSG, 11-1
?EXEC, 11-1
?FDAY, 11-1
?FEDFUNC, 11-1
?FTOD, 11-1
?7GBIAS, 11-1
?7GDAY, 11-1
?GHRZ, 11-1
?GSID, 11-1
?GTMES, 11~-1
?7GTNAM, 11-1
?GTOD, 11-1
?GTSVL, 11-1
7GVPID, 11-1
?7HNAME, 11-1
?INTWT, 11-1
?ITIME, 11-1
?KINTR, 11-1
?KIOFF, 11~1
?KION, 11-1
7KWAIT, 11-1
?LOGCALLS, 11-1
?LOGEV, 11~1
?0DIS, 11-1
?70EBL, 11-1
?RNAME, 11-1
?SBIAS, 11-1
?SDAY, 11-1

Index—62 Licensed Material-Property of Data General Corp. 093-000335-00

INDEX (Count.)

Miscellaneous system calls (Cont.)
?SINFO, 11-1
?8TOD, 11-1
?TPID, 11-1
?VALAD, 11-1
?WDELAY, 11-1
Model, AOS/VS task—protection, 6-4f (See also, '"Tasks".
Model customer/server configuration, illustration of, 8-2 (See also,
"Connection-management facility".)
Modems (full-duplex), 5-15ff
Auto-answer, 5-15f
Operating sequence, 5-15f
Flags, 5-15
CD, 5-15
DSR, 5-15f
DTR, 5-15f
RTS, 5~15f
Non-auto~answer, 5-15
Operating sequence, 5-16f
Modes,
Binary, 5~18f
LEF (load effective address), 3-17, 10-7f, 10-10f, 13-69
Page, 5-13
Superprocess (See "Superprocess mode'".)
Superuser (See "Superuser mode'".
Transparent text, 9-10
Modification of memory with disk images, 12-2
Modified pages, Flushing to disk, 2-8
Modified shared page, updating, 13-135f
Modifying ring field within global port number, 7-4, 13-263f (See
also, "Interprocess communications (IPC)
facility".)
Modularity, software, 2-2
Monitor ring indicator, 5-16f
Monitoring
address range in calling process, 13-679ff
address range in other process, 13-679ff
kernel, 2-4, 13-327f (See also, "?7LMAP system call".)
MOUNT command (CLI), 5-38
Syntax of, 5-35
Mounting labeled magnetic tapes
explicitly with CLI MOUNT command, 5-35f
implicitly with ?0PEN system call, 5-35f
with CLTI DUMP command, 5-36
Mounting magnetic tapes, 13-106ff
Movable resources, 13-302
Definition of, 13-163

093-000335-00 Licensed Material~-Property of Data General Corp. Index—63

INDEX (Cont.)

Moving
bytes from customer’s buffer, 13-337ff
bytes to customer’s buffer, 13-341ff
bytes to/from customer’s logical address space with ?MBTC and

?MBFC, 8-4
logical pages from disk to memory on demand (See "Demand
paging".)
MS (maximum space), 4-19f (See also, "Control point directories
(cpbs)".)

@MTBn, 5-10 (See also, "Devices".)
Multifile devices, 4-2
Disks, 4-2
Magnetic tape, 4-2
Multileaving, HASP, 13-538
Multilevel connection,
Definition of, 8-2
Illustration of, 8-3
Multiple overlay area, illustration of, 12~4 (See also, "Sixteen-bit
processes"”,
Multiple rings, servers concurrently connected to within customer,
8-6
Multiplexor, Asynchronous Line, 5-10 (See also, '"Devices".
Multipoint control stations, 13-536f, 13-591f, 13-607ff (See also,
"?SRCV system call and ?SSND system call".)
Multipoint lines, 13-589
Selection and polling, 9-4ff
Multipoint tributaries, 13-536, 13-592f (See also, "?SRCV system
call".)
Multipoint/point-to-point line counfigurations, Illustration of, 9-4
Multiprocessing, 3-5
Multiprocessor communications adapters (MCAs), 5-12f
Controllers, 5-10
Pathnames, 5-13
Performing block I/0 on, 13-449f (See also, "Block input/output
(1/0)".)
Protocol, 5-12f
Multiprocessor communications unit (file type), 4-7
Multitasking, Chapter 6
Advantages of, 6-3f
Disrupting with ?DRSCH, 13-87f
Enabling scheduling with ?ERSCH, 13-101f
Sample programs, 6-19ff
MV/8000 floating-point registers, 6-19
?MYTID system call, 6-1, 6-5, 13-351

Index—-64 Licensed Material-Property of Data General Corp. 093-000335-00

INDEX (Cont.)

NAK (negative acknowledgment), 9-8, 9-11, 13-540f, 13-557, 13-588,
13-590, 13-608, (See also, "Data-link control
characters (DLCC)".)

Names,

Device, 5-9f (See also, "Devices".)
Determining form, 13-117

Directory, 4-4

Full process, 3-6f, 13-226

Getting full process, 13-393f

Getting process (See "?PNAME system call".)
Illustration of process, 3-7

Simple process, 3-7f

Negative acknowledgment (NAK), 9-8, 9-11, 13-540f, 13-557, 13-588,
13-590, 13-608, (See also, "Data-link control
characters (DLCC)".)

New access control list (ACL), setting with ?SACL, 13-507f (See also,
"Access control list (ACL)".)

New procedure, chaining to with ?RCHAIN, 13-443f

New process, passing control to, 13-23ff

Next character, accepting as literal with CTRL-P, 5-20 (See also,
"Control characters'.

INFKY offset, 13-182
?NFLN offset, 13-182

?NFNM offset, 13-182
?NFRS offset, 13-182
?NFTP offset, 13-182
Non—-ANSI-standard terminals, 13-158
Non-auto-answer modems, 5-15
Operating sequence, 5-16f
NREL (nonrelocatable) memory, 2-7
.NREL pseudo-op, 2-6f
@NULL generic filename, 5-11f (See also, "Generic files".)
Number of undedicated pages, Returning (See "?GMEM system call'.)
Number of unshared memory pages, Changing (See "?MEMI system call".)
Number of unshared pages in logical address space, changing, 13-349f
Numbers,
Channel, 4-10
Interpreting ring fields within global port, 7-4 (See also,
"Interprocess communications (IPC) facility".)
Link, 5-13
Local port, 4-4
Process priority, 3-6
Ring, 7-2f
Task Priority, 6-5

093-000335-00 Licensed Material-Property of Data General Corp. Index—65

INDEX (Cont.)

?0ANS flag (?IRES offset of ?0PEN), 5-24
.0B files, 4-9 (See also, "Files".
Obituary messages, 7-9, 8-5f, 13-34, 13-53f, 13-278
Origin port aumber for (?SPTM), 7-9
Receiving with ?IREC, 8-6
Suppressing with bit ?COBIT, 8-5
Object files, 4-9 (See also, "Files".
Object modules, linking to form program file, 12-4
Obtaining EXEC status information, 13-119f
?0DIS system call, 13-353ff
?0EBL system call, 11-2f, 13-271, 13-353ff
?0FCR bit (Creation option of ?0PEN system call), 5-21
?0IBM flag (?IRES offset of ?0PEN), 5-24
.0L (overlay) file, 12-2
?0PCH offset, 13-186, 13-188
?0PEH offset, 13-187
?0PEN system call, 5-1, 5-4ff, 5-15f, 5-18, 5-21f, 5-24, 5-35f, 13-8,
13-29ff, 13-48, 13-67, 13-98, 13-144, 13-193f,
13-317, 13-357£f, 13-520, 13-526, 13-582
Extended packet,
Contents, 13-371f
Structure, 13-370 \\,/
Using for labeled magnetic tapes, 5-34
File types you can create with, 5-5, 13-365
Packet,
Contents, 13-260ff
Structure, 13-359
Samnple packet, 13-374ff
Opener, first, 2-8
Opening
channels, 13-357ff
device for exclusive use of one process, 5-18
devices for 1/0, 13-357ff
files, 13-357ff
file for block I/0 with ?GOPEN, 13-185ff
files for shared access, 2-6, 13-571f (See also, "?0PEN system
call’,)
IPC ports for calling process with ?ISEND, 13-283 (See also,
"Interprocess communications (IPC) facility".)
magnetic tape unit, 5-37
protected shared files, 2-7ff, 13-573ff (See also, "?SOPPF system
call".)
shared files, 2-7 (See also, '"?SOPEN system call".)
symbol table file using FED utility (See "?FEDFUNC system call'.)

Index—-66 Licensed Material~-Property of Data General Corp. 093-000335-00

INDEX (Cont.)

Operating sequence for
Auto-answer modems, 5-15f
Non—-auto-answer modems, 5-16f
Operating system, getting information about current, 13-565ff
Operation, inclusive-OR, 10-8
Operation sequence for file input/output (I/0), 5-3ff
Operator (initial) process (PID 2), 3-8f, 5-14, 5-16, 13-514, 13-615,
13-625
Operator messages, 13-106, 13-110
?0PFC offset, 13-187
?0PFL offset, 13-187, 13-188
?0PPH offset, 13-186
Options,
Append, 5-6
Broadcast, 13-693, 13-696
Creation (?0PEN system call), 5-4, 5-21
Exclusive Open, 5-4f
File creation, 13-257ff, 13-364f
?IDEF system call, 10-3 (See also, "?IDEF system call".)
?70PTY offset, 13-186f
Organization of memory, Chapter 2
Origin port number for obituary messages, ?SPTM, 7-9
OQuter ring to inner ring, crossing from, 3-20
Output,
Freezing to console with CTRL-S, 5-20 (See also, "Control
characters".
Suppressing console with CTRL~0, 5-20 (See also, "Control
characters".
Tailoring format of line~printer, 5-19
OQutput, spooled (See '"Spooled output".)
@OUTPUT generic filename, 3-19, 5-11f (See also, "Generic files".)
Overlay use count (0UC), 13-377, 13-379, 13-386
Overlays, 13-163f
Concepts of, 12-2ff
Exiting from and killing calling task, 13-379f
Loading and going to with ?0VLOD, 13-381ff
0L file, 12-2
Primitive overlay system calls, 12-2, 12-10f (See individual
system call entries for additional references".)
?0VEX, 12-10
?0VKIL, 12~10
?0VLOD, 12-10
?0VREL, 12-10
Releasing and returning, 13-377f
Releasing with ?0VREL, 13-385f
Runtime relocatability requirements, 12-8f
Use count (OUC), 12-10f (See also, "Overlay use count (QUC)".)

093-000335-00 Licensed Material-Property of Data General Corp. Index—67

INDEX (Cont.)

Overriding characteristics of character device, 5-14
Overriding process protections with ?SUPROC, 13-619f

?0VEX system call, 12-10f, 13~-377f, 13-380, 13-382f, 13-386
?0VKIL system call, 12-10f, 13-378ff, 13-382f, 13-386
?0VLOD system call, 12-10, 13-377f, 13-381ff, 13-386

?0VREL system call, 12-10, 13-378, 13-380, 13-382, 13-385f
Owner (?FACO) access, 4-13ff, 4-17, 13-60, 13-206, 13-508f
Owner Name field (labeled magnetic tapes), 5-28

/P specifications string switch, 13-94
Packet contents (See also, individual system call eantries.)
?EXEC packet for queue requests, 13-112ff, 13-118
?EXEC packet for status information, 13-120
?GNFN packet, 13-182
?GTMES packet, 13-209
?GTRUNCATE packet, 13-220
?0PEN extended packet for labeled magnetic tapes, 13-371f
?PSTAT system call packet, 13-431ff
?READ/?WRITE system call extended packet for selected field
translation, 13-468
?READ/?WRITE system call packet, 13-458ff
?READ/?WRITE system call packet for screen management primitives
13-464
?RNGPR system call packet, 13-496
?TASK system call packet, 13-629
Packet structure (See individual system call entries.)
Packets,
Extended task definition, 13-82
File specification, 5-4
Interprocess communications (IPC) facility, 7-2
Entry, 13-41f
System call (See individual system call entries.)
Page mode, Displaying next page ia, 5-13
Page-fault condition, 3-3
Pages,
Changing number of unshared memory (See "IMEMI system call".)
Flushing to disk shared file memory (See '"?ESFF system call".)
Getting number of undedicated memory, 13-177f

Index-68 Licensed Material-Property of Data General Corp. 093-000335-00

INDEX (Cont.)

Pages (Cont.)
Memory, 2-4, 2~6f
Dedicated, 2-9
Shared, 2-2, 2-4, 2-6f
Checkpointing, 2~8f
Illustration of, 2-5
Undedicated, 2-9
Unshared, 2-2, 2-4, 2-6f
Write-protected (illegal), 2-4
Unused, 2-9
Moving from disk to memory on demand (See "Demand paging".)
Permanently binding to working set (See "?WIRE system call".)
Releasing permanently wired (See "?UNWIRE system call".)
Releasing shared and decrementing use counts (See "?RPAGE system
call".)
Returning current number of undedicated (See "?GMEM system
call".)
Shared (See '"Shared pages".)
Wired (See "Wired pages".
Wiring to working set, 13-683f (See also, "?WIRE system call".)
Write-protected, 2-1
Paging, Demand, 2-4
Parameters,
Listing current unshared memory (See "?MEM system call'.)
Process creation, 3-11
Saving the state of memory, 3-17
Steps A0S/VS takes to check process creation, 3-11
Working-set (See "Working set'".)
Parameters, listing current unshared memory, 13-347f
«PART pseudo-op, 2-6f
Partition,
Establishing size of new shared (See "?7SSHPT system call".)
Listing current size of shared (See "?GSHPT system call".)
Shared (See "Shared partitions".
Partition size, listing current shared, 13-201f
PARU.32, 4-4, 13-206

Passing
Control to new process, 13-23ff (See also, "?CHAIN system call".)

Customer/server connection to another server in Ring 7 with ?PCNX,
8-4, 13-387f

Customer/server connection to another server with ?PRCNX, 8-4,
13-395¢

Messages from console to individual tasks, 6-17 (See also,
"Tasks".)

Procedure entry descriptor via the stack, TIllustration of, 12-6

Superprocess privilege to sons, 3-13

Superuser privilege to sons, 3-12

Termination message to father and terminating calling process

with ?RETURN, 13-487ff

093-000335-00 Licensed Material-Property of Data General Corp. Index—69

INDEX (Cont.)

Pathnames, 4-9ff
At sign (@) prefix, 4-10
Colon (:) prefix, 4-10
Default break files, 3-19
Definition of, 4-9
Determining remote host references in, 13-493f
Equal sign (=) prefix, 4-10
Generic file sample, 5-11
Getting complete for generic files, 13-199f
Getting complete with ?GNAME, 4-12, 13-179f
Getting program’s, 13-197f
Getting for generic files with ?GRNAME, 4-12
Multiprocessor communications adapters (MCAs), 5-13
Prefixes of, 4-9f
Templates, 5-9
Uparrow (°) prefix, 4-10
Pathnames, Detecting references to remote hosts in, 11-7
Paths, execution (See "Execution path".)
Paths, full-duplex communications, 7-2
?PBLKS offset, 13-434
?PBRK bit, 3-18
?PCAD offset, 13-398f, 13-446ff, 13-578
?7PCAL offset, 13-413, 13-416, 13-420
?7PCNX system call, 8-1, 8-4, 13-388f
?PCON offset, 13-413, 13-416
7PCS1 offset, 5-8
?7PCS3 offset, 13-398ff
?PDFP offset, 13-413, 13-417
?PDIR offset, 13-413, 13-415
Pending/unpending tasks via common local servers (See "Fast
interprocess synchronization".)
+PENT (procedure entry) pseudo-op, 12-4
:PER (peripheral directory), 13-339 (See "Peripheral directory
(:PER)".)
Performing block I/0 on
magnetic tapes, 13-447ff
MCAs, 13~449f
physical block 1/0, 13-397ff
record I1/0, 13-495ff
shared-page read with ?SPAGE, 13-577ff
Peripheral directory (:PER), 4-10, 5-9, 13-339
File type of spoolable, 4-6
Peripheral manager (PMGR), 3-8f
Managing character I/0 with, 3-8
Permanent attribute, 4-17
Setting or removing for file or directory with ?SATR, 4-17,
13-509£f
Permanently binding pages to working set (See "?WIRE system call".)

Index~70 Licensed Material-Property of Data General Corp. 093-000335-00

INDEX (Cont.)

Permitting access to
protected files, 13-389ff
protected shared files (See "?PMTPF system call".)
?PFADW offset, 13-390, 13-574
?PFFLG offset, 13-390, 13-574
?PFIH offset, 13-390, 13-574
?PFLG offset, 3-18, 13-71, 13-413ff
?PFPID offset, 13-390, 13-574
?PFRNG offset, 13-390, 13-574
Physical block input/output (I/0), 5-2, 5-7f, 13-357ff, 13-397ff
Definition of, 5-7
Differences between block I/0 and, 5-7f
Physical blocks, reading/writing on disk, 13-445ff
PID (See "Process identifiers (PIDs)".)
PID/ring tandems, 2-8, 13-34 (See also, "Process identifiers
(PIDs)".)
Definition of, 8-6
?PIFP offset, 13-413, 13-417
?PIPC offset, 13-413, 13-415
@PLA, 5-10 (See also, "Devices'".)
?PLFP offset, 13-413, 13-417
Plotters, 5-10 (See also, "Devices".)
File type, 4-7
Plus sign (+) template, 4-16 (See also, "Access control list (ACL)".)
?PMDIS offset, 13-430, 13-433
?PMEM offset, 13-314, 13-415, 13-420
PMGR (See '"Peripheral manager (PMGR)".)
?PMSDEN offset, 13-430
?PMTPF system call, 2-1, 2-7f, 2-10, 13-389ff, 13-575
Packet contents, 13-391
Packet structure, 13-390
?PNAME system call, 3-1, 3-7, 3-15, 13-393f
?PNM offset, 13-413, 13-415
?POFP offset, 13-413, 13-417
Point-to-point lines, 13-589
Point-to-point stations, 13-536f, 13-591, 13-607, 13-609 (See also,
"?SRCV system call and ?SSND system call".)
Point-to-point/multipoint line configurations, Illustration of, 9-4
Pointer,
File, 5-6
Frame, 6-9, 6-15
Positioning file, 5-6
Stack, 6-15
Poll-address/select-address pair, defining with ?SDPOL, 13-529ff
Polling,
Definition of, 9-4f
General poll, 9-5f, 13-592
Multipoint line selection and, 9-4ff
Specific poll, 9-5f

093-000335-00 Licensed Material-Property of Data General Corp. Index-71

INDEX (Cont.)

Polling list, 13-533
Defining with ?SDPOL, 13~529ff
POPJ instruction, 12-9
Port entry, file type of IPC, 4-6 (See also, "Interprocess
communications (IPC) facility".)
Port numbers, (See also, "Interprocess communications (IPC)
facility".)
Extracting ring field from global, 7-4
Finding owner of global, 13-287f
Getting console, 13-161f
Global, 13-261f, 13-162
Identifying PID associated with global, 7-4
Interpreting ring fields within global, 7-4
Local, 4-4, 6-5, 13-41
Modifying ring field within global, 7-4
Translating from local to global with ?TPORT, 7-2, 13-649
Ports, (See also, "Interprocess communiations (IPC) facility".)
Global, 7-2ff, 13-162 (See also, "Global port numbers'".)
Local, 4-4, 6-5, 7-2ff (See also, "Local port numbers".)
Opening IPC with ?ISEND (See "?ISEND system call" and
"Interprocess communications (IPC) facility".)
Sending messages between IPC, 7-2ff
Position of file pointer (See also, "File pointer".)
Changing, 5-6, 13-195
Getting current, 5-6, 13-193ff
Setting, 13-581ff
Positive acknowledgment (ACKO), 13-539ff, 13-590, 13-607f (See also,
"Data-link control characters (DLCC)".)
Positive acknowledgment (ACK1), 13-539ff, 13-590, 13-607f (See also,
"Data~link control characters (DLCC)".)
Postprocessors,
PUKIL, 6-16
PUTSK, 6-16
Power-failure/auto-restart routine, 10-2, 10-11
?PPCR offset, 3-11, 13-413, 13-416
?PPRI offset, 13-413, 13-415, 13-418
?PPRV offset, 3-9, 3-12, 13-413, 13-416, 13-418 (See also, "?PROC
system call".)
.PR files, 4-9, 12-2 (See also, "Files".
Getting name of for ring (See "?RNGPR system call".)
?7PRBB offset, 5-8, 13-399ff
?PRCL offset, 13-221, 1-398f, 13-446ff
?PRCL offset, 13-578
?PRCNX system call, 8-1, 8-4, 13-395f
?PRDB/?PRWB system calls, 5-1, 5-7, 13-397ff, 13-450
Packet contents, 13-399
Packet controller status words, 13-400
Packet structure, 13-398

Index~72 Licensed Material-Property of Data General Corp. 093-000335-00

INDEX (Cont.)

Pre-emptible processes, 2-6, 3-5f, 3-14
Prefix characters, 13-398
Prefixes,
At sign (@), 5-9, 5-11
Pathname, 4-9f
?PRES offset, 13-398, 13-446f
Preventing
?RINGLD system call from loading lower ring, 13-499f
lower rings from being ringloaded (See "?RNGST system call'.)
Previous environment, unwinding stacks and restoring, 13-663f
Previous frames in stack, getting information about, 13-675f
Previously wired pages, releasing (See "?UNWIRE system call".)
?PRI system call, 6-1, 6-10, 13-403f
Primary station, definition of, 9-3
Printers, data channel line, 5-10 (See also, "Devices".)
Priorities,
Assigning sons higher, 3-10
Changing process with ?PRIPR, 3-10, 3-15 (See also, "?PRIPR
system call'.)
Changing for calling task with ?PRI, 13-403f
Changing process, 13-405ff
Changing task specified by TID, 13-245f
Killing tasks of specified, 13-409f
Readying tasks of specified, 13-425f
Suspending tasks of specified, 13-427f
Priority and TID of calling task, getting with ?MYTID, 13-351
Priority numbers, 6-5
Process, 3-6
?PRIPR system call, 3-1, 3-10, 3-13, 3-15, 6-10, 13-245, 13-405ff,
13-619
Privilege bits (?PROC system call), 13-206, 13-419
Privilege to issue IPC system calls, 3-10
Privileged instructions, 3-17
Privileged user, 2-4
Privileges,
Assigning son higher priority, 3-10
Assigning Superprocess mode, 3-13
Changing priority of own process, 3-10
Changing process type, 3-10
Creating sons of any process type, 3-10
Creating sons of different program file type, 3-10
Creating sons with different useranames, 3-10
Creating unlimited number of sons, 3-10f
Defining and accessing user devices, 3-10
Defining working-set parameters for sons, 3-10
File access (See "Access privileges".
Getting access control, 13-205f
Issuing primitive IPC system calls, 3-10

093-000335-00 Licensed Material-Property of Data General Corp. Index—73

INDEX (Cont.)

Privileges (Cont.)
Masking process, 13-418
7PCSP, 13-619f
Process, 3-3, 3-9ff
?pPVDV, 3-10, 10-1, 13-234, 13-281
?pVIiP, 7-2
?PVSU, 13-623f
Superuser, 13-333f
Turning on Superprocess mode, 3-10, 3-12
Turning on Superuser mode, 3-10, 3-12
Verifying caller’s access, 11-8
?PRKIL system call, 6-1, 6-13ff, 13-305f, 13-409f, 13-427
?PRNH offset, 13-8, 13-221, 13-398f, 13-446ff, 13-578
?PRNL offset, 13-446f, 13-449
?PROC system call, 3-1, 3-8f, 3-11ff, 3-18, 3-20, 11-7, 13-58, 13-71,
13-208, 13-214, 13-411ff
Packet, 5-12
Contents, 13-414ff
Structure, 13-413
Privilege bits, 13-419
Sample packet, 13-421ff
Procedure entries, 12-6
Passing descriptor via stack, 12-6
Translating procedure name to descriptor, 12-6
Procedure entry (.PENT) pseudo-op, 12-4
Procedure entry descriptor,
Passing via stack, 12-6
Translating procedure name to, 12-6
Procedure name, translating to procedure entry descriptor, 12-6
Procedures,
Chaining to new, 13-443f
Error-recovery (See "Error-recovery procedures".)
System-generation, 4-2, 6-10, 9-2, 10-1, 13-151, 13-511, 13-521
Process, aborting and generating console interrupt with CTRL-C
CTRL-B, 5-21 (See also, "Control sequences".)
Process, operator (See "Operator process'".)
Process and memory sample programs, 3-23ff
Process blocking, 3-6
Process creation parameters, 3-11
Process creation parameters, steps A0S/VS takes to check, 3-11
Process hierarchy, illustration of, 3-9
Process identifier (PID), 3-6f
Getting calling process’s with ?PNAME, 3-7
Getting father process’s with ?DADID, 3-8
Getting PID assoclated with global port number, 13~191f
Getting username associated with, 3-8
Local, 13-648
PID/ring tandems, 6-4
Definition of, 8-6

Index-74 Licensed Material-Property of Data General Corp. 093-~000335-00

INDEX (Cont.)

Process identifier (PID) (Cont.)
Virtual (See also, "Virtual PID".)
Getting, 13-227
Translating into component parts with ?TPID, 13-647f
Process image, 6-8
Process information, 3-15f
Process name,
Full, 3-6f, 13-226
Getting calling process’s, 3-7 (See also, "?PNAME system
call".)
Getting full, 13-393f
Illustration of, 3-7
Process priorities, changing with ?PRIPR, 3-15 (See also, "?PRIPR
system call'.)
Process priority numbers, 3-6
Process privileges, 3-3, 3-9ff
Process protections, overriding with ?SUPROC, 13-619f
Process runtime statistics, getting (See "?7RUNTM system call".)

Process scheduling, 3-14
Process states, 3-13f

Blocked, 3-14
Eligible, 3-13f
Ineligible, 3-13
Process termination, 3-2f
Reasons for, 3-8
Process termination codes in offset ?IUFL (for ?IREC and ?ISEND
headers), 7-11, 8-6 (See also, "Interprocess
communications (IPC) facility".)
7T32T extended code, 7-11
?TABR extended code, 7-11
?TAOS code, 7-11
?TBCX code, 7-11, 8-7, 13-54
?TCCX code, 7-11, 8-7
?TCIN code, 7-11, 7-13
?TEXT code, 7-11, 7-15f, 13-276, 13-278
?TR32 extended code, 7-11
?TRAP code, 7-11, 7-13
?TSELF code, 7-10f
Process termination messages in customer/server relationship, 7-9ff
Process trapping, 3-2, 3-8, 3-17
Causes of, 3-17
Creating break files at every occurrence, 3-18
Process tree, 3-11
Illustration of, 3-12
Process types, 3-5f
Changing, 3-10, 13-57f (See "?CTYPE system call'.)
Creating sons with any, 3-10

093-000335~00 Licensed Materlal-Property of Data General Corp. Index~75

INDEX (Cont.)

Process—-management system calls, 3-1 (See individual system call
entries for additional references.)
?BLKPR,
?BRKFL,
?CHAIN,
?CTYPE,
?DADID,
?ENBRK,
?EXPO, 3-1
?GUNM, 3-1
?KHIST, 3-1
?MDUMP, 3-1
7PNAME, 3-1
?PRIPR, 3-1
?PROC, 3-1
?PSTAT, 3-1
?RESCHED, 3-1
?RETURN, 3-1
?RINGLD, 3-1
?RNGPR, 3-1
?RNGST, 3-1
?RUNTM, 3-1
?SUPROC, 3-1
?SUSER, 3-1
?TERM, 3-1
?UBLPR, 3-1
?UNWIRE, 3-1
TWHIST, 3-1
?WIRE, 3-1
Processes, 6-3, 6-8
Assigning devices to for record I/0, 5-1
Becoming customer of specified, 13-33ff
Blocked, 6-12
Blocking 3-6, 3-14f (See "?BLKPR system call.)
voluntarily, 3-14
Chaining customer, 8-7
Changing
priority of other (See "?PRIPR system call".)
priority of self, 3-10
priority with ?PRIPR, 13-405ff (See also, "?PRIPR system
call".)
process type, 3-10
state with Superprocess privilege, 3-12
Conditions under which A0OS/VS blocks, 3-14
Conditions under which A0OS/VS unblocks, 3-15
Creating, 3-8ff, 13-411ff
Creating son, 3-11
Defining customer, 8-2
Defining server, 8-2

[VS

WwWwwbw

Index~76 Licensed Material-Property of Data General Corp. 093-000335-00

INDEX (Cont.)

Processes (Cont.)
Definition of, 3-2
Father, 3-7
Getting
name of (See "?PNAME system call".)
PID of father process with ?DADID, 3-8 (See also, "?DADID
system call".)
runtime statistics on (See "?RUNTM system call".)
status information for (See "?PROC system call'.)
username of with ?GUNM, 13-225f
Initial operator (PID 2), 3-8f, 5-14, 5-16
Masking privileges, 13-418
Memory-resident (See "Resident processes".)
Opening device for exclusive use of particular, 5-18
Operator (PID 2), 13-514
Passing control to new (See "?CHAIN system call".)
Pre-emptible, 3-5f, 3-14
Reasons for termination of, 3-8
Rescheduling with ?RESCHED, 3~14
Resident, 3-5f, 3-14f (See "Resident processes".)
Runtime statistics for, 13-503ff
Scheduling another for execution (See "?RESCHED system call".)
Scheduling, 3-14
Sending messages to console from, 13-549ff
K_,» Server, 8—4f
Setting maximum CPU time, 13-420
Setting search list for calling with ?SLIST, 13-569f
Settiung working set size, 13-420f
Sixteen—-bit (See "Sixteen—bit processes".)
Spanning rings, 3-20f
Illustration of, 3-22
States of, 3-13f
Status information, 13-429ff
Swappable, 3-5f, 3-14
System, 3-9
Terminating and creating break files, 3-18f (See also, "?BRKFL
system call".)
Terminating calling and passing termination message to
father with ?RETURN, 13-487ff
Terminating customer, 8-4, 13-53f
Termination messages for
16-bit, 7-10ff
32-bit, 7-14ff
Terminating with ?TERM, 13-637ff (See also, "?TERM system
call™,)
Trapping, 3-8, 3-17
Types of, 2-6
Pre-emptible (See "Pre-emptible processes'.)
Resident (See "Resident processes'.
(_{ Swappable (See "Swappable processes'.

093-000335-00 Licensed Material-Property of Data General Corp. Index-77

INDEX (Cont.)

Processes (Cont.)
Unblocking with ?UBLPR, 13-659f (See also, "?UBLPR system
call".)
User, 3-9
Waiting for signal from another, 13-691f
Processname/queuename, 13-13
Profile file, file type of user, 4-6
Program control, transferring to Debugger utility with ?DEBUG, 11-5
Program control/information system calls, 11-5
Program files, 4-5, 4-9, 5-5, 6-3, 12-2 (See also, "Files".)
Creating sous of different type, 3-10
File type of A0S (?FPRV), 4-5ff
File type of A0S/VS (?FPRG), 4-5ff
Linking object modules to form, 12-4
Loading into specific rings with ?RINGLD, 3-20, 13-491f (See
also, ?RINGLD system call".)
Types of, 4-5
Program information/control system calls, 11-5
?DEBUG, 11-5
Program’s pathname, getting with ?GPRNM, 13-197f
Programs,
Definition of, 3-2
Linking together with ?CHAIN, 3-19f
Sample (See '"'Sample programs'.)
Protected code, 3-17 \\’/
Protected files, accessing, 13-389ff
Protected shared files, 2-7f, 3-20
Opening, 2-7f, 13-573ff (See also, "?SOPPF system call".)
Permitting access to, 2-7f (See also, "PMIPF system call”.)
Protection,
Inner-ring task-redirection, 6-13ff (See also, "Tasks".
Task redirection, 13-643f
Protection mechanisms, 2-2
Overriding process, 13-619f
Protection model, AOS/VS, 6~4f (See also, "Tasks".
Protection rings, Hardware, 2-2 (See also, "Rings".)
Protection schemes, 6-4f (See also, "Tasks".
Ring maximization, 6-4 (See also, "Tasks".
Ring specification, 6~4f (See also, "Tasks".
Protocol,
Binary synchronous communications (BSC), 9~6ff, 13-538, 13-590
(See also, "Binary synchronous communications
(BsC)Y".)
Multiprocessor communications adapters (MCAs), 5-12f
?PRRDY system call, 6-1, 6-13, 13-87, 13-247, 13-425ff
?PRSUS system call, 6-1, 6-11, 13-3f, 13-87, 13-241, 13-409, 13-425,
13-427f, 13-473, 13-475
?PRWB system call, See ?PRDB/?PRWB system call

Index-78 Licensed Material-Property of Data General Corp. 093-000335-00

?7PSCPL offset, 13-430, 13-432

?PSCW offset, 13-430f

?7PSEN offset, 13~430f

Pseudo-ops,
Defining shared area with, 2-6f
.ENTO (overlay entry), 12-4, 12-10, 13-382
.EXT, 3-20
.EXTG, 3-20
.EXTN, 12-4
.NREL, 2-6f
.PART, 2~6f
.PENT (procedure entry), 12-4
.PTARG, 12-6, 13~301, 13-441, 13-443

?PSEX offset, 13-430, 13-432f

?PSF4 offset, 13-430f

?PSFA offset, 13-430, 13-433

?7PSFL offset, 13-434

?PSFP offset, 13-434

PSHJ instruction, 12-9

PSHR instruction, 12-9

?PSHSH offset, 13-434

?7PSHST offset 5~164

7PSHSZ offset 5-164

?PSIH offset, 13-430, 13-433

?PSLFA offset, 13-430, 13-433

?PSMX offset, 13-430, 13-433

?PSNM offset, 13-413, 13-415

?PSNR offset, 13~430f

?7PSNS offset, 13-430f

?PSPH offset, 13-413, 13, 415

7PSPR offset, 13-430f

?PSPRST offset, 13-434

?PSPV offset, 13~430f

?PSQF offset, 13-430f

?PSRH offset, 13-430, 13-432

?PSSL offset, 13~430, 13-433

?PSSN offset, 13-430f

?PSST offset, 13-430f

?PSTAT system call, 3-1, 3-15, 13-429ff, 13-505
Memory descriptor structure, 13-434
Packet contents, 13-431ff
Packet structure, 13-430
Sample packet, 13-435ff

?7PSTI offset, 13-8, 13-398f, 13-401, 13-446ff

?PSTO offset, 13-398f, 13-446f

?PSWM offset, 13-430, 13-433

?PSWS offset, 13-430, 13-433

.PTARG pseudo-op, 12-6, 13-301, 13-441, 13-443

INDEX (Cont.)

093-000335-00 Licensed Material-Property of Data General Corp. Index—79

INDEX (C

ont.)

?PUNM offset, 13-413, 13-415
?7PUSPR offset, 13-434

7PVDV
?PVEX
?PVIP
?PVPC
?PVPR
?PVSP
?PVSU
PVTY
?PVUL
7PVWM
?PVWS
?PWML
?PWRB

?PWSS

privilege,
privilege,
privilege,
privilege,
privilege,
privilege,
privilege,
privilege,
privilege,
privilege,
privilege,

offset, 13-
system call, 5-1, 5-7, 13-397ff (See also, "?PRDB/?PWRB systenm

3-10, 10-1, 13-69, 13-234, 13-281
3-10

3-10, 7-2, 13-34, 13-419
3-10f

3-10

3-10, 3-13, 13-619f
3-10, 1-623f

3-10, 13-58, 13-419

3-10

3-10

3-10

413, 13-417, 13-420

call".)

offset, 13-413, 13-415

Queue entry (file type), 4-6

Queue requests, holding, unholding, canceling, 13-117ff
Queued task creation option, 6~7 (See also, "Tasks".

Queued task manager, 6-7 (See also, "Tasks".

Queue

Queue

Queui

d tasks,

Creating manager for, 13-273f
Dequeuing with ?DQTSK, 13-81ff

Sy

Managing with EXEC utility, 11-6
Removing tasks from with ?DQTSK, 13-81ff

ng

file entries, 13-93ff, 13-110ff

files for spooled output with ?ENQUE, 11-6, 13-93ff

Race condition, 6-19, 8-6

Radix, changing using FED utility (See "?FEDFUNC system call".)

Index-80 Licensed Material-Property of Data General Corp. 093-000335-00

INDEX (Cont.)

Range for local port numbers, 13-42
?RCALL system call, 12-4ff, 12-8f, 13-302, 13-383, 13-441ff
13-676
Illustration of invalid return address from, 12-9
?RCHAIN system call, 12-4, 12-7f, 13-383, 13-442ff, 13-676
?RDB/?WRB system calls, 5-1, 5-4, 5-7, 13-8, 13-445ff, 13-577
Packet contents, 13-447
Packet structure, 13-446
Sample packet, 13-451f
?RDUDA/ ?WRUDA system call, 5-1, 5-19, 13-51, 13-453f
Re-enabling
console interrupts with ?0EBL, 11-2
control-character console iaterrupts, 13-313
relative consoles with ?SERT, 13-533f
task scheduling, 6-11 (See also, "Tasks",
Re—entrant code or data, 2-6, 3-2
Read,
Performing shared-page, 13-577ff
Terminating with end-of-file character using CTRL-D, 5-20 (See
also, "Control characters".)
Read (?FACR) access, 4-13ff, 13-60, 13-79, 13-138, 13-149, 13-206,
13-508
?READ system call, 5-1, 5-4, 5-6, 5-13, 5-18, 6-11, 13-30, 13-193ff,
13-358f, 13-362f, 13-495ff, 13-582, 13-651
Packet contents, 13-458ff
Packet structure, 13-456

Screen management primitives, 13-462ff
Packet contents, 13-464
Packet structure, 13-463
Selected field translation, 13-466ff
Extended packet contents, 13-468
Extended packet structure, 13-467
Sample packet, 13-470
Readers,
Card, 5-10, 5-17f (See also, '"Devices".)
File type of card, 4-7
Reading
device characteristics of character devices, 13-153ff
error message files, 13-97ff
physical blocks from disk, 13-397ff
shared page and incrementing use count (See "?SPAGE system
call".)
task message from process console with ?TRCON, 13-651ff
Reading/writing block I/0, 13-445ff
Reading/writing user data area (UDA) with ?RDUDA/?WRUDA, 13-453f
Readying tasks, 6-12f (See also, "Tasks".
specified by TID with ?IDRDY, 13-247f
specified by priority with ?PRRDY, 13-425f

093-000335-00 Licensed Material-Property of Data General Corp. Index-81

INDEX (Cont.)

Real-time clock, 13-295
Frequency, 13-677
Reasons for process termination, 3-8
?REC system call, 6-1, 6-11f, 6-17f, 13-87, 13-241, 13-409, 13-473ff,
13-693ff
Receive and send IPC headers, 7-5ff (See also, "Interprocess
communications (IPC) facility".)
Structure of, 7-6
Receive continue calls, 13-590ff (See also, "?SRCV system call".)
Receive initial calls, 13-589f, 13-592 (See also, 7SRCV system
call.)
Receiving
data or control sequences over BSC lines with ?SRCV, 9-2,
13-585ff (See also, "Binary synchronous
communications (BSC)".)
interrupt service messages with ?IMSG, 13-265f
intertask messages immediately with ?RECNW, 13-475f
intertask messages after waiting with ?REC, 13-473f
IPC messages with ?IREC, 13-275ff (See also, "Interprocess
communications (IPC) facility".)
obituary messages with ?IREC, 8-6
?RECNW system call, 6-1, 6-17, 13-474ff, 13-693ff
Record format masks, 13-46
70RDS, 13-46
?70RDY, 13-46 ~/
?0RFX, 13-46
?0RVR, 13-46
Record formats, 13-366f
Data-sensitive (?RTDS), 13-361, 13-457, 13-460
Dynamic-length (?RTDY), 13-30, 13-361, 13-457, 13-460
Fixed-length (?RTFX), 13-361, 13-457, 13-460
Undefined-length (?RTUN), 13-361, 13-457, 13-460
Variable block, variable record (?RTVB), 13-361, 13-457, 13-460
Variable-length (?RTVR), 13-361, 13-457
Record input/output (I/0), 5-3, 5-8f, 13-455ff
Assigning device to process for, 5~1
Definition of, 5-8
Record types, 5-8f
Data~sensitive, 5-9
Dynamic-length, 5-8
Fixed-length, 5~8
Variable-length, 5-9
System calls, 5-3
Records, 5-3
Data—-sensitive, 5-9
Dynamic-length, 5-8
Fixed-length, 5-8
Variable-length, 5-9

Index~82 Licensed Material-Property of Data General Corp. 093-000335-00

INDEX (Cont.)

?RECREATE system call, 4-1, 13-477f
Recreating files with ?7RECREATE, 13-477f
Redirecting task’s execution path with ?IDGOTO, 13-241f
Redirecting tasks, 6-13 (See also, '"Tasks".
Redirection, protecting task from, 13-643ff
Redirection protection, inner-ring task, 6-13ff (See also, "Tasks".
Reducing disk size, 5-7
References, link-to-link, 4-12f
Referencing symbol table file without knowing its format, 13-215f
Regions, locking/unlocking critical, 6-18f (See also, "Tasks".
Registers,
Floating-point, 10-8
Initializing floating-point status, 6-19
Relative consoles, 9-6
Disabling/re-enabling with ?SDRT/?SERT, 13-533f
?RELEASE system call, 4-1, 4-18, 5-1, 5-18, 13-479f
Releasing
disk blocks, 13-478
initialized logical disks with ?RELEASE, 13-479f
logical disks (LDs) with ?RELEASE, 4-18
overlay and returning, 13-377f
overlay area with ?0VREL, 13-385f
previously wired pages (See "?UNWIRE system call".)
resource and acquiring new one with ?RCALL, 13-441f
shared page and decrementing use count with ?RPAGE, 13-501f
Relocatability, requirements for runtime, 12-8f
Remote host, 13-13f
Determining references to from pathname, 1-493f
Remote hosts, 11-5
Remote hosts, Detecting references to with ?RNAME, 11-7
Removing
channel number from file, 5-3
or setting permanent attribute for file or directory with ?SATR,
13-509f
queued tasks from queue with ?DQTSK, 13-81ff
user devices from interrupt vector table with ?IRMV, 13-281f

?RENAME system call, 4-1, 4-8, 13-481f
Renaming

files with ?RENAME, 4-8, 13-481f

system log file, 13-626 (See also, "System log file".
Requesting services from EXEC utility, 13-105f
Requirements for .

indexes by file, 4-4

runtime relocatability, 12-8f

volume identifier, 5-25
?RESCHED system call, 3-1, 3-14, 13-483f
Rescheduling, disabling task, 13-77f

093-000335-00 Licensed Material-Property of Data General Corp. Index—-83

INDEX (Cont.)

Rescheduling
current time slice, 13-483f
tasks, 6-10 (See also, "Tasks".
Resident processes, 2-2, 2-4, 2-6, 3-5f, 3-14f
?RESIGN system call, 8-1, 8-4f, 13-54, 13-485f
Resignation, signaling server, 8-4
Resigning as server with ?RESIGN, 13-485f
Resource base, getting curtent, 13-163f
Resource deadlock, 12-5
Resource system calls, 12-2, 12-4ff
Alternate return from, 12-7
Illustration of stack after ?RSAVE, 12-8
Resources,
Movable, 13-163, 13-302
Releasing and acquiring new resource with ?RCALL, 13-441f
System, 3-3, 3-15, 3-19
Restoring previous environment after unwinding stacks, 13-663f
Restrictions on ?LOGEV, 13-334 (See also, "?LOGEV system call".)
Retaining calling resource and acquiring new resource with ?KCALL,
13-301£f
Retries for disk errors, bypassing, 5-7
?RETURN system call, 3-1, 3-8, 7-10ff, 7-14, 13-54, 13-278, 13-330,
13-485, 13-487ff, 13-638
Returning current
LEF mode status with ?LEFS, 13-325f
number of undedicated pages (See "?GMEM system call.)
Reverse interrupt (RVI), 9-8f, 13-540f, 13-587f, 13-590f, 13-604 (See
also, "Data-link control characters (DLCC)".)
Revoking previous ?IDEF system call with ?IRMV, 13-281f
?RFAB code, 7-12
“RFCF code, 7-12
?RFEC code, 7-12
?RFER code, 7-12
?RFWA code, 7-12
Ring 0, 2-3
Ring 4, 6-16
Ring 6, 6-15f
Ring 7, 6-15ff
Ring 7, breaking a connection in, 13-63f
Ring 7 customer, verifying, 13-671f
Ring field, 6-5 (See also, "Interprocess communications (IPC)
facility".)
Extracting from global port number, 7-4
Interpreting with ?IREC, 7-4
Modifying within global port number, 7-4, 13-263
Ring indicator, monitor, 5-16f
Ring number, 7-2f
Ring structure, illustration of, 3-22

Index-84 Licensed Material-Property of Data General Corp. 093-000335-00

INDEX (Cont.)

Ring-maximization protection scheme, 6~4 (See also, "Tasks".
Ring-specification protection scheme, 6~4f (See also, "Tasks".
?RINGLD system call, 2-3, 3-1, 3-20, 6-8f, 13-434, 13-491f, 13-500,
13-630 (See also, "?RNGST system call'.)
AOS/VS actions in response to, 6-9
Ringload, stopping lower rings from a (See "?RNGST system call".)
Rings,
Creating break files of specified user, 3-19
Crossing from outer to inner, 3-20
Default user (Ring 7), 2-3
Dumping memory image to file from specified with ?MDUMP, 3-18
Getting .PR filename for (See "?RNGPR system call".)
Hardware protection, 2-2
Illustration of segments and their, 2-3
Inner (See "Inner rings'.
Loading program file into specified, 13-491f
Mapping lower, 13-327f
PID/ring tandems, 6-4
Preventing ?RINGLD system call from loading lower, 13-499f
Processes spanning, 3-20f
Stopping lower from being ringloaded (See "?RNGST system call".)
Structure of, 2-2ff
System, 2-3
Target, 7-3
User, 2~3, 3-3
Verifying number of particular, 13-495ff
?RNAME system call, 13-493f
?RNGBL offset, 13-496
?7RNGBP offset, 13-496
7RNGNM offset, 13-496
?RNGPL offset, 13-496
?RNGPR system call, 3-1, 3-20, 13-495ff
Packet contents, 13-496
Packet structure, 13-496
?RNGST system call, 3-1, 13-499f
Root directory, 4-10
Roots,
Local, 4-17, 4-20
Logical disk (LD), 4-19f
System, 3-8f, 4-17
Routines,
?BOMB, 12-5f, 13~163
Communicating from interrupt service, 10-9
Interrupt service (See "Interrupt service routines".)
Power-failure/auto-restart, 10-2, 10-10f
?UKIL kill-processing, 6-15, 13-243, 13-306, 13-409
?UTSK task-initiation, 6-6f (See also, "Tasks".
?RPAGE system call, 2-1, 2-6, 2-10, 13-501f, 13-667

093-000335-00 Licensed Material-Property of Data General Corp. Index—85

INDEX (Cont.)

7RSAVE system call, 12-5, 12-7
?RTDS record format (data—-sensitive), 13-361, 13-457, 13-460
?RTDY record format (dynamic-length), 13-330, 13-361, 13-457, 13-460
?RTFX record format (fixed-length), 13-361, 13-457, 13-460
RTN instruction, 12-5, 12-7, 13-443
RTS modem flag, 5-15
?RTUN record format (undefined-length), 13-361, 13-457, 13-460
?RTVB record format (variable-block, variable-record), 13-361,
13-457, 13-460
?RTVR record format (variable-length), 13-361, 13~457
Runtime, determining bias factors at, 11-7
Runtime library, user (URT32.LB), 6-6
Runtime relocatability requirements, 12~-8f
Runtime statistics, getting for process with ?RUNTM, 13-503ff
?RUNTM system call, 3-1, 3-~15f, 13-435, 13-503ff
Packet structure, 13-504
Sample packet, 13~505
RVI (reverse interrupt), 9-8f, 13-540f, 13-587f, 13-590f, 13-604 (See
also, "Data-link control characters (DLCC)".)

?SACL system call, 4-1, 4-15, 13-149f, 13-206, 13-507f
?SACP offset, 13-139ff
Sample delimiter table, 13-367
Sample directory tree, illustration of, 4-5
Sample packets,
?IDEF system call, 13-239
?0PEN system call, 13-374ff
?PROC system call, 13-421ff
?PSTAT system call, 13-435ff
?RDB/?WRB system call, 13-451f
?READ/?WRITE system call, 13-470
?RUNTM system call, 13-505
?SEBL system call, 13-543
?SPAGE system call, 13-579
?TASK system call, 13-634f
?WHIST system call, 13-682
Sample pathname for generic files, 5-11
Sample process tree, illustration of, 3-12

Index~-86 Licensed Material-Property of Data General Corp. 093-000335-00

INDEX (Cont.)

Sample programs,
Description of file input/output (1/0), 5-2
File creation and management, 4-21ff
File input/output (I/0)
IPC, 7-19ff
Multitasking, 6-19ff
Process and memory, 3-23ff
Sample programs, TIMEOUT, 11-9f
?SATR system call, 4-1, 4-17, 13-509f
Save area, extended state, 12-11
Saving the state of memory parameters and tables, 3-17f
?SBER offset, 13-558
?SBIAS system call, 13-151, 13-511f
?7SBUL offset, 13-602, 13-606
?SBUP offset, 13-590, 13-602, 13-604, 13-606
?SBYC offset, 13-586, 13-588, 13-602, 13-604, 13-606
?S8BYM offset, 13-586, 13-589, 13-602, 13-604
Scalar time value, converting with ?CTOD, 13-55f
Scalar values,
Converting dates to with ?FDAY, 13-127f
Converting time to with ?FTOD, 13-147
Scheduling,
Another process for executioun with ?RESCHED, 3-14
Disabling task, 6-11, 6-18f, 13-87f (See also, "Tasks".)
Enabling multitask, 13-101f
Influencing task, 6-6 (See also, "Tasks'".
Process, 3-14
Re-enabling task, 6-11 (See also, "Tasks",
Task, 6-10f (See also, "Tasks".
Scheme, memory, 3-3f
?SCHN offset, 13-536
?SCHR system call, 5-1, 5-16, 5-18, 13-513ff
?SCLOSE system call, 2-1, 2-7, 2-10, 13-509ff, 13-572, 13-519f
SCP (System Control Processor), 5~10 (See also, "Devices'.
?SCPS offset, 13-142
Screen management primitives (?READ/?WRITE system call packet),
13-462ff
?8CSH offset, 13-139ff
?SDAD offset, 13-586, 13-589
?SDAY system call, 11-3
?SDAY system call, 13-521f, 13-615
?8DBL system call, 9-2, 13-523, 13-608
?SDCU offset, 13-139f
?7SDEH offset, 13-139f, 13-142
?SDLM system call, 5-1, 13-368, 13-525ff

093-000335-00 Licensed Material-Property of Data General Corp. Index—87

INDEX (Cont.)

?8DPOL system call, 9-6, 13-529ff
?SDRT/?SERT system call, 9-6, 13-533f
Search list, 4-8, 4-10
Creating with ?SLIST, 4-8
Definition of, 4-8
Examining current with ?GLIST, 4-8
Format, 13-569
Getting contents of with ?GLIST, 13-175f
Setting for calling process with ?SLIST, 13-569f
?SEBL system call, 9-2, 9-4, 9-6, 9-13, 9-20, 13-523, 13-535ff
Connect time-out, 13-543
Packet structure, 13-536
Sample packet, 13-543
?SECHR system call, 5-1, 5~18, 13-168, 13-545ff
Secondary station, definition of, 9-3
?SEFH offset, 13-139ff
?SEFM offset, 13-139ff
?SEFW offset, 13-139ff
Segment image, 2-8, 6~9, 8-6
Segments, 2-3, 2-7
Definition of, 2-2
Illustration of with their protection rings, 2-3
Select address/poll address pair, defining with ?SDPOL, 13-529ff
Selected field translation extension (?READ/?WRITE system call
packet), 13-466ff
Selecting, definition of, 9-5
Selection and polling, multipoint line, 9-4ff
Send and receive headers,
Contents of IPC, 7-7
IPC, 7-5ff (See also, "Interprocess communications
Structure of IPC, 7-6
Send continue calls, 13-604, 13-607ff (See also, "?SSND system
call".)
Send initial calls, 13-604, 13-606ff (See also, "?SSND system call".)
?S8END system call, 5-1, 5-14, 8-4, 13-549ff
Sending
and then receiving IPC messages, 13-289ff
data or control sequences over BSC lines with ?SSND, 9-2,
13~601ff (See also, "Binary synchronous
communications (BSC)".)
intertask messages and waiting for receipt with ?XMTW, 13-695f
intertask messages with ?XMT, 13-693f
IPC messages to itself, 7-8f
messages between IPC ports, 7-2ff
messages to consoles with ?S8END, 13-549ff
text over BSC line, 9-7

Index—~88 Licensed Material-Property of Data General Corp. 093-000335-00

INDEX (Cont.)

Sequences,
Disabling interrupt, 13-311
Re—~enabling interrupt, 13-313
Simulating keyboard interrupt, 13-309f
Typical IPC system call, 7-4f (See also, "Interprocess
communications (IPC) facility".)
Waiting for interrupt, 13-315f
?SERMSG system call, 13-553f
'~ Packet contents, 13-554
Packet structure, 13-554
?SERT system call (See "?SDRT/?SERT system call".)
?SERVE system call, 8-1ff, 8-6, 13-34, 13-485, 13-555f
Server process, 8-4f
Defining, 8-2
Server-only system call (?CTERM), 8-5
Servers,
Becoming with ?SERVE, 13-555f (See also, "Connection-management
facility".)
Establishing logical connection between customer and existing,
8-2
Inner-ring, 2-7f, 6-16
Local, 2-7, 6-16
Managing exchanges between customers and, 8-2
Passing a connection to another server, 13-387f 13-395ff
Resigning as server with ?RESIGN, 13-485f (See also,
"Connection-management facility".)
Signaling resignation with ?RESIGN, 8-4
Servers concurrently connected to multiple rings within customer, 8-6
Service, user interrupt, 10~6f
Set, working (See "Working set".)
Setting
access control list (ACL) for files or directories with
?8ACL, 4-15, 13-507f (See also, "Access control
list (ACL)".)
bias factors with ?SBIAS, 13-511f
character device’s characteristics with ?SCHR, 13-513ff
clearing, or examining default ACL with ?DACL, 4-15, 13-59f (See
also, "Access control list (ACL)".)
clearing, or examining execute~-protection status with ?EXPO,
13-123ff (See also, "?EXPO system call".)
data channel map, 13-611ff
delimiter table, 13-367f, 13-525ff
extended characteristics of character device, 13-545ff
file~pointer position with ?SP0S, 13-581ff
maximum CPU time for processes, 13~420
maximum size for control point directory, 13-37f

093-000335~00 Licensed Material-Property of Data General Corp. Index—-89

INDEX (Cont.)

Setting (Cont.)
permanent attribute for file or directory with ?SATR, 4-17,
13-509f
search list for calling process with ?SLIST, 13~-569f
system calendar with ?SDAY, 13-521f
system clock with ?STOD, 13-615
system identifier with ?S8SID, 13-599f
time-out value for devices, 13-617f
working set size for processes, 13-420f
Settings, file-pointer, 13-582
Severity bits, 13-488f
?SFAH offset, 13-139ff
?SGES system call, 13-557ff
Packet contents, 13-558
Packet structure, 13-558
Sample packet, 13-559
Shared access,
Closing files previously opened for, 13-519f
Opening files for, 2-6, 13-571f (See also, "70PEN system call"
and '"Shared files".
Shared area, Defining with assembly language pseudo-ops, 2-6
Shared file memory pages, flushing to disk, 13-103f
Shared files,
Closing (See "?SCLOSE system call".)
Flushing memory pages to disk (See "?ESFF system call'.)
Opening, 2-7 (See also, "?SOPEN system call'.)
Protected, 2-7f, 3-20
Opening, 2-7f, 13-573ff (See also, "SOPPF system call".)
Permitting access to (See "PMTPF system call".)
Shared pages, 2-4, 2-6f, 2-9ff
Definition of, 2-2
Flushing contents to disk with ?FLUSH, 13-135f
Illustration of, 2-5
Reading and incrementing use count for (See "?SPAGE system call".)
Releasing and decrementing use count for (See "?RPAGE system
call.)
Updating modified, 13-135f
Ways to use, 2~6
Shared partitions,
Establishing new size of with ?SSHPT, 13-597f
Listing current size of with ?GSHPT, 13-201f
Shared-page read, performing with ?SPAGE, 13-577ff
?7SHFS offset, 13-140f
?SIDX offset, 13-139ff
Signal, waiting for from another task/process, 13-691f

Index-90 Licensed Material-Property of Data General Corp. 093-000335-00

INDEX (Cont.)

Signaling
another task, 13-561f
another task and then waiting for signal, 13-563f
server resignation with ?RESIGN, 8-4
with fast interprocess communication system call, 8-8f
?SIGNL system call, 8-1, 8-4, 8-8, 13-561f, 13-564, 13-691
?SIGWT system call, 8-1, 8-8, 13-562ff, 13-691
?S81ID offset, 13-566
?STLN offset, 13-566
?SIMM offset, 13-566
Simple process name, 3-7f
Getting username associated with, 3-8 (See also, "?GUNM system
call",)
Simulating keyboard interrupt sequences with ?KINTR, 13-309f
?SINFO system call, 13-565ff
Packet structure, 13-566
Sample packet, 13-567
?SIRL offset, 13-602, 13-604ff
?SIRN offset, 13-566
?SIRS offset, 13-566
Sixteen—-bit processes, Chapter 12
Illustration of basic overlay area, 12-3
Illustration of multiple overlay area, 12-4
Illustration of passing a procedure entry descriptor via the
stack, 12-6
Linking object modules to form program files, 12-4
Memory modificastion with disk images, 12-2
Overlays (See "Overlays".)
Primitive overlay system calls (See "Overlays".)
Resource system calls (See also, '"Resource system calls" and
individual system call entries for additional
references".)
?DELAY, 12-1
?GCRB, 12-1
?IDSTAT, 12-1
?1IESS, 12-1
?IHIST, 12-1
?7KCALL, 12-1
?70VEX, 12-1
?20VKIL, 12-1
20VLOD, 12-1
?0VREL, 12-1
?RCALL, 12-1
?RCHAIN, 12-1
?SERMSG, 12-1

093-000335-00 Licensed Material-Property of Data General Corp. Index-91

INDEX (Cont.)

Sixteen—-bit processes (Cont.)
Resource system calls (Cont.)
?2UNWIND, 12-1
7WALKBACK, 12-1
Starting histograms for, 13-257ff
Termination messages for, 7-10ff
?TRAP termination messages, 7-13
Sixteen—-bit tasks,
Suspending for specified interval with ?DELAY, 13-73f
Synchronizing with ?DELAY, 13-73f
Size,
Hash frame, 13-140
Listing current shared partition, 13-201f
Shared partition,
Establishing new (See "?SSHPT system call".)
Listing (See "?GSHPT system call".)
Specifying file-element, 4-2
Specifying initial stack, 6-8f (See also, "Stacks".
Working set, 3-3
?SLAU offset, 13-141f
?SLIST system call, 4-1, 4-8, 13-176, 13-569f
@SLNx device name, 9-2
Slots, map, 10-3ff (See also, "Map slots".)
?SMCH offset, 13-413, 13-417
?7SMDT offset, 13-536
?8MIL offset, 13-138, 13-141f
?8MSH offset, 13-140f
?7SMSL offset, 13-141
?SNKC offset, 13-558
Software modularity, 2-2
SOH (start-of-header), 9-8f, 13-541 (See also, "Data-link control
characters".)
Son processes, creating, 3-11
Sons,
Assigning higher priority to than father, 3-10
Creating unlimited number of, 3-10f
Creating with any process type, 3-10
Creating with different program file types, 3-10
Creating with different usernames, 3-10
Defining working-set parameters for, 3-10
Passing Superprocess privileges to, 3-13
Passing Superuser privileges to, 3-12
?S0PEN system call, 2-1, 2-6, 2~10, 13-135, 13-216, 13-223f, 13-519f,
13-571f€, 13-577, 13-598
?SOPN offset, 13-139ff
?S0PPF system call, 2-1, 2-7f, 2-10, 13-391, 13-573ff
Packet contents, 13-574
Packet structure, 13-574

Index-92 Licensed Material—-Property of Data General Corp. 093-000335-00

INDEX (Cont.)

\\/ Source code, 4-9, 4-15
Source files, assembly language, 4-9 (See also, "Files".)
Space,
Allocating stack, 6-7f (See also, '"Stacks".
Controlling disk, 4-19f
Current (CS), 4~19f (See also, "Control point directories
(cpDs)".)
Disk, 4-2 (See also, "Disk space".)
Logical address, 3-2f
Maximum (MS), 4-19f (See also, "Control point directories
(cpps)".)
Virtual address, 3-3f
?SPAGE system call, 2-1, 2-6, 2~11, 13-577ff, 13-598
Packet contents, 13-578
Packet structure, 13-578
Sample packet, 13-579
Spanning rings, processes, 3-20f
Specification format for access control list (ACL), 13-508 (See also,
"Access control list (ACL)".)
Specifications, ACL (See "Access control 1list (ACL)".)
Specifications strings, 13-93ff
Format, 13-93
Messages, 13-94f
Switches, 13-94
K\// Specifications word, file, 13-363ff
Specified priority,
Killing tasks of, 13-409f
Readying tasks of, 13-425f
Suspending tasks of, 13-427f
Specifying
file formats, 5-19
file-element size, 4-2
size of initial stacks, 6-8f (See also, "Stacks".)
?7SPNH offset, 13-138ff
Spoolable peripheral directory (file type), 4-6
Spooled output, queuing files for, 11-6
Spooled output, queuing files for, 13-93ff
?SPOS system call, 5-1, 5~6, 13-581ff
?SPTM global port number (predefined origin port for obituary
messages), /-9, 8-6
.SR files, 4-9 (See also, "Files".
?SRCV system call, 9-2, 9-11ff, 9-16, 9-18f, 13-585ff, 13-608
Bit masks returned, 13-593
From multipoint control statiom, 13-591f
From multipoint tributary, 13-592f
From point~to-point statiomn, 13-591
Illustration of ITB receive buffer format, 13-594
Output values, 13-593f

093-000335-00 Licensed Material-Property of Data General Corp. Index—-93

INDEX (Cont.)

?SRCYV system call (Cont.)
Packet structure, 13-586
Receive continue calls, 13-590ff
Required input, 13-590
Types,
Receive continue, 13-589ff
Receive initial, 13-589
?SRES offset, 13-586, 13-588, 13-602, 13-604
?SSHPT system call, 2-1, 2-6, 2-9, 2-11, 13-202, 13-597
?8SID system call, 13-203, 13-599
?7881S offset, 13-586ff, 13-590, 13-592f, 13-602ff
?SSND system call, 9-2, 9-11, 9-13ff, 9-17, 13-601ff
Call types, 13-607ff
Input status word (?SSIS offset), 13-605f
Other offsets, 13-606
Packet contents, 13-603f
Packet structure, 13-602
Timing errors, 9-2
?7S8STI offset, 13-536
?7SSTS offset, 13-139ff
Flags returned in, 13-143
Structure, 13-143
?SSUP/?SBUP offset, 13-586, 13-588
.ST file, 13-216, 13-223
Stack fault handler, 6-7f (See also, "Stacks".
Stacks, 13-301
Allocating space, 6-7f
Defining, 6-7f
Forcing A0OS/VS to initialize common inner-ring, 6-9
Getting information about previous frames in, 13-675fd
How they work, 6-7
Illustration of passing procedure entry descriptor via the, 12-6
Inner-ring, 6-8ff
Limits, 6-8f
Pointer, 6-15
Specifying size of initial, 6-8f
Stack fault handler, 6-7f
Unwinding and restoring previous environment with ?UNWIND,
13-663f
User, 10-8f, 12-7
Wide (32 bits), 6-8ff
?STAH offset, 13-139ff
?STAL offset, 13-139ff
Standard directory file type, 13-43
Standard I/0 packet structure, 13-194
Start of header (SOH), 9-8f, 13-541 (See also, 'Data-link control
characters (DLCC)".)

Index~94 Licensed Material-Property of Data General Corp. 093-000335-00

INDEX (Cont.)

Start of text (STX), 9-8f, 13-540ff, 13-605 (See also, "Data-link
control characters (DLCC)".)
Starting histograms
for 16-bit processes with ?TIHIST, 13-257ff
for 32-bit processes with ?WHIST, 13-679ff
States,
Illustration of task, 6-11 (See also, "Tasks".
Process (See "Process states'.)
Stations, 9-1
Control, 9-4f
Primary (See "Primary station'".
Secondary (See "Secondary station".)
Tributary (See "Tributary station'.
Connecting two or more (See '"Dedicated communications line'", 9-1
Statistics,
Getting BSC error, 13-557ff (See also, "Binary synchronous
communications (BSC)".)
Getting BSC error-recovery, 9-13 (See also, "Binary synchronous
communications (BSC)".)
Process runtime, 13-~503ff (See also, "?RUNTM system call".)
Status,
Examining, clearing, or setting execute-protection, 13-123ff
Execute~protection, 3-16
Getting task, 13-641, 13-661f
LEF mode (See "Load-effective address (LEF) mode'.
Status file, 3-17
Status information,
File, 13-137ff
Process, 13-429ff (See also, "?PROC system call.)
EXEC, 13-119f
Status register, floating-point, 6-19
?STCH offset, 13-138ff
?8TCL offset, 13-139ff
Steps AOS/VS takes to check process creation parameter, 3-11
?7STIM offset, 13-139ff
?STMAP system call, 10-1, 10-4, 13-611ff
?STMH offset, 13—-139ff
?STML offset, 13-139ff
?STOC offset, 13-536, 13-543
?S8TOD system call, 11-3, 13-615
?STOM system call, 5-1, 13-617f, 13-617f
Stopping lower rings from being ringloaded (See "?RNGST system
call".)
?STOV offset, 13-586, 13-589, 13-591f, 13-602, 13-604
Strings, specifications (See "Specifictions strings".

093-000335-00 Licensed Material-Property of Data General Corp. Index—~95

INDEX (Cont.)

Structure,
A0S/VS file, 4-1
Array (See "Array structure".)
Disk file, 4-2ff
Error codes in ERMES file, 13-98
?EXEC system call packet for
dismount function ?XFDUN, 13-109
labeled mount function ?XFMLT, 13-108
labeled mount function ?XFXML (extended), 13-108
queue requests, 13-111, 13-118
status information, 13-120
unlabeled mount function ?XFMUN, 13-107
unlabeled mount function ?XFXUN (extended), 13-107
?GNFN system call packet, 13-182
?GTMES system call packet, 13-208
?GTRUNCATE system call packet, 13-220
Illustration of directory, 4-11
IPC send and receive headers, 7-6
Map definition table, 10-5f, 13-236
?MBFC/?MBTC system call packet, 13-338
Offset ?IUFL, 7-10
?0PEN system call extended packet for labeled magnetic tapes,
13-370
?PSTAT system call memory descriptor packet, 13-434
?PSTAT system call packet, 13-430
?READ/?WRITE system call packet, 13-456
For selected field translation (extended packet), 13-467
For screen management primitives, 13-463
Ring, 2-2ff
?RNGPR system call packet, 13~496
Standard I/0 packet, 13-194
?TASK system call extended packet, 13-632
?TASK system call packet, 13-628
?UIDSTAT system call, 13-662
?8TTO offset, 13-558
STX (start of text), 9-8f, 13-540ff, 13-605 (See also, "Data-link
control characters (DLCC)".)
?STYP offset, 13-138ff
Superprocess mode, 2-4, 3-12f, 3-15, 13-138ff, 13-638, 13-659f
Assigning privilege, 3-13
Changing state of another process with, 3-12
Examining, entering, or leaving (See "?SUPROC system call".)
Passing privilege to sons, 3-13
Privilege of turning on, 3-10, 3-12
Superuser mode, 3-12f, 4-15
Examining, entering, or leaving (See "?3USER system call".)
Passing privilege to sons, 3-12
Privilege of turning on, 3~10, 3-12, 13-333f

Index~96 Licensed Material-Property of Data General Corp. 093-000335-00

INDEX (Cont.)

Suppressing
console output with CTRL-0, 5-20 (See also, "Control
characters".)
obituary messages with bit ?COBIT, 8-5
?SUPROC system call, 3-1, 3-10, 3-13, 13-419, 13-619f, 13-624
?SUS system call, 6-1, 6-11ff, 13-409, 13-425, 13-621
?SUSER system call, 3-1, 3-10, 13-420, 13-623f
Suspended tasks, 6-10 (See also, "Tasks".)
Suspending
16~bit task for specified interval with ?DELAY, 13-73f
calling task with ?SUS, 13-621
tasks for specific time with ?WDELAY, 6~12, 13-677f (See also,
"Tasks".)
tasks of specified priority with ?PRSUS, 13-427f
Suspensions, lifting task, 13-241f
Swappable processes, 2-6, 3~5f, 3-14
Swapping to next reel of labeled magnetic tape, 13-133f
Switched communications lines, 9-1f
Switches,
/B specifications string, 13-94
/FORMS (CLI), 5-19
/H specifications string, 13-94
/MES=message specifications string, 13-94
/P specifications string, 13-94
?7S8YLOG system call, 13-334, 13-625f
Symbol, getting value of user, 13-223f
Symbol closest in value to specified input value, getting, 13-215f
Symbol table (.ST) file, 11-7
Accessing with ?GTNAM and ?GTSVL, 11-7
File type, 4-6
Opening using FED utility (See "?FEDFUNC system call'.)
Referencing without knowing its format, 13-215f
System-defined, 11~7
User-defined, 11-7
Symbols, 11-7
SYN (synchronization character), 9-10, 13-542 (See also, "Data-link
control characters".
Synchronization, fast interprocess (See "Fast interprocess
synchronization'".)
Synchronization character (SYN), 9-10, 13-542 (See also, "Data—link
control characters (DLCC)".)
Synchronizing 16-bit tasks with ?DELAY, 13~73f
Synchronous communications line (file type), 4-7
Syntax,
CLI DUMP command, 5-36
CLI MOUNT command, 5-35
:SYSLOG system log file, 11-5, 13-625f (See also, "System log file".)

093-000335~-00 Licensed Material-Property of Data General Corp. Index—-97

INDEX (Cont.)

System,
Identifying with ?GSID, 11-5
Operating (See "Operating systenm".)
System and user flags (IPC), 7-7ff
System calendar, setting with ?SDAY, 13-521f
System calls, Chapter 13 (See also, individual system call entries.)
Block input/output (I/0), 5-3
Clock/calendar, 11-3
Connection-management, 8-1 (See also, "Connection-management
facility".)
Context—-management, 2-10 (See also, "Context-management system
calls".
File input/output (I/0), 5-1
Logging, 13-329ff
Memory-management, 2-1 (See also, "Memory-management system
calls".
Miscellaneous, 11-1
Primitive overlays (See '"Overlays".)
Privilege to issue IPC, 3-10
Program information/control, 11-5
Record input/output (I/0), 5-3
Resource, 12-4ff
Server-only (?CTERM), 8-5
Sixteen-bit processes, 12-1
Typical IPC sequence, 7-4f (See also, "Interprocess
communications (IPC) facility".)
System clock, 13-55, 13-165, 13-171
Setting with ?ST0D, 13-615
Getting frequency for with ?GHRZ, 13-171f
System Control Processor (SCP), 5-10 (See also, "Devices".)
System crash, 5-6
System data file (file type), 4-6
System deadlock, 13-177
System devices, 4-10 (See also, '"Devices".
System flag word (offset ?ISFL), contents of, 7-8
System hierarchy, 3-8
System identifier, 13-566
Getting with ?GSID, 13-203f
Setting with ?SSID, 13-599f
System information, 11-5
System log file, :SYSLOG, 11-5, 13-625f
Entering events in, 13-333ff
Logging messages into with ?LOGEV, 11-5
Manipulating with ?SYLOG, 13-625f
Renaming, 13-626
System processes, 3-9
System resources, 3-3, 3-15, 3-19

Index-98 Licensed Material-Property of Data General Corp. 093-000335-00

INDEX (Cont.)

System rings, 2-3 (See also, "Rings".)

System root, 3-8f, 4-17

System—generation procedure, 4-2, 6-10, 9-2, 10-1, 13-151, 13-511,
13-521

?T32T extended code, 7-11 (See also, '"Process termination codes in
offset ?IUFL".)
Tables,
Connection (See '"Connection table".)
Interrupt vector (See "Interrupt vector table".)
Map definition (See "Map definition table".)
Sample delimiter, 13-367
Setting delimiter, 13-367f, 13-525ff
Structure of map definition, 10-5f
?TABR extended code, 7-11 (See also, "Process termination codes in
offset ?IUFL".)
Tailoring
?UTSK task—-initiation routine, 6-6f (See also, 'Tasks".
format of line~printer output, 5-19
Tandem, PID/ring (See "PID/ring tandem".
?TAOS code, 7-11 (See also, "Process termination codes in offset
?IUFL".)
Tape files, file type of generic labeled, 4-6
Tape unit, file type of magnetic, 4-7
Tapes (See also, '"Magnetic tapes'".
Controllers for labeled magnetic, 5-10 (See also, "Devices".)
Controllers for unlabeled magnetic, 5-10 (See also, '"Devices'".
File type of magnetic, 4-6
Forcing end-of-volume on labeled magnetic, 13-133f
Labeled magnetic, 5~10 (See also, '"Devices'.)
Magnetic (See '"Magnetic Tapes".
Target ring, 7-3
Task control blocks (TCBs), 13-249, 13-273
Task identifier (TID), 6-5, 6~15f
Changing task priority specified by, 13-245f
Getting for calling task with ?MYTID, 13-351
Getting unambiguous, 13-661f
Killing tasks specified by, 13-243f
Readying tasks specified by, 13-247f
Task rescheduling, disabling, 13-77f

093-000335-00 Licensed Material-Property of Data General Corp. Index-99

INDEX (Cont.)

Task scheduling,
Disabling, 6~11 (See also, "Tasks".
Re-enabling, 6-11 (See also, "Tasks".
Task states, Illustration of, 6-11 (See also, "Tasks".)
?TASK system call, 6-1, 6-6f, 6-9, 6-17, 13-82, 13-237f, 13-273f
13-627ff, 13-631ff
Aborting while ?UTSK is executing, 6-6 (See also, "Tasks".
Extended packet structure, 13-632
Packet contents, 13-629
Packet structure, 13-628
Sample packet, 13-634f
Task-initiation routine (?UTSK), 6-6f (See also, '"Tasks".
Task-management system calls, 6-1f (See individual system call entries
for additional references.)
?DFRSCH, 6-1
?DQTSK, 6-1
?DRSCH, 6-1
?ERSCH, 6-1
?1DGOTO, 6-1
?IDKIL, 6-1
?IDPRI, 6-1
?IDRDY, 6-1
?IDSTAT, 6-1
?2IDSUS, 6-1
?1IFPU, 6-1
?2IQTSK, 6-1
?KI1ILAD, 6-1
?KILL, 6-1
MYTID, 6-1
?PRI, 6-1
?PRKIL, 6-1
?PRRDY, 6-1
?PRSUS, 61
?REC, 6-1
?RECNW, 6-1
?SUS, 6-1
?TASK, 6-1
?TIDSTAT, 6-1
?TLOCK, 6-~1
?TRCON, 6-1
?TUNLOCK, 6-1
?UIDSTAT, 6-1
?WDELAY, 6-2
7XMT, 6-2
P7XMTW, 6-2
Task-redirection protection for inner rings, 6-13ff (See also,
"Tasks".
Task-termination routine, ?UKIL (See "Kill-processing routines".)

Index-100 Licensed Material-Property of Data General Corp. 093-000335-00

INDEX (Cont.)

Task-to-task communication, 6~17f (See also, "Tasks".
Tasks, Chapter 6
Aborting ?TASK while ?UTSK is executing, 6-6
Changing priority by specifying TID, 13-245f
Changing priority of calling, 13-403f
Circumstances under which A0S/VS reschedules, 6-10
Concepts, 6-3
Console-to~-task communication, 6~17
Creating manager for queued, 13-273f
Definition of, 3-2
Dequeuing previously queued, 13-81ff
Detecting termination and creation of, 6-16
Disabling scheduling with ?DRSCH, 6-11, 6-18f, 13-87f
Getting priority and TID for calling, 13-351
Getting status of, 13-641, 13-661f
Handling console interrupt, 13-271f
Illustration of states, 6-11
Influencing scheduling, 6-6
Initial, 6-6
Initiating, 6~6, 13-627ff
Inner~ring task-redirection protection, 6~13ff
Killing by specifying TID, 13-243f
Killing calling, 13-307f
Killing those with specified priority, 13-409f
Lifting suspensions, 13-241f
Locking/unlocking critical regions, 6~18f
Message-manager, 13-651f
Protecting from redirection, 13-643ff
Protection schemes, 6-4f (See also, "Tasks".
Ring maximization, 6-4
Ring specification, 6-4f
Queued task creation option, 6-7
Queued task manager, 6-7
Re—-enabling previously disabled scheduling, 6-11
Ready, 6-12
Readying, 6-12f (See also, "Tasks".)
by specifying TID, 13-247f
those with specified priority, 13-425f
Redirecting, 6-13
Redirecting execution path with ?IDGOTO, 13-241f
Scheduling, 6-10f
Sending intertask messages and waiting for receipt with 7XMIW
13-695f
Sending intertask messages with ?XMT, 13-695f
Sending messages from process console to, 13-651ff
Signaling, 13-561f, 13-562ff
Suspended, 6-10, 6-12

093-000335-00 Licensed Material-Property of Data General Corp. Index-101

INDEX (Cont.)

Tasks (Cont.)
Suspending
16~-bit for specified interval, 13-73f
calling, 13-621
for specified time with ?WDELAY, 6~12, 13-677f
those with specified priority, 13-427f
Synchronizing 16-bit with ?DELAY, 13-73f
Tailoring ?UTSK task-initiation routine to your appication, 6-6
Task-to-task communication, 6-17f
Terminating, 6-15
Using common local servers to pend/unpend (See "Fast
interprocess synchronization'.
Waiting for signal from another, 13-691f
?TATH offset, 13-43
?TBCX termination code, 7-11, 8-7, 13-54 (See also, '"Process
termination codes in offset ?IUFL".)
TCB (task control block), 3-17, 13-249
?TCCX code, 7-11, 8-7 (See also, "Process termination codes in offset
?IUFL".)
?TCIN code, 7-11, 7-13 (See '"Process termination codes in offset
?2IUFL".)
?TCTH offset, 13-43, 13-138
?TEFH offset, 13-220
7TEFM offset, 13-220
?TEFW offset, 13-220
Templates,
ACL, 4-16 (See also, "Access control list (ACL)".)
Pathname, 5-9
Temporary files, 4-9 (See also, "Files".
Temporary text delay (TTD), 9-10, 13-542, 13-604 (See also, 'Data-
link control characters (DLCC)".)
?TERM system call, 3-1ff, 3-8, 3-13, 7-11ff, 8-5, 13-54, 13-330,
13-485, 13-619, 13-637ff
Terminals (See '"Consoles".
Terminating
calling process and passing termination message to father
with ?RETURN, 13-487ff (See also, "?RETURN
system call".)
calling task with ?UKIL, 13-306f
connections, 8-5
current read with end-of-file character using CTRL-D, 5-20 (See
also, "Control characters".
customer processes with ?CTERM, 8-4, 13-53f (See also, '"?CTERM
system call,)
histograms with ?KHIST, 3-16 (See also, "?KHIST system call",)
process and creating break file, 3-18f (See also, "?BRKFL system
call".)

Index~102 Licensed Material-Property of Data General Corp. 093-000335-00

INDEX (Cont.)

Terminating (Cont.)
processes, 3-2f, 3-8
processes with ?TERM, 13-637ff (See also, "?TERM system call".)
tasks, 6-15 (See also, '"Tasks'.
Termination and creation detection (tasks), 6~16 (See also, "Tasks".
Termination code ?TBCX, 13~54 (See also, '"Process termination codes
in offset ?IUFL".)
Termination code ?TEXT, 7-11, 7-15f, 13-276, 13-278 (See also,
"Process termination codes in offset ?IUFL".)
Termination codes for 16-bit processes, 7-12 (See "Interprocess
communications (IPC) facility".)
?RFAB code, 7-12
?RFCF code, 7-12
?RFEC code, 7-12
?RFER code, 7-12
?RFWA code, 7-12
Termination codes in offset ?IUFL for ?IREC and ?ISEND headers,
process (See "Process termination codes in
offset ?IUFL".)
Termination messages, 8-7, 13-638 (See also, "Process termination
codes in offset ?IUFL".)
?TBVC, 8-7
16-bit processes, 7-10ff
32-bit processes, 7-14ff
Passing to father and terminating calling process with ?RETURN,
13-487ff
Termination messages in customer/server relationship, process, 7-9ff
(See also, "Connection-management facility".)
Terms, Definition of memory-management, 2-1f
Text associated with error code, getting, 13-553f
?TEXT code termination messages sent on 32-bit process user trap,
7-11, 7-15f, 13-276, 13-278 (See also, "Process
termination codes in offset ?IUFL".)
Text editors, 4-2
Text files (file type ?FTXT), 4-6, 5-5
Text mode, transparent, 9-10
Text string associated with particular error code, 11-4
?TEXT termination code, 13-276, 13-278
Thirty-two-bit processes, termination messages for, 7-~14ff
?TIDSTAT system call, 6-1, 6-5, 13-641, 13~661
Time,
Converting to scalar value with ?FTOD, 13-147
ceu, 3-3
Getting with ?GTOD, 13-217
Time block (?CREATE system call), 13-55
Time slice, rescheduling current, 13-483f
Time stamp, 13-295

093-000335-00 Licensed Material-Property of Data General Corp. Index-103

INDEX (Cont.)

Time value, converting scalar, 13-55f
Time-out value, setting for devices, 13-617f
Time-out values, 13-592
TIMEOUT sample program, 11-9f
Timing errors (?SSND system call), 9-2
?TLOCK system call, 6-1, 6-14, 13-643ff, 13-657
?TLTH offset, 13-220
.TMP files, 4-9 (See also, "Files".)
?TMTH offset, 13-43
?TMYRING flag (?TLOCK system call), 6-14
?TPID system call, 11-7
?TPID system call, 13-647f
?TPLN termination message length (32-bit processes), 7-14
?TPORT system call, 7-1f, 13-285, 13-290, 13-649
?TR32 extended code, 7-11 (See also, "Process termination codes in
offset ?IUFL".)
Transferring
attributes to new program with ?CHAIN, 3~19
program control to Debugger utility with ?DEBUG, 11~5
Translating
host ID and PID into virtual PID with ?GVPID, 11-7
local port number into global equivalent with ?TPORT, 13-649
local port number to global equivalent with ?TPORT, 7-2 (See
also, "Interprocess communications (IPC)
facility".)
procedure name to procedure entry descriptor, 12-6
virtual PID into host ID and PID with ?TPID, 11-7, 13-647f
Transmitting intertask messages
and waiting for receipt with ?XMTW, 13-695f
from interrupt service routines with ?IXMT, 13-299f
with ?XMT, 13-693f
Transparent text mode, 9-10
Trap,
Creating break files for every process, 3-18
Process (See "Process trapping".)
User, 13-31
?TRAP termination messages for 16-bit processes, 7-11, 7-13
?TRCON system call, 6-1, 6-17, 13-651ff
Tree,
Illustration of sample directory, 4-5
Process, 3-11f
Illustration of, 3-12
Tributary station, 9-3ff, 9-6
?7TRUNCATE system call, 5-1, 5-6, 13-655f
Truncating files, 13-219ff
?TSELF code, 7-10f (See also "Process termination codes in offset
?21UFL".)
TSsup, 7-13

Index—-104 Liceunsed Material-Property of Data General Corp. 093-000335-00

INDEX (Cont.)

TTD (temporary text delay), 9-10, 13-542, 13-604 (See also, "Data-
link control characters (DLCC)".)
?TUNLOCK system call, 6-1, 6-14, 13-644, 13-657
Turning on Superprocess mode, 3-13
Privilege of, 3-10, 3-12
Turning on Superuser mode, privilege of, 3-10, 3-12
Type, creating sons with any process, 3-10
Type—~ahead buffer, emptying an echoing “C"C on console with CTRL-C
CTRL-C, 5-21 (See also, "Control sequences'".)
Types,
Changing process, 3-10 (See "?CTYPE system call".)
File access, 4-13f (See also, "Access privileges".)
File, 4-5
Process, 3-5f
Program file, 4-5
Typical IPC system call sequence, 7~4f (See also, "Interprocess
communications (IPC) facility".)

?UBLPR system call, 3-1, 3-12, 3-15, 6-12, 13-619, 13-659f
UDA {(user data area) (See "User data area (UDA)".)
?UDDRS offset, 10-2, 10-11, 13-234
?UDID offset, 13-236f
?2UDLN device control table (DCT) length, 10-2
?UDNS offset, 13-237f
?UDRS offset, 10-2, 13-234
?UDVBX offset, 10-2, 13-234f
?20DVIS offset, 10-2, 13-234f
?20DVMS offset, 10-2, 13-234f
7UDVMX offset, 10-2
20DVM offset, 13-234f
?2UIDSTAT system call, 6-1, 6~5, 6-16, 13-661f
Packet structure, 13-662
?7UKIL kill-processing routine, 6-15f, 13-243, 13-306f, 13-409 (See
also, "Kill-processing routines".)
Unblocking processes with ?UBLPR, 13~659f (See also, "?7UBLPR system
call'.)
When it occurs, 3-15
Undedicated pages, 2-9
Getting number of with ?GMEM, 13-177f
Returning curreat number of (See "?GMEM system call®.)
Unholding, holding, canceling queue requests, 13-117ff

093-000335-00 Licensed Material~Property of Data General Corp. Index-105

INDEX (Cont.)

Unique kill-processing routine, defining with ?KILAD, 6~15
Unique Storage Position (USP) pointers, 6~16
Unit mount, 13-106
Units,
Disk, 5-10 (See also, '"Devices".)
File type of disk, 4-6
File type of magnetic tape, 4-7
File type of multiprocessor communications, 4-7
Floating-point (See "Floating-point unit".)
Unlabeled magnetic tapes (See "Magnetic tapes".)
Unlocking/locking critical regions, 6~18f (See also, "Tasks'".)
Unpending/pending tasks via common local servers (See 'Fast
interprocess synchronization'.)
Unshared files, 13~667
Unshared memory pages, 2-2, 2-4, 2-6f, 2-9f (See also, "Unshared
pages".)
Changing number of in logical address space, 13-349f (See "?MEMI
system call".)
Unshared memory parameters, listing curreat, 13-347f (See "?MEM
system call",)
Unsupported device, establishing interface between A0S/VS operating
system and (See "?IDEF system call".)
Unused pages, 2-2, 2-9f
?UNWIND system call, 13-663f
Unwinding stack and restoring previous enviroument with ?UNWIND,
13-663£f
?UNWIRE system call, 3-1, 3-3, 13-665£f
Unwiring previously wired pages with ?UNWIRE, 13-665f
Uparrow (") pathname prefix, 4-10 (See also, "Pathnames".)
?UPDATE system call, 5-1, 5-6, 13-667f
Updating
histograms, 3-16
modified shared page, 13-135f
URT32.LB user runtime library, 6-6, 6-15
Use count, 2-4
Overlay, 12-10f
Reading shared page and incrementing (See "?SPAGE system call'.)
Releasing shared page and decrementing (See "?RPAGE system
call.)
User, privileged, 2-4
User and system flags (IPC), 7-7ff
User console or batch process information (See "?LOGEV system call".)
User context, 2-9
User data area (UDA), 5-19, 13-51f, 13-453f, 13-477
Creating with ?CRUDA, 13-51f
User data files, 4-5
File type ?FUDF, 4-6, 5-5

Index-106 Licensed Material-Property of Data General Corp. 093-000335-00

INDEX (Cont.)

User device support, Chapter 10 (See also, "User devices".)
Communicating from interrupt service routine, 10-9
Defining system devices, 10-1
Defining user devices with ?PVDV, 10-1, 13-233ff
Enabling and disabling access to all devices, 10-9f
Illustration of device control table (DCT), 10-2
Introducing devices to AOS/VS at execution time, 10-2,
System calls, 10-1 (See individual system call entries for

additional references.)
?DDIS, 10-1
?DEBL, 10-1
?IDEF, 10~1
?IMSG, 10-1
?IRMV, 10-1
?IXIT, 10-1
?2IXMT, 10-1
?LEFD, 10-1
?LEFE, 10-1
?LEFS, 10-1
?STMAP, 10-1
User devices,
Defining and accessing, 3-10
Defining with ?IDEF, 13-233ff
Disk drives, 10-1
Line printers, 10-1
Magnetic tape drives, 10-1
Removing from interrupt vector table with ?IRMV, 13-281f
User flag word (offset ?IUFL), 7-9 (See also, "Interprocess
comnunications (IPC) facility".)
Illustration of structure of, 7-10

User interrupt service, 10-6f

User processes, 3-9

User profile file (file type), 4-6

User rings, 2-3, 3-3 (See also, "Rings'".

Creating break files of specified, 3-19
Default, 2-3

User runtime library URT32.LB, 6-6

User stacks, 10-8f, 12-7

User symbol, getting value of with ?GTSVL, 13-223f

User trailer labels (See '"Labels'.

User traps, 7-12, 13-31

User volume labels, 5-27f (See "Labels".

User-visible logical address space, 3-3

Usernames, 3-7
Associated with PID, getting with ?GUNM, 3-8
Associated with simple process name, getting with ?GUNM, 3-8
Creating sons with different, 3-10
Getting process with ?GUNM, 13-225f

093-000335-00 Licensed Material-Property of Data General Corp. Index—107

INDEX (Cont.)

Using
common local servers to pend/unpend tasks (See "Fast
interprocess synchronization".)
?CREATE and ?DELETE on link entries, 4-13
IPC facility as communications device, 5-21f (See also,
"Interprocess communications (IPC) facility".)
USP (Unique Storage Position) pointers, 6-16
UsT, 3-17
?UTID offset, 13-662
Utilities, 4-2
CLI forms control (FCU), 13-453
CLI LABEL, 5-22, 13-319, 13-372
Debugger, 11-5, 13-71
DFMTR, 5-8
EXEC (See "EXEC utility".)
FCU (forms control), 5-19
File editor (FED) (See '"File editor (FED) utility".)
call".)
Interfaces to, 11-6
Link, 2-7, 3-2, 4-7, 6-6f, 12-2ff
Utility interfaces, 11-6
UTL (user trailer labels) (See '"Labels".)
?UTPRI offset, 13-662
?UTSK task—initiation routine, 6-6f, 6-16 (See also, "Tasks",.
?UTSTAT offset, 13-662
?7UUID offset, 13-662
UVL (user volume labels) (See '"Labels".)

?VALAD system call, 11-8, 13-669f

Valid ?CREATE file types, 13-40

Valid filename characters, 3-6

Valid pathname prefixes, 4-9f

Validating logical address, 13-669f

Values,
Converting scalar time, 13-55f
Getting current bias factor, 13-151f
Getting symbols closest in value to specified input, 13-215f
Getting user symbol, 13-223f
Time-out, 13-592

Variable-length records, 5-9

?VCUST system call, 8-1, 8-4, 13-671f

Index-108 Licensed Material-Property of Data General Corp. 093-000335-00

INDEX (Cont.)

Verifying
caller’s access privileges with ?VALAD, 11-8
customer, 13-673f
Ring 7 customer, 13-671f
ring number, 13-495ff
validity of address with ?VALAD, 11-8
Version Number field (labeled magnetic tapes), 5-28
Virtual address space, 2-4, 3-3f
Illustration of, 2-5
Virtual consoles, 13-309
Controlling console interrupts on, 11-3
Virtual PID, 11-7
Forming from host ID and PID with ?GVPID, 11-7
Getting with ?GVPID, 13-227
Translating into host ID and PID with ?TPID, 11-7
Volid (See "Volume identifier".
Volume identifiers, 5-22
Checking labeled magnetic tape, 13-27f

Requirements for, 5-25
Volume labels,

Contents of, 5-29

Contents of VOL1, 5-28
Volume sets of labeled magnetic tapes, 5-23
Voluntary process blocking, 3-14
?VRCUST system call, 8-1, 8-4, 13-673f

» 13-647fF

WACK (wait-before-transmit positive acknowledgment), 9-8, 9-10,
13-540, 13-542, 13-588, 13-593, 13-604, 13-607
(See also, "Data-link control characters
{(DLCC)Y".)
Wait-before-transmit positive acknowledgment (WACK), 9-8, 9-10,
13-540, 13-542, 13-588, 13-593, 13-604, 13-607
(See also, '"Data-link control characters
(pLcec)".)
Waiting for
console interrupt with ?KWAIT, 13-315f
signal from another task/process, 13-691f
?WALKBACK system call, 13-675f
Ways to use shared memory pages, 2-6
?WDELAY system call, 3-15, 6-2, 6-12, 13-73, 13-677f

093-000335-00 Licensed Material-Property of Data General Corp. Index-109

INDEX (Cont.)

?WHIST system call, 3-1, 3-15, 13-258, 13-303, 13-435, 13-505, 13-680
Packet structure, 13-680
Sample packet, 13~682
Wide stack (32 bits), 6-8ff
Wide-save instruction, 6-15
?WIRE system call, 2-9, 3-1, 3-3, 13-666, 13-683f
Wired pages, releasing previously, 13-665f
Wiring pages to working set, 13-683f (See also, "?WIRE system call",)
Word,
File specifications, 13-363ff
User flag, 7-9
Words copied to break file, 3-18
Working directory, 4-7, 4-10, 13-75
Changing, 4-8, 13-79f
Definition of, 4-7
Working set, 2-2, 2-4, 3-3f, 3-9
Controlling, 3-3
Defining parameters for sons, 3-10
Illustration of, 2-5
Permanently binding pages to (See "?WIRE system call"”.)
Setting size for processes, 13-420f
Size of, 3-3
Wiring pages to, 13-683f (See also, "?WIRE system call.)
?WRB system call, 5-1, 5-4, 5-7, 13-577 (See also, "?RDB/?WRB system
calls".
Write (?FACW) access, 3-19, 5-5, 13-90, 13-149, 13-508
?WRITE system call, 5-1, 5-4, 5-6, 5-13, 5-18, 5-22, 5-24, 6-11,
13-30, 13-193ff, 13-358f, 13-362f, 13-495ff,
13-582f, 13-667 (See also, "?READ/?WRITE system
calls",)
Write-protected pages, 2-1, 2-4
Writing physical blocks to disk, 13-397ff
Writing/reading user data area (UDA) with ?WRUDA/?RDUDA, 13-453f
WRTN instruction, 13-305
?WRUDA system call, 5-1, 5-19, 13-51 (See also, "?RDUDA/?WRUDA system
call’.)
?WISIG system call, 8-1, 8-4, 8-8, 13-561, 13-564, 13-691f

?XAFD offset, 13-111, 13-114, 13-117
?XAFT offset, 13-111, 13-117
?XDAT offset, 13-111f

Index-110 Licensed Material-Property of Data General Corp. 093-000335-00

?XDUL offset, 13-109
?7XDUT offset, 13~109

?XFBP offset, 13-111, 13-114, 13-117

?XFCAN cancel function, 13-117
?XFDUN mount function (See "?EXEC

system

?XFGS offset, 13-111, 13-113f, 13-117

?7XFHOL hold function, 13-117
?7XFMLT mount function (See "?EXEC
?7XFMUN mount function (See "?EXEC
?XFP1 offset, 13-118ff

?XFXML mount function (See "?EXEC
?7XFXUN mount function (See "?EXEC
?XIFC characteristic, 5~14

?XLMT offset, 13-111ff

?7XMLE offset, 13-108

?7XMLF offset, 13~108

?XMLL offset, 13-106, 13-108
7XMLR offset, 13-108

?7XMLS offset, 13-108

7XMLT offset, 13-106, 13-108
XMLV offset, 13-108

system
system

system
system

call".)
call".)
call".)

call”.)
call.)

INDEX (Cont.)

?XMT system call, 6-2, 6-17f, 13-87, 13-425, 13-473ff, 13-693ff

Broadcast option, 13-693

?XMIW system call, 6-2, 6-11f, 6-17f, 13-241, 13-409, 13-473ff,

13-694ff
?7XMUE offset, 13-107
?XMUF offset, 13-107
?2XMUL offset, 13-106f
?7XMUQ offset, 13-107
?7XMUR offset, 13-107
?7XMUS offset, 13-107
?XMUT offset, 13-106f, 13-110
?X0FC characteristic, 5-14
XOP ianstruction, 12-9
?XPBP offset, 13-111, 13-114
?XPRI offset, 13-111, 13-113
?XRES offset, 13-107ff
?XRES]1 offset, 13-111f
?XRFNC offset, 11-6
?XRFNC offset, 13-106f, 13-117ff
?XSEQ offset, 13-111, 13-114
7XTIM offset, 13-111f
7XTYP offset, 13-111f
?7XXWOL offset, 13-111, 13-115
?7XXW3 offset, 13-111, 13-116

093-000335-00 Licensed Material-Property of Data General Corp. Index—111

