¢y DataGeneral

o , Customer Documentation

“AOS/VS

~ Macroassembler (MASM{
Retference Manua

AOS/VS Macroassembler (MASM)
Reference Manual

093-000242-02

For the latest enhancements, cautions, documentation changes, and other information
on this product, please see the Release Notice (085-series) supplied with the sofiware.

Ordering No. 093-000242

Copyright © Data General Corporation, 1980, 1984, 1987
All Rights Reserved

Printed in the United States of America

Revision 02, August 1987

Licensed Material - Property of Data General Corporation

NOTICE

DATA GENERAL CORPORATION (DGC) HAS PREPARED THIS DOCUMENT FOR USE
BY DGC PERSONNEL, LICENSEES, AND CUSTOMERS. THE INFORMATION CONTAINED
HEREIN IS THE PROPERTY OF DGC; AND THE CONTENTS OF THIS MANUAL SHALL
NOT BE REPRODUCED IN WHOLE OR IN PART NOR USED OTHER THAN AS
ALLOWED IN THE DGC LICENSE AGREEMENT.

DGC reserves the right to make changes in specifications and other information contained in this
document without prior notice, and the reader should in all cases consult DGC to determine
whether any such changes have been made.

THE TERMS AND CONDITIONS GOVERNING THE SALE OF DGC HARDWARE
PRODUCTS AND THE LICENSING OF DGC SOFTWARE CONSIST SOLELY OF THOSE
SET FORTH IN THE WRITTEN CONTRACTS BETWEEN DGC AND ITS CUSTOMERS. NO
REPRESENTATION OR OTHER AFFIRMATION OF FACT CONTAINED IN THIS
DOCUMENT INCLUDING BUT NOT LIMITED TO STATEMENTS REGARDING
CAPACITY, RESPONSE-TIME PERFORMANCE, SUITABILITY FOR USE OR
PERFORMANCE OF PRODUCTS DESCRIBED HEREIN SHALL BE DEEMED TO BE A
WARRANTY BY DGC FOR ANY PURPOSE, OR GIVE RISE TO ANY LIABILITY OF DGC
WHATSOEVER.

This software is made available solely pursuant to the terms of a DGC license agreement which
governs its use.

CEOQ, DASHER, DATAPREP, DESKTOP GENERATION, ECLIPSE, ECLIPSE MYV/4000,
ECLIPSE MV/6000, ECLIPSE MY/8000, GENAP, INFOS, MANAP, microNOVA,

NOVA, PRESENT, PROXI, SWAT, and TRENDVIEW are U.S. registered trademarks of

Data General Corporation, and AOSMAGIC, AOS/VSMAGIC, ArrayPlus, AWE/4000,
AWE/8000, AWE10000, BusiGEN, BusiPEN, BusiTEXT, COMPUCALC, CEO Connection,

CEOQO Drawing Board, CEO DXA, CEO Wordview, CEOwrite, CSMAGIC, DASHER/One,
DASHER/286, DATA GENERAL/One, DESKTOP/UX, DG/DBUS, DGConnect, DG/Fontstyles,
DG/GATE, DG/L, DG/STAGE, DG/UX, DG/XAP, ECLIPSE MYV/2000,

ECLIPSE MYV/7800, ECLIPSE MV/10000, ECLIPSE MV/15000, ECLIPSE MYV/20000,
FORMA-TEXT, GATEKEEPER, GDC/1000, GDC/2400, GW/4000, GW/8000, GW/10000,
microECLIPSE, microMV, MV/UX, PC Liaison, RASS, REV-UP, SPARE MAIL, TEO, TEO/3D,
TEO/Electronics, TURBO/4, UNITE, and XODIAC are trademarks of Data General Corporation.

AOS/VS Macroassembler (MASM)
Reference Manual
093-000242-02

Revision History: Effective with:
Original Release — November 1980

First Revision - February 1984

Second Revision — August 1987 AOS/VS REV. 7.50

A vertical bar in the margin of a page indicates substantive change from the
previous revision.

Licensed Material — Property of Data General Corporation

Preface

Preface

This manual describes the use and operation of the AOS/VS Macroassembler (MASM)
utility. It assumes you have assembly language programming experience and are familiar
with the ECLIPSE® MV/Family 32-bit assembly language instruction set.

We have written this manual as a reference tool. The following list summarizes the
contents of each chapter and appendix.

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 3

Chapter 6
Chapter 7
Chapter 8

Appendix A
Appendix B
Appendix C
Appendix D

093-000242

Introduces the AOS/VS Macroassembler, explains its purpose, and
highlights its special capabilities. It also explains the simplest use of
MASM.

Describes the input you pass to the Macroassembler. This chapter is

broken into three distinct parts: statement components (e.g., numbers,
symbols, expressions), statement format (e.g., labels, comments), and
statement types (e.g., instructions, pseudo-ops, assignments).

Explains how MASM assembles your program. You need not read all of
this chapter to use MASM correctly. You should, however, review the
sections on memory partitions and relocatability.

Describes the various forms of output that MASM can produce during an
assembly; i.e., object file, assembly listing, cross-reference listing, and
error listing.

Describes the macro facility. It also explains how to use generated
numbers and symbols.

Describes the various types of pseudo-ops you can use in your program.
Provides detailed descriptions of the pseudo-ops, in alphabetical order.

Explains the command line that invokes the Macroassembler. This chapter
also describes how to link and execute your program, and how to use a
permanent symbol table.

Contains the ASCII character set.
Lists the MASM pseudo-ops.
Lists and describes all assembly and command line errors.

Lists incompatibilities between AOS MASM, AOS/VS MASM, and
AOS/VS MASMI16.

Licensed Material--Property of Data General Corporation ili

Preface

Suggested Manuals

Many concepts we mention in this manual are documented in greater depth in other Data
General publications. In certain instances, you may need to refer to one of the following
documents for further information:

® The AOS/VS Debugger and File Editor User’s Manual (093-000246) describes the
Debugger utility. The Debugger allows you to examine portions of your program
during execution. Use this utility to locate errors in your program.

® The AOS/VS Link and Library File Editor (LFE) User’s Manual (093-000245)
describes the Link utility in depth. After assembling your program, you must further
process it with Link to produce an executable program file.

® AOQOS/VS System Concepts (093-000335) and AOS/VS System Call Dictionary
(093-000241) document the AOS/VS system calls and system parameters. System
calls are predefined macros that perform commonly used operations.

® ECLIPSE® MV/Family 32-Bit Principles of Operation (014-000648) documents all
ECLIPSE® MV/Family 32-Bit assembly language instructions. This manual also
describes concepts specific to the ECLIPSE® MV/Family 32-Bit hardware.

Reader, Please Note:

We use these conventions for command formats in this manual:

COMMAND[required<[loptional> ...

Where Means
COMMAND You must enter the command as shown.
required You must enter some argument. Sometimes, we use
required ,
required ,
which means you must enter one¢ of the arguments. Don’t enter the braces; they
only set off the choice.
<optional> You have the option of entering this argument.
Don't enter the angle brackets; they only set off what's optional.
You may repeat the preceding entry or entries. The explanation will tell you exactly
what you may repeat.
| The box represents any combination of spaces, horizontal tabs, and one comma.
We generally use the box to separate a command and its arguments.
) This close parenthesis represents the CLI prompt.

Additionally, we use the symbol) to represent a statement terminator character.
Carriage return, form feed, and NEW LINE are all statement terminators.

Licensed Material--Property of Data General Corporation 093-000242

AT,

T

32—

Preface

We use the following format to present bit fields:
(o) 15
| i
16 31
| i

Bit 0 is the first bit; we call this the most significant bit. Bit 31 is the least significani bit
in a 32-bit sequence.

Note that we divide bit fields into 16-bit quantities. Each 16-bit segment is called a
word.

We represent sections of assembly language source code in the following font:

A=2 ;Initialize A and B.

B=4
X: 1 ;Location X contains a 1.
Y 3 ;Location Y contains a 3.

and 16-Bit Programs

32-bit programs include ECLIPSE MV/Family 32-Bit assembly language instructions and
run under the 32-bit AOS/VS operating system. 16-bit programs use 16-bit ECLIPSE
instructions and are usually designed to run under the 16-bit AOS. You can run both
16— and 32-bit programs under AOS/VS if you assemble and link them correctly.

You should use the AOS/VS Macroassembler to assemble all new assembly language
code, including both 16— and 32-bit programs. To assemble old AOS assembly language
source code under AOS/VS, you should use MASM16.

While AOS/VS MASM is faster, more reliable, and has more features and better error
checking, MASM16 has a few features that the newer assembler lacks. Older assembly
language source code may be dependent on those features. This is the reason for using
two different assemblers.

After assembling your 32— or 16-bit program, use the AOS/VS Link utility to produce a
program file. That is, regardless of which Macroassembler you use (AOS or AOS/VS),
you must always use the AOS/VS Link to produce an AOS/VS program file (i.e., a
program that will run under AOS/VS). The AOS/VS Link and Library File Editor (LFE)
User’s Manual provides more information on linking 32— and 16-bit programs.

Contacting Data General

If you have comments on this manual, please use the prepaid Comment Form that
appears after the Index. We want to know what you like and dislike about this manual.

If you need additional manuals, please use the enclosed TIPS order form (USA only) or
contact your Data General sales representative.

End of Preface

083-000242 Licensed Material--Property of Data General Corporation v

Contents

Introduction to the Macroassembler

Developing an Assembly Language Program "..........ot
Overview 0f MASM i et e e i e e
Macroassembler Input i
ASSEMDbLY .. i e e e
Macroassembler QUIPUL . .. oot i et et e
Special Features of MASM i
Simplest Use of MASM e e
Minimum Necessary Pseudo-Opsoov i,
Basic MASM Command Lineot

Input to the Macroassembler

L0 TN - Yot 1 =3 o =1 A
SOUICE SLAEIMENLS . o vt v oottt v n ettt er it in oo nneees
Statement COMPONENLS .+ ..t vttt v ittt ranronn ot entesaneens
Terminators and Delimiters . ..o v v ve it vttt it e

A B0 5= o -
Single Precision INtegers oottt

Double Precision INtEgers . ..o vt ettt eiei e e

Special Integer—Generating Formatso

Single Precision Floating—Point Constantsv.....
SYMDBOIS . .ottt e e
Symbol Names . oo v ittt e
SYMBOL TYPES « o o vttt it i e
Numeric Symbols i i e
Redefining Numeric Symbols i
Instruction Symbolso e

Macro Symbols ... v e
Defining Macro Symbols i i i
Redefining Macro Symbolsot
Pseudo-Op Symbols e
EXPIessiOns . oo oo vi it vit i iiie i e
OPETALOTS . .t ottt v ittt ia et

Unary OPErators .. oot vvtenreents oo anennsaaeanneeaiesns
Logical Operatorsveirtennerneeenee it aneeaensns
Relational Operatorsc.vuieinenareaniur oo nue.nn

Bit Alignment OPerators ovvuveretane et irenes oo

The S Operator « .. v v vt iii ettt

The B OPeratiOr .« oo vt iieiian e ettt

093-000242 Licensed Materlal--Property of Data General Corporation

vii

viii

Using Bit Alignment Operators With Symbols 2-26
Priority of Operatorsot ianii vt 2-27
Absolute Versus Relocatable Expressionscvvu... 2-29

Special ALOIMS ...ttt i e e s 2-29

AL SIgn (@) . oot e e e e 2-29
AsteriSkS (F*) ... s e e e e 2-30
Number Sign (#) e 2-30
Statement FOrmatttt it iiat e e it e 2-31
Labels & ottt e e e e e 2-32
Statement Body e e 2-33
L7011 1 1=Y oL - 2-33
Statement TYPes . .o o vt ittt i e e e e e e, 2-34
Assembly Language Instructions 2-34

1% £ X3 o 2-36
PseudO—OPs ..ot e e i e 2-36
ASSIENMENLS © . v vttt ittt i e e e e e 2-37
- - Y 2-38

The Assembly Process

Symbol INterpretation cv vt v et ittt e 3-2
Symbol Tablesot i i 3-4
Permanent Symbol Files i, 3-5
Syntax Checkingot i i i e i e 3-5
Processing Macros ... oo ittt i e e 3-8
Processing Macro Definitionsc.oiii i 3-8
Expanding Macroso vv it iiiiiiii ittt it ennan 3-8
Assigning LOCations vv vttt ittt it e 3-8
MEIMOTY ottt et ettt e e e 3-9
Logical Address Spaceccoiiii it 3-10
Location CoUNMteroiiiiiiiiiiiiiiaeiritn e, 3-11
Relocatable and Absolute Code it 3-11
Partition Attributesttt e 3-12
Partition TyPes . oottt e e e e e 3-13
Relocatability0 i i i i it it 3-15
Relocation Bases ... vvvueininmine sttt nninnesoroennnersan 3-15
Relocation Bases and Symbols, 3-18
Absolute Addresses Versus Absolute Values 3-19
Relocation Bases and Expressions 0. oo, 3-20
Absolute EXPressionseutritit i 3-20
Relocatable EXPressionsouiuiiiinerorenenreeninn.s 3-22
Resolving Relocatable EXpressionsc.ooveiiininnnn. . 3-23
Resolving Locations in Memory Reference Instructions 3-27
Supplying Both a Displacement and an Index 3-27
Supplying Only a Displacement Value 3-29
Using Literals in Memory Reference Instructions 3-31

Licensed Material--Property of Data General Corporation 093-000242

Output from the Macroassembler

Object File .. .v it e i e e 4-2
Assembly LiStNg . . o oo oot e e 4-2
Assembly Listing Control vvvie it 4-6
Listing Control Pseudo-Ops 4-6
AStErISKS (F*) vt e e e 4-7
Assembly StatiSticso vt iii i i e e e 4-7
Page SIZ€ ..ot vi i e e e 4-8
Cross—Reference LiStingooiitni i, 4-8
Cross—Reference Listing Control i, 4-9
Error Listing ..ottt et i e s 4-9
Error Listing Control o 4-11
Output Function Switches vttt e 4-11

Macros and Generated Numbers and Symbols

Macro Definitionoiiiiiiiiii i i e e 5-2

Arguments in Macro Definitionso i 5-3

Macro CallS ...t ittt e e e e e e 5-5

Calling Macros Without Argumentscooeteneernieennss.. 5-5

Calling Macros With Argumentsoututt e oineee e 5-6

Passing Special Characters and Null Arguments to Macros 5-7

Special Characters .. .o v v vr et s cn et ias e 5-7

NUll ATEUIMENLS & v v vt v i ittt ni e ae e 5-8

Macro Expansions in Assembly Listingso 5-9
Macro Related Pseudo—Ops . .o oo vv it 5-10
Loops and Conditionals in Macros 5-11
Macro Examples . .. oo v iie i i i e e e 5-12
Example 1: Logical OR ... v iit e 5-12
Example 2: IFF-THEN-ELSE ..ottt 5-13
Example 3: Factorialovvnvnen i 5-14
Example 4: Packed Decimalcoo i, 5-15
Generated Numbers and Symbolso 5-18

Types of Pseudo-Ops

Location Pseudo—OPps . .« vt ve it i e e 6-2
File Termination Pseudo—Ops . .« .ottt iie e iiiansnans 6-2
Conditional Assembly Pseudo—OPS ... vvvvvnvannenner e 6-3
Macro Assembly Pseudo—Ops ... cvivet i e 6-4
Data Formatting Pseudo—Ops ...t vvvenininentnein e 6-4
Literal Pseudo—0pSsc.otnnniininrneiii 6-5
Inter-module Communication Pseudo-Opso 6-5
Listing Control PSeudo—0ps .. v ot vt vetiiniin i 6-7
Stack Control Pseudo—Ops ... vve i ot it e 6-8
Radix Control Pseudo—OpPso vvvrenrenereenimnaeeiaateeens 6-8
Text String Pseudo—Ops « . oo vvvvvein e e 6-9
Symbol Table PSeudo—OpPS .. .vvvvvtvrirertieieienei 6-10
Miscellaneous Pseudo—OpS - .o vvveverreruen e iarareraas e 6-12

093-000242 Licensed Material--Property of Data General Corporation

7 Pseudo-Op Dictionary
8 Macroassembler Operating Procedures
MASM Command Line, ot i e 8-1
Command Line Switches i i 8-2
Linking and Executing Your Program, B-5
Filenames e e e 8-6
Permanent Symbol File i 8-7
Specifying a Permanent Symbol File for an Assembly 8-8
Permanent Symbol File Size 8-8
Symbol Length, .. i i 8-8
Appendixes
A ASCIl Character Set
B Pseudo-Op Summary
C Errors
D Compatibility between AOS MASM,

AOS/VS MASM16, and AOS/VS MASM

Licensed Material--Property of Data General Corporation 093-000242

Tables

PEYYTYREERYERRRYY
NHHO\M#&#NHO\M-&(})NH\DOO\]G\UIAL»NH

[= N e = N e N = e)N T~ U i S S ST e
lIIlIllIlllIIIIIlIlIII
O 0NN W
W N = O

I I
| SR T S UV R S N e o e

OOOO\‘I\]\]T]\]O\O\O\O\G\

093-000242

Special Characters . .. vvvvvviru ettt et 2-3
Statement Terminatorsottt eiiine et onneeenas 2-6
DElimteTS « v vt e e e s 2-17
Digit RePresentations . ..o vv v vrn e et eneeneannnear s 2-8
Sample Integer-Generating EXpressions vty 2-12
10015 - e - T T 2-21
Unary OPErators <. v vt vin e teiias i ety 2-22
Operator Priority Levels o oo, 2-27
Statement Field Delimiters oo iiin ey 2-31
Predefined Memory Partitionso 3-14
Assigning Addresses Within Partitions 0 e 3-16
Separately Assembled Modules With Similar Partitions 3-17
Relocatable EXPressionsv oo ivie e enaeneeay 3-26
MRI Index ValUes .. vvr ittt eians 3-28
MRI Displacement Valuescoiuiiieentirannnn. 3-29
Object Filename Hierarchy oo, 4-2
Assembly Listing Fieldso oo i 4-4
Assembly Listing Relocation Symbolsoeieririiananann... 4-4
Assembly Listing Control Pseudo-Opst 4-6
Cross—Reference Assignment Mnemonicsocvvivines o 4-8
Macroassembler Output Function Switches vt 4-12
Generated Symbols in Source and Listings, 5-19
Location Pseudo—Ops « ..t vttt 6-2
File Termination Pseudo-0ps oo, 6-3
Conditional Assembly Pseudo-Opsoy 6-3
Macro Assembly Pseudo-Opso i 6-4
Data Formatting Pseudo-Opst 6-5
Literal PSeudo~OPpS - -« oo vvvirer e e 6-5
Inter-module Communication Pseudo-Ops 6-7
Listing Control Pseudo-Opsvvvirvriianniiin. 6-8
Stack Control Pseudo—0ps . .o o 6-8
Radix Control Pseudo—Ops . .o oot iiii i 6-9
Text String Pseudo—Ops cvviv i 6-9
Symbol Table Pseudo-OpSs cvvvvt i 6-11
Miscellaneous Pseudo—Ops . ..o vvvei i e 6-12
.DUSR Assignments Versus Simple Assignments 7-40
NREL Partitions ..o vv v vt enonn e iiiiien st 7-97
NREL Partition NUMDbDEIS ...t c v vttt 7-98
PART Attribute Argumentsouenerenreernronrena 7-102
Numeric Representations in Various Bases 7-111
MASM Function SWitcheso vi i 8-3
MASM Argument Switches 8-5

Licensed Material--Property of Data General Corporation

xi

8-3 AQOS/VS Filename Extensions, 8-6
8-4 Object Filenamettt 8-6
B-1 Pseudo-Op SUMMATIY ...ttt it e B-1
C-1 MASM Command Line Errorsc.couiiiiieiiininnaan.. C-2
Cc-2 Assembly EITOrS ..ottt C-3

Xii Licensed Material--Property of Data General Corporation 093-000242

Figures

Ln-hhh-h(l))wwwb)l\)
e LY I S B RV, B SV I oS i o

093-000242

The Source Statement ovi ittt ittt ettt 2-5
Resolving Symbols e e e 3-3
Processing Source Statementsttt 3-6
Sorting Code into Memory Partitions oo, 3-9
Organization of Logical Address Space v, 3-10
Linking Modules With Similar Predefined Partitions 3-17
Sample Assembly Listingovnii i e 4-3
Sample Statistics Listing o i i e 4-17
Sample Cross-Reference Listingc o i, 4-9
Sample Error Listingttt 4-10
Macro Listing . . v vvn ittt e e e e e 5-9
Licensed Material--Property of Data General Corporation

xiii

Introduction to the Macroassembler

Introduction to the Macroassembler

A language is a set of representations, conventions, and rules that convey information in
a well-defined way. At the lowest level, a computer language consists of numeric codes
that represent computer hardware operations. The computer can readily understand this
numeric language, called machine language.

As an example, the following machine language code represents a branch instruction to
address 377g:

000377
000000 is the base value of the branch instruction and 377 is the location.

Coding a program that utilizes the many ECLIPSE® MV/Family 32-Bit machine language
instruction numbers would be a time—consuming, cumbersome process. Thus, for
programming convenience, we assign each machine language instruction a symbolic name
that has significance to us.

For example, the machine language instruction 000000 receives the name JMP and our
branch statement is now

JMP 377

This instruction is much simpler to read because the symbol JMP is similar to the English
word ‘jump’ and implies the operation that the corresponding machine level instruction
performs.

We may further simplify machine language by using symbols to represent locations as well
as instructions. In the last example, we could assign location 377 the symbolic name
LOC1. Our instruction would now be

JMP LOC1

093-000242 Licensed Material--Property of Data General Corporation 1-1

Introduction to the Macroassembler

This is relatively easy to read and understand; i.e., “Jump to location LOC1.”

The programming language that consists of symbols instead of numbers is called assembly
language. In general, each assembly language instruction corresponds to one machine
language instruction. Thus, assembly language provides the same set of operations as
machine language but is much simpler to use.

Unlike machine language, assembly language is not readily understood by the computer.
Thus, you must somehow translate your symbolic assembly language program into its
machine language equivalent. The Macroassembler, or MASM, is the program that
performs this translation operation.

Developing an Assembly Language Program

Before discussing the operation of the Macroassembler, we should briefly review the five
steps necessary to produce, execute, and debug an assembly language program.

1. Writing and editing your program - The {irst step in producing your program is, of
course, entering the appropriate assembly language instructions into the computer.
Normally, you will enter your program from a console using one of Data General’s
text editors. Your assembly language program is called a source module and, if stored
on disk, it resides in a source file. (By convention, source filenames end with the .SR
extension.)

2. Assembling your program - After you enter your program, invoke the Macroassembler
to translate your symbolic assembly language source module into its numeric machine
language equivalent. The Macroassembler places this machine language program,
called the object module, into a new file, called the object file. (The Macroassembler
always ends object filenames with the .OB extension.) If the Macroassembler detects
an error in your source module, you should edit and reassemble your source file
before continuing the program development process.

3. Linking your program - After a successful assembly, you must use the Link utility to
produce an executable program. Link pulls your object module(s) apart and
rearranges them into an image of your program reflecting how it will appear in
memory during execution. Link stores this image in a program file. (Link always ends
program filenames with the .PR extension.) As with the Macroassembler, the Link
utility may detect errors in your program. If so, you must edit, reassemble, and relink
your program to correct those errors.

4. Executing your program — After you successfully link you program, you can execute it
by typing

) XEQ program-filename)-

at your console. If your program runs smoothly and performs the appropriate actions,
the program development process is complete.

1-2 Licensed Material--Property of Data General Corporation 093-000242

Introduction to the Macroassembler

5. Debugging your program — Often, your program does not run correctly the first time.
It may

® ¢ither cause a runtime error
® or not perform the desired action(s)

In either case, you must debug your program (i.e., remove the errors or “bugs”).
Sometimes you can readily detect the problem. In these cases, simply correct the source
module. Then, reassemble and relink your program. If you cannot locate the error in
your source module, you may use the AOS/VS Debugger utility to examine portions of
your program during execution. Again, after locating the error, you must edit,
reassemble, and relink your program.

The above outline is meant as a very brief overview of assembly language programming.
The rest of this manual focuses on step 2, the assembly process. Refer to the Preface for
a list of manuals that describe the other programming steps.

Overview of MASM

The following sections of this manual briefly discuss the input you pass to the
Macroassembler, the assembly process, and the output that MASM produces. Chapters 2,
3, and 4 will discuss these topics in much greater detail.

Macroassembler Input

The source module you pass to the Macroassembler consists of characters grouped into a
series of source statements. In general, your source statements can

® perform operations at execution time
® contain data or
e direct the operation of the Macroassembler

Assembly

The Macroassembler reads the statements in your source module twice. During these two
passes through your program, MASM

® interprets symbols

® checks the syntax of your source statements

® resolves memory locations

® expands macros and system calls (we describe these later in this chapter)
Macroassembler Output

The Macroassembler can produce four types of output:

® object file

® assembly and cross-reference listing

® error listing

093-000242 Licensed Material--Property of Data General Corporation 1-3

Introduction to the Macroassembler

® permanent symbol file
The object file holds the machine language version of your source module.

The assembly listing allows you to compare your input with the Macroassembler’s output.
This listing contains your original source statements plus the numeric machine language
values produced by MASM. The cross-reference listing provides an alphabetic list of the
symbols you use in your program followed by their values. This listing is included as part
of the assembly listing.

The error listing contains information about all statements in your source module that
cause assembly errors.

The permanent symbol file holds symbol definitions for use in future assemblies. If you
use a permanent symbol file, you need not redefine frequently used symbols for each
assembly. The AOS/VS software package provides a standard permanent symbol file for
your use.

Special Features of MASM

As we have seen, the Macroassembler’s primary function is to translate your symbolic
assembly language program into its numeric machine language equivalent. During this
process, the Macroassembler can perform a variety of operations that increase your
programming power and, at the same time, simplify your source code.

The following is a partial list of these special Macroassembler features. Detailed
descriptions appear elsewhere in this manual. '

Symbolic location names As mentioned earlier, the Macroassembler allows you to
assign symbolic names, called labels, to memory locations.

Number representations You have two different internal number representations at
your disposal (integer, and floating—point).

Expression evaluation The Macroassembler provides arithmetic, logical, and
relational operators that you can use for number
manipulation.

Memory management The Macroassembler can either assign absolute addresses to

your object code or assign relocatable addresses that are
resolved at link time.

Repetitive assembly You can direct MASM to assemble a series of source
statements a specified number of times; that is, you can
implement a DO loop at assembly time.

Conditional assembly The Macroassembler allows you to conditionally assemble or
bypass a section of source code based on the evaluation of an
expression; in other words, you can implement an
IF-THEN-ELSE structure at assembly time.

16— and 32-bit data The Macroassembler can allocate either 16 or 32 bits of
placement memory for each data value in your source module.
Text string storage You can direct MASM to store in memory the ASCII codes

for any string of characters.

Radix control You can alter the radix (base) for numeric input to and listing
output from the Macroassembler.

Licensed Material--Property of Data General Corporation 093-000242

T,

Introduction to the Macroassembler

Assembler stack The Macroassembler provides a push—down stack that
operates at assembly time.

Intermodule You can assemble source modules separately and then link

communication them together into a single program file. These separately

assembled modules can share data and symbol definitions.

Macros The macro facility allows you to assign a symbolic name to a
series of source statements. Then, each time you want to
insert that source code, simply enter the assigned name. At
assembly time, the Macroassembler correctly expands the
macro name to the original source statements.

The Macroassembler supplies these and other programming tools to aid you in program
development. Note that the Link utility and the AOS/VS system calls (predefined
macros) provide further assembly language programming control. These two subjects are,
however, outside the realm of this manual. (See the Preface for a list of relevant
manuals.)

Simplest Use of MASM

In certain situations, you may not want to use the many advanced operations performed
by the Macroassembler. In the following two sections of this manual, we ignore these
special features and describe the simplest way for you to assemble your program.

Minimum Necessary Pseudo-Ops

Pseudo—-op directives are source statements that direct the assembly process. Your
program does not execute them; rather, MASM evaluates them and performs the
appropriate operations at assembly time.

Chapters 6 and 7 describe the various pseudo-ops in detail. Refer to those chapters for
clarification of any points we mention in the following discussion.

Generally, you should use at least three pseudo-ops in your source module:
e .TITLE

® a location directive

e END

.TITLE places a name in the object module for later use by Link and the Library File
Editor (LFE). MASM repeats this name at the top of each page in your assembly
listing.

The syntax for using .TITLE in your source module is
.TITLE name
where:
name is the name you want to assign to the object module

If you do not include a .TITLE pseudo-op in your source, MASM supplies the title
.MAIN, by default.

093-000242 Licensed Material--Property of Data General Corporation 1-5

Introduction to the Macroassembler

The second pseudo-op statement in your source module should inform the —
Macroassembler where in memory your program will reside at execution time. In most b
cases, your program will be relocatable and can reside anywhere in shared memory. The

pseudo-op statement that conveys this to the Macroassembler is

.NREL 1

If you do not include a location directive in your source module, the Macroassembler
begins assigning addresses at absolute location 0. Normally, you do not want to place
code below address 50g.

The third pseudo-op you should include in your source module is .END. The
Macroassembler does not process any source code that follows .END, so this should be
the last statement in your program.

When you issue the .END pseudo-op, you must supply a symbol that specifies a starting
address for execution of your program. Thus, the syntax for using .END is

.END label
where:
label is a symbolic name for the address where program execution will begin

In summary, the general format for your source module should be

.TITLE name
.NREL
label:

(your assembly
language program)

.END iabel
Again, Chapters 6 and 7 describe all pseudo-ops in detail.

We should point out that your source module should not contain assembly language I/0
(Input/Output) instructions if you intend to run your program under an operating system
(e.g., AOS/VS). Instead, you must use I/O system calls (predefined macros that handle
input and output for you). AOS/VS System Concepts and AOS/VS System Call Dictionary
describe the I/O system calls in detail.

Licensed Material--Property of Data General Corporation 093-000242

Introduction to the Macroassembler

Basic MASM Command Line

To assemble your source module, enter the following CLI command:

) XEQ MASM source-file)

where:
XEQ is a CLI command that executes a program
MASM is the name of the Macroassembler program (less the .PR extension)
source—file is the name of the file that contains your source module (the .SR

extension is optional)

During assembly, MASM creates a file to hold your object module. MASM assigns this
file the name of the source file (i.e., source-file), without the .SR extension (if any) and
with the .OB extension.

If the Macroassembler detects any errors in your source module, it reports them to the
generic file @OUTPUT.

As an example, suppose your source module resides in file PROG1.SR. The command
that assembles this file is

) XEQ MASM PROG1)
Note that you need not include the .SR extension on the name of the source file.

When you issue this command, the Macroassembler creates file PROG1.0B. At the end
of the assembly, this file contains your object module.

The above discussion summarizes the simplest way for you to assemble a program. The
Macroassembler provides you with many options at assembly time. For example, you can

® produce an assembly listing

® send errors to a specific file (i.e., besides @OUTPUT)

e specify the name for your object file

e suppress production of the object file

® receive statistics about the assembly

o direct MASM to distinguish between uppercase and lowercase letters

Chapter 8 describes these and other features of the MASM command line in detail. That
chapter also provides information on linking and executing your program.

End of Chapter

093-000242 Licensed Materlal--Property of Data General Corporation 1-7

Input to the Macroassembler

Input to the Macroassembler

The input you pass to the Macroassembler is in the form of one or more assembly
language source modules. In this chapter, we discuss the different elements that make up
a source module.

In most cases, you enter your source module with one of Data General’s text editors.
When you name a source file (i.e., a file that contains a source module), add the .SR
extension to the end of the filename (e.g., source file PROG.SR). Chapter 8 describes
the Macroassembler naming conventions for files in more detail. That chapter also
explains the Macroassembler operating procedures.

Character Set

Each source module consists of a string of ASCII characters. The AOS/VS
Macroassembler allows you to use the following characters in a source module:

® Uppercase and lowercase alphabetic characters: A through Z and a through z. By
default, the Macroassembler is not case sensitive (e.g., the symbols ‘START' and
‘start’ are the same). You can direct the Macroassembler to distinguish between
uppercase and lowercase characters by using the /ULC switch on the MASM
command line (see Chapter 8).

e Numerals: 0 through 9

® Question mark: ?

e TFormat control and end-of-line characters: carriage return, form feed, NEW
LINE, space, horizontal tab.

093-000242 Licensed Material--Property of Data General Corporation 2-1

2-2

Input to the Macroassembler

® Special characters:

E B S ** 0 1
$

The special characters have special meanings to the Macroassembler. Table 2-1 lists the
meaning of each special character and provides references for more information.

Do not use any of the following characters in your source module: null (ASCII 000g),
delete (ASCII 177g), control characters, or characters with the parity bit set to 1. If the
Macroassembler encounters one of these, it returns an error and ignores the illegal
character.

Appendix A lists the octal codes for each ASCII character.

Licensed Material--Property of Data General Corporation 093-000242

Input to the Macroassembler

Table 2-1 Special Characters

Character Meaning Reference

: {colon) Foliows all labels “Labels” - Chapter 2

; {semicolon) Precedes all comments “Comments” - Chapter 2

. (period) A pseudo-op symbol with the value and (.) pseudo-op description -
relocation property of the current Chapter 7
location counter
Indicates a decimal integer or a “Numbers” - Chapter 2
floating—point constant
May appear In symbol names “Symbol Names" - Chapter 2

,(comma) Delimits arguments “Terminators and Delimiters” -

Chapter 2
+(plus sign) Addition operator “Operators” ~ Chapter 2

-{minus sign)

* (asterisk)
/ (slash)
B(capital B)

S(capital S)

~(tilde)
&(ampersand)

| (exclamation point}
>(greater than)
<{less than)

=(equals sign)

‘(apostrophe)

“{quotation mark}

~{uparrow)

% (percent)

_(underscore)

\ (backslash)

Unary operator indicating a positive value
Subtraction operator

Unary operator indicating a negative value
Multiplication operator

Dlvislon operator

Single-precision bit alignment operator
(16 bits)

Double-precision bit alignment operator
(32 bits)

Unary NOT operator (l.e., complement)
Logical AND operator

Logical OR operator

Relational operator

Relational operator

Assigns a value to a symbol

Combines with other characters to form
relational operators

Converts two ASCIl characters to their
octal values

Converts an ASCII character to its octal
value

Identifies formal arguments in a macro
definition string

Terminates a macro definition string

Directs the assembler to ignore the
special meaning of a character that
appears in a macro definition string.
May appear in symbol names and can
be changed with .ESCHAR pseudo-op.

Generates numbers and symbols

“Unary Operators” — Chapter 2
“Operators” - Chapter 2
“Unary Operators” - Chapter 2
“Operators” - Chapter 2
“Operators”™ - Chapter 2

“Bit Alignment Operators” -
Chapter 2

“Bit Alignment Operators” -
Chapter 2

“Urinary Operators” - Chapter 2
“L.ogical Operatore” - Chapter 2
“Logical Operators” — Chapter 2
“Relational Operators” — Chapter 2
“Relational Operators” - Chapter 2
“Assignments” - Chapter 2

“Relational Operators” -
Chapter 2

“Speclal integer-Generating
Formats” — Chapter 2

“Special Integer-Generating
Formats” - Chapter 2

“Arguments in Macro
Definitions" -~ Chapter 5

“Macro Definition” — Chapter §

*Macro Definition” - Chapter 5

“Symbol Names™ - Chapter 2

“Generated Numbers and
Symbols” - Chapter §

093-000242

(continues)

Licensed Material--Property of Data General Corporation 2-3

Input to the Macroassembler

Table 2-1 Special Characters

Character Meaning Reference
E(capital E) Exponential notation indicator “Single Precision Floating-Point
Constants™ - Chapter 2
() (parentheses) May surround a number, symbol, or “Priority of Operators” -
expression to alter operator priority Chapter 2
[}(square brackets) May enclose arguments in a macro call “Macro Calls” ~ Chapter 5
** (double asterisks) No-listing indicator; suppresses listing of “Asterisks (**)" - Chapter 4

the source line

@ (at sign) Indirect addressing indicator; directs the “At Sign (@)" - Chapter 2
assembler to place a 1 in the indirect
addressing bit

#(number sign) No-load indicator; directs the assembler “Number Sign (#)" - Chapter 2
to place a 1 in the no-load bit

$(dollar sign) Expands to a 3-digit number inside macros “Generated Numbers and
if the /$ switch Is set Symbols” - Chapter 5

(concluded)

Source Statements

2-4

An assembly language source module consists of a series of source lines or statements. A

source statement is a sequence of ASCII characters terminated by an end-of-line A,
character (also called a statement terminator). Carriage return, form feed, and NEW '
LINE characters all act as statement terminators. In this manual, we use the symbol

L

to represent statement terminators.

Examples of source statements are

325).
XWLDA 5,L0CX)—
BEGIN: .ZREL ;LOWER PAGE ZERO RELOCATABLE).

A source statement can not be more that 132 characters in length. If a statement is more
that 132 characters long, the Macroassembler will truncate the line and return an error.

There are five different types of source statements. All consist of the same basic
components and all must conform to the same general format. Thus, we focus on three
distinct topics in the remainder of this chapter:

® statement components
® statement format
® statement types

Figure 2-1 outlines the major subjects under each of these three topics. The organization TN

of the following presentation closely conforms to that figure. Please note that the same
information may appear in several sections of this chapter, if appropriate.

Licensed Material--Property of Data General Corporation 093-000242

Input to the Macroassembler

INT-01027

Figure 2-1 The Source Statement

Statement Components

A source statement consists of one or more syntactic units, called atoms. Each atom is a
string of one or more ASCII characters that the Macroassembler views as a single entity.

093-000242 Licensed Material--Property of Data General Corporation 2-5

Input to the Macroassembler

There are four types of atoms:
® terminators and delimiters
® numbers

® gsymbols

® special atoms

In many cases, you combine these atoms to form expressions. An expression is a series of

symbols and/or numbers separated by operators. (As we shall see, an operator is a
delimiter atom.) For example, X+2 is an expression that consists of a symbol atom and a

number atom joined by the operator +.

Though an expression is not an atom, the Macroassembler often views an expression as a
single entity. For example, you can supply an expression as a single argument to an

instruction, pseudo-op, or macro call. In the instruction

LDA 0,X+2

the Macroassembler treats X+2 as a single entity distinct from the symbol LDA and the

number 0.

Thus, when discussing the major components of source statements, we should include
expressions along with the four types of atoms. Our list of basic statement components is

now

® terminators and delimiters
® numbers

¢ symbols

® expressions

® special atoms

In the following sections of this manual, we discuss each of these statement components

in detail.

Terminators and Delimiters

2-6

Terminators are characters that separate the source statements in your module. Table 2-2

lists the terminators, also called end-of-line characters.

Table 2-2 Statement Terminators

Character ASCIl Code (octal)
carriage return 015
form feed 014
NEW LINE 012

Licensed Material--Property of Data General Corporation

093-000242

./ I

Input to the Macroassembler

In this manual, we represent all terminators with the curved down arrow L

Delimiters are characters that separate numbers, symbols, and expressions from each
other within a single source statement. Table 2-3 lists and describes the various
delimiters.

Table 2-3 Delimiters

Symbol Description
[{(box) This symbol represents any combination of spaces, horizontal tabs, and one
comma.

= Assigns a value to the symbol preceding this sign.
The symbol preceding this character is a label.
: Indicates the beginning of a comment string.

+ - */BS Arithmetic operators.

== > < <= >= <> Relational operators.

&! o~ Loglcal operators.

{) May enclose a number, symbol, or expression,
[] May enclose the arguments in a macro call.

% Terminates a macro definition string.

Directs the Macroassembler to ighore the special meaning of a character that
appears in a macro definition string.

~

Numbers

The following discussion explains the various number representations you can use in a
source module, Number is a general term that refers to integers (whole numbers) and
floating—point constants (fractions and exponential values).

The Macroassembler allows you to use three different types of number representations:
® single precision integer, stored in one word (16 bits)

® double precision integer, stored in two words (32 bits)

e single precision floating—point constant, stored in two words (32 bits)

The Macroassembler interprets all integers as double precision (32 bits), by default. You
can alter this default storage mode by using the global data placement pseudo-op
.ENABLE or one of the local data placement pseudo-ops ((DWORD, .SWORD,
.UWORD, or .WORD). Refer to the pseudo-op descriptions in Chapter 7 and also to
“Data Placement” in Chapter 6 for more information.

Single and double precision integers can appear in expressions and data statements.
Single precision floating-point constants can only appear in data statements; not in
expressions.

Single Precision Integers

" The Macroassembler represents single precision integers as single 16-bit words in the
range 0 to 65,5354 (0 to 177,777g). You can use two’s complement notation to
represent any signed integer in the range —32,768.4 to +32,7674.

093-000242 Licensed Material--Property of Data General Corporation 2-7

2-8

Input to the Macroassembler

The first bit (bit 0) is the sign bit. If that bit equals 0, the integer is positive; if it equals
1, the integer is negative.

0 1 15

t } + Single Precision
| s | | Integer Representation

The format of a single precision integer in your source module is

<sign>d<d...><.>break

where:

sign is the integer’s sign; use - for negative numbers and + for positive
numbers. If you do not supply a sign, the Macroassembler assumes that
the integer is positive.

d is a digit in the range of the current input radix; must be in the range 0
through 9.

d... are optional digits in the range of the current input radix.
is an optional decimal point. The Macroassembler interprets the integer
as decimal (base 10) if you supply the decimal point.

break terminates the integer. The break character can be any delimiter or

terminator (see “Terminators and Delimiters” earlier in this chapter).

If a decimal point precedes the break character, the Macroassembler evaluates the
integer as decimal. If you omit the decimal point, the Macroassembler evaluates the
integer in the current input radix. You can set the input radix to any base from 8 to 20
(see the .RDX pseudo-op in Chapter 7). Table 2-4 shows the digit representations for
the various bases.

Table 2-4 Digit Representations

Radix (base) Highest Digit Highest Digit's
Decimal Value

8 7 7

9 8 8

10 9 9

11 A 10
12 B 11
13 C 12
14 D 13
15 E 14
16 F 15
17 G 16
18 H 17
19 1 18
20 J 19

Licensed Material--Property of Data General Corporation 093-000242

AT,

Input to the Macroassembler

When you select a radix of 11 or greater, your integers may contain letters that represent
digits. For example, in base 16, the number 2F represents the value 47,.

If the first digit of an integer starts with a letter, you must precede that integer with the
digit 0. Otherwise, the Macroassembler cannot distinguish the integer from a symbol. The
following examples of legal hexadecimal (base 16) integers help clarify this rule:

OF
0A45
6A9
OE333
45B
OB2F

You can end a single precision integer with any operator, delimiter, or terminator. All
operators are delimiters (we discuss operators later in this chapter).

Note that the bit alignment operator B is an exception to the above rule. If you are using
an input radix of 12 or greater, the Macroassembler interprets B as a digit. If you want
the Macroassembler to interpret B as the bit alignment operator, place the preceding
operand inside parentheses. For example,

.RDX 18 ;Input radix equals 18.

49B3 ;:The Macroassembler interprets B as
;a hexadecimal digit.

(49)B3 ;The Macroassembler interprets B as

;the bit alignment operator.

Refer to “Expressions” in this chapter for a description of the bit alignment operator B.

Double Precision Integers

The Macroassembler represents double precision integers in two consecutive words of
memory (32 bits). Using two’s complement notation, you can represent any signed integer
from —2,147,483,648,;, to +2,147,483,647,5. Unsigned double precision integers may
range from 0 to 4,294,967,295.

The first bit of the first word (bit 0) is the sign bit. If that bit equals 0, the integer is
positive; if it equals 1, then the integer is negative.

0 1 15

S

+—+
+-—+

Double Precision
16 31 Integer Representation

1
+
Il

T

+ — 4+

The general format for a double precision integer in a source module is
<sign>d<d...><.>break
where:

sign is the integer’s sign; use — for negative numbers and + for positive
numbers. If you do not supply a sign, the Macroassembler assumes that
the integer is positive.

093-000242 Licensed Material--Property of Data General Corporation 2-9

Input to the Macroassembler

d is a digit in the range of the current input radix; must be in the range 0
through 9.
d... are optional digits in the range of the current input radix.

is an optional decimal point. The Macroassembler interprets the integer
in base 10 if you supply the decimal point.

break terminates the integer. The break character can be any delimiter or
terminator (see “Terminators and Delimiters” earlier in this chapter).

According to this definition, all of the following are legal integers:
25 1320 -1 +241 -177777

Note that the input format for double precision integers is the same as for single precision
integers. Again, this format generates a double precision integer if the Macroassembler is
in 32-bit data placement mode (the default mode).

All information presented in the single precision integer discussion also applies to double
precision integers. Thus, .

e If a decimal point precedes the break character, the Macroassembler interprets that
integer as decimal.

® The first digit in each integer must be in the range 0 through 9. If the input radix is
11 or greater, your integer can contain letters (e.g., 3Fq). If the first digit of a
number is a letter, precede that letter with a zero (i.e., use 0FS5 instead of F5).

e If the input radix is 12 or greater, an operand that precedes the bit alighment
operator B must be within parentheses (e.g., (29)B5).

Refer to the previous section of this chapter (“Single Precision Integers”) for more
information on these three points.

For compatibility with other Data General assemblers, an integer can be forced to double
precision, regardless of the data placement mode, by appending a “D” to it.

According to this definition, all of the following are legal double-precision integers:

25D 1320.D -1D +241D -177777D

Special Integer-Generating Formats

Two special input formats convert ASCII characters to integers.

The first format converts a single ASCII character to its 8-bit octal value. The input
format is

a
where:
“ is a quotation mark that directs the Macroassembler to store the ASCII code
for the following character.
a represents any legal ASCII character (see “Character Set” at the beginning of

this chapter for a list of the legal characters).

Licensed Material--Property of Data General Corporation 093-000242

oy,

Input to the Macroassembler

The Macroassembler interprets only the character immediately following the quotation
mark. If you include extra characters, MASM assembles the first one correctly and
returns an error for the subsequent characters.

A few examples follow to illustrate the use of the quotation mark.

Input Octal Value

“5 65

“A 101

“ % 45

“%T 45 (the character T generates an error)

You can also use the quotation mark format as part of an expression. The following
examples illustrate this:

Input Octal Value
“A+4 101+4
“C*5 103*5
“H-"% 43-45

The Macroassembler packs the value generated by this format in the rightmost byte of
the second word in memory (i.e., in the least significant 8 bits). For example, the
Macroassembler stores “A as follows:

0 15

-4
}
| 0
+
'

1
T
1

T

16 23 24 31

| 0 | A I

If you are in 16-bit data placement mode, the Macroassembler stores only a
single-precision integer.

The second special integer—generating format converts up to two ASCII characters into an
integer. The format is

‘string’
where:
is an apostrophe; MASM requires you to enclose the ASCII characters
in apostrophies
string consists of any number of ASCII characters; the Macroassembler uses

only the first two characters in this string

093-000242 Licensed Materlal--Property of Data General Corporation 2-11

Input to the Macroassembler

The Macroassembler packs the octal values of string’s first two characters from left to RN
right in the second word (bits 16-31) of the integer. For example, the Macroassembler
stores both ‘AB’ and ‘ABCD’ as
0 15
| 0 |
16 23 24 31
| A | B |
If you supply only one character, the Macroassembler places the corresponding octal
value in the left byte of the second word. Thus, the Macroassembler stores ‘F’ as
o 15
+ +
| 0 I
16 23 24 31
| F l 0 |
Two apostrophes without an intervening character string generate an integer containing all
zeros (i.e., absolute zero).
If you are in 16-bit data placement mode, the Macroassembler stores only a —a
single—precision integer. P
You may use the two special integer—generating formats wherever the Macroassembler
allows you to use integers. Table 2-5 shows some simple expressions that use the special
formats.
Table 2-5 Sample Integer-Generating Expressions
Source Octal Value
“A 101
‘AB’ 40502
‘BA’ 41101
“ 0
“4+5-2 3
‘B’+5 41006
‘A’ 20101
“A+ A’ 40501
‘AA’ 40501
‘AABCD’ 40501
Single Precision Floating-Point Constants PSRN

2-12

Floating-point constants represent fractional and exponential values. We refer to these
numbers as constants because they cannot appear in expressions or assignments. They

Licensed Material--Property of Data General Corporation 093-000242

Input to the Macroassembler

may appear only in data statements and in special floating-point instructions (see the
ECLIPSE® MV/Family 32-Bit Principles of Operation manual).

The Macroassembler uses two contiguous words of memory (32 bits) to represent a single
precision floating-point number.

o 1 7 8 15
|S | exponent | mantissa |
bt t + Single Precision
Floating-Point
16 31 Constant
[mantissa |

Bit O is the sign bit. If that bit equals 0, the number is positive; if it equals 1, the
number is negative.

Exponent is the integer exponent of 16, expressed in excess—64,5 (100g) notation. The
Macroassembler represents exponents from -64,9 to +6345 with their binary equivalents
from 0 to 127, (0 to 177g). The Macroassembler represents a zero exponent as 100g.

The Macroassembler represents the mantissa as a 24-bit binary fraction. You may view
the mantissa as six 4-bit hexadecimal digits. The range of the mantissa’s magnitude is

16 -1 <= mantissa <= (1-168)

You can obtain the negative form of a floating—point number by using the unary negate
operator. This has the effect of complementing bit 0 (i.e., from 0 to 1, or from 1 to 0).
The exponent and mantissa remain the same.

The magnitude of a floating-point constant is

16 -1 * 16 -84 <= floating-point constant <= (1-168)*16%3
which is approximately

5.4*10 -79 <= floating—point constant <= 7.2*1075

The Macrossembler normalizes all nonzero floating-point numbers. A floating—point
number is normalized if the fraction (mantissa) is greater than or equal to 1/16 and less
than 1. In other words, the binary representation of a normalized number has a 1 in one
of the first four bits (8-11) of the mantissa. For example, if you specify the number
65.32, the Macroassembler converts it to .6532*102.

Much of the floating-point number source format is optional. The minimum format is
one digit, followed by either a decimal point or the letter E, followed by another digit.
Thus, the minimum floating-point number format is

E
d d break

For example, 3.5 and 6E2 are both floating—point constants.

093-000242 Licensed Material-—Property of Data General Corporation 2-13

Input to the Macroassembler

The complete source format for a single precision floating-point number is —

<sign>d<d...>.d<d...><E<sign>d<d>>break

or

<sign>d<d...>E<sign>d<d>break

where:

sign

E

break

indicates the sign of a value (positive or negative) and is one of the
following characters: + or —. If the sign appears before the number, then
it defines the sign of that number. If a sign character appears after the
letter E, then it defines the exponent’s sign. If you do not supply a
sign, the Macroassembler assumes that the value is positive.

is a digit in the range 0 through 9. The Macroassembler always
interprets the mantissa and exponent as decimal (e.g., 26.5 equals
.265*102 regardless of the current input radix).

are optional digits in the range of the current input radix.

is an optional decimal point. If you include a decimal point but do not
follow that point with either a digit or the letter E, the Macroassembler
stores the value as an integer, not a floating—point number.

indicates floating—point number representation. You must follow the E
with one or two digits representing the value of the exponent.

terminates the floating~point number. The break character can be any
delimiter or terminal (typically [; or)).

You can format the same floating—-point number with the letter E, a decimal point, or
both. For example,

Floating-Point Assembled
Constant Value

254.33 141376 052172
254.33E0 141376 052172
25433E-02 141376 052172
25433E-2 141376 052172
2543.3E-1 141376 052172
0.25433E03 141376 052172

The two octal numbers under the heading “Assembled Value” depict the two 16-bit
words that represent the floating—point constant’s value.

Licensed Material-—Property of Data General Corporation 093-000242

Input to the Macroassembler

If the current input radix is 15 or greater, the Macroassembler may interpret the letter E
! as a digit rather than the floating-point number indicator. To avoid ambiguity, precede
the exponential E with a period (.) when representing a floating-point constant. For

example,
.RDX 18 :Input radix is 16.
-5E3 ;E is a hexadecimal digit and ~-5E3 represents
;an integer.
-5.E3 ;E indicates floating-point number
;representation (i.e., -5%*10%).

The following examples show floating-point numbers and the corresponding values that
the Macroassembler stores.

Floating-Point Assembled
Constant Value
1.0 040420 000000
3.1415928 040462 041766
-1E0 140420 000000
+5.0E-1 040200 000000
+273.0E0 041421 010000
0.33E2 041041 000000
Symbols

Each assembly language source program you write will contain ASCII character strings
called symbols. Each symbol represents a binary number. One function of the
Macroassembler is to translate the symbols in your source program into their binary
machine language equivalents. Assembly language instructions (e.g., XWLDA),
pseudo-ops (e.g., .NREL), macros, and labels are all symbols.

Symbol Names

Every symbol in your source program must conform to the following syntax:

a...break

where:

a is the first character of the symbol and can be any upper— or lowercase
letter (A -~ Z, a - z), period (.), dollar sign ($), or question mark (?)

b represents succeeding characters in the symbol and can include uppercase
and lowercase letters (A — Z, a — z), numbers (0 -~ 9), period (.), dollar
sign (8), question mark (?), and underscore ()

break terminates the symbol; a break character can be any delimiter or
terminator (see “Terminators and Delimiters” earlier in this chapter)

o According to these rules, the following character strings are all legal symbols:

.START B12 EXIT_1 $Z

093000242 Licensed Materlal--Property of Data General Corporation 2-15

Input to the Macroassembler

The following strings are all illegal symbols; the first two strings do not begin with a
letter, period, question mark, or dollar sign, and the third string contains an illegal
character (i.e., %).

K4

12.3 4BIT SIZE%50

By default, the Macroassembler does not distinguish between uppercase and lowercase
letters. For example, the Macroassembler interprets the symbol ‘START’ the same as
the symbol ‘start’.

You can direct the Macroassembler to distinguish between uppercase and lowercase
letters by using the /ULC switch on the MASM command line. We define all
pseudo-ops, MV/Family 32-bit instruction mnemonics, system calls, and system
parameters in uppercase letters. Thus, if you use the /ULC switch, be sure to enter these
symbols in uppercase.

Also by default, MASM recognizes the first eight characters of a symbol. If you use
longer symbols, MASM ignores the excess characters but does not return an error. Thus,
the Macroassembler does not differentiate among the following three symbols (for symbol
length equal to 8):

ASSEMBLY1 ASSEMBLY2 ASSEMBLY_PROGRAM

To override the symbol length default value of 8, use the /SYMBOL= switch when

building your permanent symbol file. You can use this switch to set the symbol length to

any number of characters from 5 to 32 (as described in Table 8-1 and under “Symbol

Length” in Chapter 8). -

AT
If you include the underscore character in a symbol that appears in a macro definition,
precede that underscore character with another underscore (i.e., inside a macro, use
A_ _B to represent the symbol A_B). “Macro Definition” in Chapter 5 provides more
information on this subject.
If the /$ command-line switch is set, the meaning of the “S$” character is changed so
that it is no longer a valid symbol name character. Instead, it is replaced with a
three-digit character string wherever it occurs. A unique number is assigned to each
macro call, and this character string is a representation of that number. This number may
be used for generating unique symbol names inside of macros. See the section,
“Generated Numbers and Symbols” in Chapter S.
Symbol Types
The Macroassembler recognizes four classes of symbols:
® numeric symbols
® instruction symbols
® macro symbols
e pseudo-op symbols
Numeric Symbols
TN

Numeric symbols have a specific numeric value. Because of this value, numeric symbols
can be used in arithmetic expressions. A label is an example of a numeric symbol. The
numeric value of a label is the address with which it is associated.

2-16 Licensed Material-—Property of Data General Corporation 093-000242

Input to the Macroassembler

Note the following example:
VALUE = 3 &
START: XWLDA O, VALUE)

The first statement defines VALUE as a numeric symbol. VALUE is a variable with the
value 3.

The second statement defines START as a numeric symbol. START is a label whose
value is the current address.

Numeric symbols do not have syntaxes associated with their use. You can use them any
place you can use integers.

Numeric symbols can be either local or global. A /ocal symbol has a value only for the
duration of the single assembly in which it is defined. The value of a global symbol is
known at link time; thus, you can use it in separately assembled modules. “Inter-module
Communication” in Chapter 6 provides more information on this subject.

When choosing numeric symbols for your program, be sure they conform to the general
rules for symbol names presented earlier in this section. In addition, make sure that
your numeric symbols do not conflict with any pseudo-op, instruction, or macro symbols.
Though MASM permits it, we recommend that you not use the question mark (?) as the
first character in your numeric symbols; many system parameters provided by AOS/VS
begin with a question mark.

Redefining Numeric Symbols

Generally, you can change the value of a numeric symbol at any point in your program
(without using .XPNG). The following sequence of source statements is perfectly legal:

START: A=3
A=A+A
A=0

At the end of the above sequence, numeric symbol A has the value 0.

Remember that, contrary to the general rule, you can not modify the value of a label.
For example, the following code generates an error at assembly time:

.NREL 0
LOC1:

L.OC1=LOC1+100 ;ERROR - Do not redefine labels.

Instruction Symbols

Instruction symbols include all the symbols in the MV/Family 32-bit Assembly Language
Instruction Set. The Macroassembler software defines these symbols in an internal
permanent symbol table.

Like numeric symbols, instruction symbols also have an associated numeric value. Unlike
numeric symbols, however, instruction symbols also are associated with extra information
on the instruction’s syntax. This information includes how many words of memory the
instruction occupies, how many arguments the instruction requires, and other facts
pertinent to the instruction’s use.

093-000242 Licensed Material--Property of Data General Corporation 2-17

Input to the Macroassembler

Each instruction has a specific syntax. As an example, consider the assembly language
instruction XWLDA, which loads a value from memory into an accumulator. When
using XWLDA, you must specify an accumulator, a displacement value of 15 bits or less,
and, optionally, an addressing index. In addition, you may select an indirect addressing
mode by including the at sign character (@) in the source line’s address field. The
general syntax for XWLDA is

XWLDA[JACI«@>displacement<Jindex>

When the Macroassembler encounters an instruction symbol, it scans the line to make
sure the syntax is correct. If your source line does not conform to the syntax required
by the instruction symbol, the Macroassembler returns an error. If your source line is
syntactically correct, the Macroassembler sets bits in the appropriate fields of the
instruction according to the value of the symbol and its arguments.

For example, when the Macroassembler encounters the instruction symbol XWLDA, it
produces a 2-word instruction as follows:

012345 15
1

1 1
T T
+ 3
T

[01100011001

+—+
+—+

AC index operation code for XWLDA
16 17 31

Il !
T+ T
I :
T T

@ displacement

+—+

When specifying an argument to an instruction symbol, be sure the value of that
argument fits in the corresponding field of the instruction. If the field cannot contain the
value, MASM returns an error. For example:

FIVE: 5 ;Location FIVE contains the
;value 5.
XWLDA 6,FIVE ;ERROR: This source line will cause an

;error because the value 8 does not
;fit in the 2-bit field designated
ifor the first argument to XWLDA (the
;accumulator).

XWLDA 1,FIVE ;NO ERROR: The value 1 does fit into the
;field allocated for the accumulator.

2-18 Licensed Material-—Property of Data General Corporation 093-000242

[

Input to the Macroassembler

As a general rule, be sure that the absolute value of your argument conforms to the
following equation:

argument-value <= (2 (field-width) . 1)

where:
argument-value is a value that you pass to an instruction symbol
field—width is the number of bits in the field corresponding to

argument-value

To summarize the above discussion, the Macroassembler associates two formats with
every instruction symbol:

A syntax that describes the correct use of the symbol in a source line.
This format specifies the number of required and optional
arguments you may pass to the instruction.

An assembly format that describes the fields which receive the values of the
instruction symbol and its arguments. Be sure the argument
values you pass to an instruction symbol fit into the
corresponding fields.

The ECLIPSE® MV/Family 32-Bit Principles of Operation manual describes both of
these formats for every assembly language instruction symbol.

Macro Symbols

Macro symbols are associated with lines of text rather than with numeric values. These
symbols cannot, therefore, be used in arithmetic expressions. Like instructior: symbols,
macro symbols are associated with formats and can have arguments.

Every macro symbol represents a series of assembly language source statements.
Whenever you want to use those source statements in your program, simply place the
macro symbol on a source line. The Macroassembler automatically substitutes the correct
source statements for that symbol.

Defining Macro Symbols

Use the .MACRO pseudo-op to associate a series of source statements with a symbol.
You can choose any unique symbol name to represent those source statements.

The format for using .MACRO is

.MACRO[Jmacro-symbol
source-statements

%

We provide a complete discussion of macros in Chapter 5. Also, refer to the .MACRO
pseudo-op description in Chapter 7 for more information.

Redefining Macro Symbols

You use .XPNG to remove any macro symbol’s definition (including system call
definitions). After deleting a macro symbol’s definition, you can assign that symbol a new
value.

093-000242 Licensed Material--Property of Data General Corporation 2-19

Input to the Macroassembler

There is no way to reinstate a system call’s definition during an assembly after you
remove it. To reinstate other macros, you must list the appropriate source statements in
a .MACRO declaration.

Refer to the . XPNG pseudo-op description in Chapter 7 for more information on
redefining macro symbols.

Pseudo-Op Symbols

Pseudo-op symbols reside within the Macroassembler software (in the permanent symbol
table) and define all the pseudo-ops. The pseudo-ops serve two purposes:

® they direct the assembly process
® they represent numeric values of internal assembler variables

Pseudo-ops that direct the assembly process are called assembler directives. Pseudo-ops
that represent internal assembler variables are called value symbols. Some pseudo-ops
may be used as either assembler directives or value symbols.

You can use the .LOC pseudo-op, for example, as an assembler directive in the following
source code:

.LOC 100
.DWORD 5

This code uses the pseudo-op symbol .LOC to set the value of the location counter to
100. The Macroassembler then stores the number 5 in two memory words starting at A
absolute location 100.

The following source code, on the other hand, illustrates how you can use .LOC as a
value symbol:

. PUSH .LOC

This code uses the pseudo-op symbol .LOC to represent the current value of the location
counter. The Macroassembler pushes this value onto the stack. Appendix B provides a

summary of pseudo-ops, and tells which pseudo—ops can be used as assembler directives

and which as value symbols.

Expressions

2-20

An expression is

® a single numeric symbol, value symbol, or integer, or

& 3 series of numeric symbols, value symbols, and/or integers separated by operators
The general format for an expression is

<sign>operand<operator operand>...break

where:
sign is one of the unary operators: +, —, or -~
operand can be a numeric symbol, a value symbol, an integer, or another
expression
Licensed Material--Property of Data General Corporation 093-000242

Input to the Macroassembler

operator is a Macroassembler operator (described in the next section); operands
must both precede and follow every operator in your expression, except
the unary operators

break terminates the expression; the break character can be any delimiter or
terminator (see “Terminators and Delimiters” earlier in this chapter)

According to this definition, the following strings are all legal expressions:
START-1 6*3-5 A+3*B/C

You can not include any spaces within an expression, but you can use a space to
terminate an expression. Thus, the Macroassembler does not view the string ‘3 + 5 as an
expression because it contains spaces.

Operators
Table 2-6 lists all the operators that the AOS/VS Macroassembler recognizes.

Table 2-6 Operators

Operator Meaning
+ Addition (243) or unary plus (+3)
- Subtraction (5-4) or unary minus (~4)
Arithmetic * Multiplication
Operators / Division
B Single precision bit alignment (16 bits)
S Double precision bit alignment (32 bits)
& Logical AND
Logical ! Logical OR
Operators ~ Unary NOT (complement)
== Equal to
< Not equal to
Relational < Less than
Operators <= Less than or equal to
> Greater than
>= Greater than or equal to

There are two different classes of operators:
® binary operators
® unary operators

Binary operators require two operands; one before and one after the operator. For
example, the following expressions contain binary operators:

3+2 6*5 A<B C!D

093-000242 Licensed Material--Property of Data General Corporation 2-21

Input to the Macroassembler

You cannot place two binary operators in a row. The following are illegal expressions:
3*/4 8-*3 5%*2 A*&B

All the operators in Table 2-6 may function as binary operators, except for - (the unary
NOT operator).

The binary operators +, —, *, and / perform common mathematical operations; so we do
not describe their use in detail. However, the following sections of this manual provide
information about the logical operators, the relational operators, and the bit alignment
operators.

Unary operators require only one operand. In addition to the NOT operator (-), + and -
can also function as unary operators. We provide more information in the next section.

Unary Operators

The Macroassembler recognizes the three unary operators listed in Table 2-7.

Table 2-7 Unary Operators

Operator Operation

+ Unary plus
- Unary minus
~ Unary NOT (complement)

Unary operators require only one operand, which must appear immediately after the
operator. Thus, a unary operator can either begin an expression or follow a binary
operator within an expression. The following examples show the legal use of unary
operators:

-5 +4 7*-3 6/+2 5%-2
-5 ~+7 4*--3

Use parentheses to separate the operators when applying two or more consecutive unary
operators. The following expressions illustrate this:

o I () B L c)

The unary + and - operators simply indicate the sign of the following expression (positive
or negative, respectively).

The unary NOT operator (-) directs the Macroassembler to complement each bit of the
following operand. That is, the result in a given bit position is 1 if the operand contains
a 0 in that bit position; the result is 0 if the operand contains a 1 in that bit position.

2-22 Licensed Material--Property of Data General Corporation 093-000242

-1

Input to the Macroassembler

The unary NOT operation for the expression -3 is shown below.

Bit representation of 3: 00 000 000 000 000 000 000 000 000 000 011

Result of ~ operation: 11 111 111 111 111 111 111 111 111 111 100

Thus, the value of the expression -3 is 37777777774s.

Note that the Macroassembler operates on all 32 bits of the operand. In the above
example, all leading zeros become ones.

Logical Operators

In addition to the logical NOT operator, the Macroassembler provides two logical binary
operators: & and |. The operator & directs the Macroassembler to perform a logical
AND operation; the operator ! represents the logical OR (inclusive) operation. To
perform a logical operation, the Macroassembler must compare the bit patterns of both
operands.

For a logical AND (&), the result in a given bit position is 1 only if both operands
contain a 1 in that bit position. The following example shows how the Macroassembler
evaluates the logical expression 6&4:

Bit representation of 6: 110
Bit representation of 4: 100

Result of logical AND (&): 100
Thus, the resulting value of the expression 6&4 is 4 (100,).

For a logical OR operation (1), the result in a glven bit ponition in 1 If either oF bath
operands contain a 1 in that bit position. The following example shows the logical OR
operation for the expression 6!4:

Bit representation of 6: 110
Bit representation of 4: 100
Result of logical OR (1): 110

The value of the expression 614 is 6 (110;).

You must remember not to use relocatable operands in a logical expression; i.e., use
only absolute operands. “Relocatability” in Chapter 3 provides more information about
this subject.

Relational Operators
An expression containing a relational operator is a relational expression; that is, a
relational expression contains one of the following:

< <= > >= <> ==

A relational expression evaluates to either absolute zero (false) or absolute one (true).
Absolute zero has a zero in every bit; absolute one has zeros in all bits except the least
significant bit (bit 31) which contains a one. We refer to these values as “absolute”
because they are not relocatable (Chapter 3 describes relocation).

093-000242 Licensed Material--Property of Data General Corporation 2-23

Input to the Macroassembler

The following examples show how the Macroassembler evaluates relational expressions
(radix equals 8):

Assembled Value Expression Comment
000000 000000 5==6 False
000000 000001 3==3 True
000000 000001 1 True
Q00000 000080 55<=41 False
000000 000001 76 True

The two octal numbers under the heading “Assembled Value” depict the two 16-bit
words that represent the expression’s value. Remember, each data statement generates a
double precision integer (two words) by default.

Bit Alignment Operators

The AOS/VS Macroassembler recognizes two bit alignment operators: B and S. These
two operators allow you to right justify an integer on a bit boundary.

The general format for using the bit alignment operators is

operand bit-op position

where:
operand is an integer, symbol, or expression whose value you want to align
bit-op is a bit alignment operator (B or S)
position is an integer, symbol, or expression whose value indicates the bit
position for aligning operand; MASM always interprets this value in
decimal

When you use a bit alignment expression, the Macroassembler aligns the rightmost bit of
operand at the bit position specified in position.

The bit alignment expression must not contain any spaces.

The S Operator

The S operator and the B operator are similar; however, S generates a double precision
(32-bit) integer while B generates a single precision (16-bit) integer. The value of the
position argument must be in the range

0 <= position <= 314,

2-24 Licensed Material--Property of Data General Corporation 093-000242

AT

Input to the Macroassembler

The result of an S bit alignment expression equals

operand . * 5 (31 - position)

where:
operand is the integer, symbol, or expression you want to align
r is the current input radix
position indicates the bit position for aligning operand; the Macroassembler

evaluates position in decimal

The following examples show the use of S; the radix equals 8:

Assembled Value Expression Comment

000000 000001 1831 Aligns the value 1 in bit position 3144.

000060 000000 35811 Aligns the rightmost bit of 33 (115) in bit
position 114,.

140000 000000 781 Aligns the rightmost bit of 75 (1115) in bit
position 1, The rest of 7 is lost.

000000 000000 35845 ERROR: the value 45 is outside the legal range

(there is no bit 45¢p).

The B Operator

Use the B operator to generate single precision (16-bit) integers. When using B, the
value of position must be in the range

0 <= position <= 15
The result of a B bit alignment expression equals

operand . * 9 (15 - position)

where:
operand is the integer, symbol, or expression you want to align
r is the current input radix
position indicates the bit position for aligning operand; the Macroassembler

evaluates position in decimal

If the Macroassembler is in 32-bit data placement mode, the first 16 bits of the result
will contain zeros. In addition, the value of position will indicate a bit in the second
word of the data representation. For example, a position of 0 identifies the {irst bit of
the second word (bit 16 in 32-bit notation).

093-000242 Licensed Material--Property of Data General Corporation 2-25

Input to the Macroassembler

The following examples illustrate the use of B (radix equals 8; 32-bit data placement

mode):
Assembled Value Expression Comment
000000 000004 1B13 Aligns the value 1 In bit position 1344 of the
second word (i.e., 0-000-000-000-000-1005).
000000 000012 5B14 Aligns the rightmost bit of 55 (1015) in bit

position 14,5 of the second word (i.e.,
0-000-000-000-001-0105).

000000 000000 3B17 ERROR: the value 17 is outside the legal range
for the B operator (there is no bit 1745 in a
single-precision integer).

000000 070000 2783 Aligns the rightmost bit of 275 (010 111,) in bit
position 3 of the second word. MASM

truncates the portion of 27 that does not fit into
the second word.

If you use an input radix of 12 or greater, the Macroassembler interprets the character B
as a digit instead of an operator. To avoid ambiguity, place the operand value inside
parentheses; for example:

.RDX 186 ;Input radix equals 16. /I ’

31B4 ;The Macroassembler interprets
;B as a hexadecimal digit.
(31)B4 ;The Macroassembler recognizes
;B as the bit alignment operator.

Using Bit Alignment Operators With Symbols

In the previous bit alignment examples, all operands are integers. If you pass symbols to
the bit alignment operators, the assembler can misread the B or S as part of the symbol;
that is, MASM may not recognize the B or S as an operator. Therefore, if the operand
preceding the bit alignment operator is a symbol, enclose that argument in parentheses.
The following examples illustrate this:

2-26 Licensed Material-~Property of Data General Corporation 093-000242

Input to the Macroassembler

Assembled Value Expression Comment

000000 000025 A=25 Input radix equals 8. Numeric symbol A has
the value 25g.

000000 000006 AS9=6 Numeric symbol AS9 has the value 6,

002500 000000 (A)SS Aligns the rightmost bit of 255 (010 1015) in bit
9.

000000 000006 AS9 The Macroassembler generates a storage area
with the value of symbol AS9.

100000 000000 (A)SO Aligns the rightmost bit of 255 In bit 0; the rest
of 25 Is lost.

124000 000000 (A)S4 Aligns the rightmost bit of 255 in bit 4.

030000 000000 (AS9)s4 Aligns the rightmost bit of 6g (1102) in bit 4.

When using bit alignment operators in a lengthy expression, enclose both operands in
parentheses to ensure that the assembler aligns the value correctly. The following

example demonstrates this:

Assembled Value Expression Comment

000000 000025 A=25 Radix equals 8.

000000 000010 C=10

000320 000000 (A-C)St1 (A-C) equals 155 so this expressionr is the
same as 15811,

014000 000000 (3B12)S(3+4) {3B12) equals 30g. Thus, the expression equals

(30)S(7).

Priority of Operators

You can use more than one operator in an expression. The Macroassembler evaluates

operators according to their priority levels.
low priority operators last.

It resolves high priority operators first and

Table 2-8 lists the priority levels of all operators.

Table 2-8 Operator Priority Levels

Operators Priority Level

B S 3 (highest priority)

+ - * 7 & -~

< <= > >= == < 1 (lowest priority)
093-000242

Licensed Material--Property of Data General Corporation 2-27

Input to the Macroassembler

If an expression contains operators of equal priority, the assembler evaluates them from
left to right. Using parentheses in forming expressions greatly improves clarity.

The following examples show how MASM uses operator priority to evaluate expressions
(the radix equals 8):

Assembled Value Expression Comment

000000 000001 3*2== MASM evaluates * first, then ==. The
relationship is true.

000000 000000 4<6-3 MASM evaluates - first, then <. The
relationship is false.

000000 000005 4/2+3 / and + are equal in priority so the assembler
evaluates them from left to right (first /, then
+}.

000000 000011 3*2-1+4 All operators are of equal priority so MASM
evaluates them from left to right.

000000 000006 311*2 Both operators are of equal priority so MASM
evaluates them from left to right (311=3;
(3)*2=6).

000000 000001 482<>3!1 MASM evaluates & first followed by ! and lastly
<>. The resulting relationship is true.

000000 030000 2*3B4 B has higher prlority than *, so the assembler
evaluates 3B4 first. it then multiplies the result
by 2.

You can change the order in which the Macroassembler evaluates operators by including
parentheses in your expression. The Macroassembler always evaluates an expression in
parentheses first. Within a set of parentheses, MASM evaluates operators according to
the priority sequence presented above. If you nest one set of parentheses inside another
set, MASM evaluates the innermost expression first.

2-28 Licensed Material--Property of Data General Corporation 093-000242

input to the Macroassembler

The following examples show the use of parentheses in expressions; the radix equals 8:

Assembled Value Expression Comment

000000 000006 2*(4-1) MASM performs operations in the following
order: (4-1)=3 2*(3)=6

000000 000002 1+(6/2)/2 Order of operations: (6/2)=3 1+(3)=4
(4)/2=2

000000 000004 (3*2)-(4/2) Order of operations: (3*2)=6 (4/2)=2
(6)-(2)=4

000000 000001 (5<=5)+(6==2) Order of operations: (5<=5)=1 (6==2)=0
(1)+(0)=1

000000 000006 3*({3+1)/2) Order of operations: (3+1)=4 ((4)/2)=2
3*((2))=6

000000 000025 A=25 Radix equals 8.

000000 000010 Cc=10

000000 010025 A+(C*2)S23 (C*2)S23 is equivalent to (20)S23 and equals

10000g. A+10000g equals 100255,

Absolute Versus Relocatable Expressions

In the previous discussion, all the expressions contain integers or symbols defined by
integers. We refer to these operands as absolute because their values are explicitly stated
in the source module. Other operands are relocatable; that is, their values relate to and
are dependent upon other words in your module.

If you use relocatable operands in your expressions, you must adhere to certain rules or
the assembler will return an error. In Chapter 3, we discuss relocatable values and how to
use them in your expressions.

Special Atoms

Three atoms do not fall into any of the previously discussed categories. They are @,
**, and #.

At Sign (@)

You can include the at sign (@, also called the indirection indicator) in certain memory
reference instructions (MRIs) or in any data statement. When the Macroassembler
encounters the @ character, it sets a specific bit (the indirect addressing bit) to 1.

In memory reference instructions, the @ sign must appear at the beginning of the
displacement field. In one-word memory reference instructions, bit 5 is the indirect
addressing bit. In longer memory reference instructions, the first bit of the displacement
field is the indirect addressing bit. Refer to the ECLIPSE® MV/Family 32-Bit Principles
of Operation manual to determine which memory reference instructions allow indirect
addressing.

In data statements, the first bit (bit 0) is the indirect addressing bit. You must place the
at sign immediately before the data in your source code.

093-000242 Licensed Material--Property of Data General Corporation 2-29

Input to the Macroassembler

The following examples show the use of the indirect addressing sign (@):

Assembled Value Source Statement
024420 LDA 1,20
026420 LDA 1,@20
101431 000020 XWSTA 0,20,0
101431 100020 XWSTA 0,@20,0
000000 000025 25

100000 000025 @25

Asterisks {**)

Two consecutive asterisks (**, also called the no-listing indicator) at the beginning of a
source line direct the Macroassembler not to list that line. The asterisks do not affect the
object module, only the assembly listing. The /XPAND switch can be used to override
the listing suppression.

Refer to “Assembly Listing” in Chapter 4 for more information on the two asterisks (**)
atom.

Number Sign (#)

2-30

You use the number sign character (#, also called the no-load indicator) in conjunction
with ECLIPSE 16-bit arithmetic and logic class (ALC) instructions. These instructions
include ADD, SUB, ADC, MOV, AND, COM, and NEG.

When the Macroassembler encounters the # character, it places a 1 in that instruction’s
no-load bit (bit 12). At execution time, the arithmetic and logic unit (ALU) does not
load the results of the operation into the destination accumulator (ACD).

When using the # character, place it immediately to the right of the assembly language
instruction symbol.

The following examples illustrate the use of the no-load indicator (#):

Assembled Value Source Statement
112405 SUB 0,2,SNR
112415 SUB# 0,2,SNR
133102 ADDL 1,2.8ZC
133112 ADDL# 1,2,8Z2C

Do not use the # character in a source line in combination with either the always skip
(SKP) or never skip (no mnemonic) options. If you do, MASM returns an error
because those bit combinations represent other instructions in the MV/Family 32-Bit
instruction set.

Licensed Material--Property of Data General Corporation 093-000242

Ie

Input to the Macroassembler

Refer to the ECLIPSE® MV/Family 32-Bit Principles of Operation manual for a list of
the skip mnemonics and for information about ALC instructions.

Statement Format
In general, all source statements in your module should adhere to the following format:
label: statement-body :comment }

Each nonblank line in your source module must contain a value for at least one of these
three fields.

The AOS/VS Macroassembler is a free-form assembler. That is, the assembler is not
column senstitive but distinguishes between fields by searching for delimiters. For
example, the label field delimiter is the colon (:). Table 2-9 lists the characters that
delimit each field in your source line.

Table 2-9 Statement Field Delimiters

Fleld Delimiter

label Colon {:)

statement-body Semicolon (;) or statement terminator (i.e., carriage return, form feed, or
NEW LINE),

comment Begins with a semicolon (:) and ends with a statement terminator.

You can include extra spaces and tabs between the statement fields in your source line
without affecting the assembler’s interpretation of that line. Thus, all of the following lines
are equivalent:

label:statement-body;comment)
label: statement-body ;comment)

label: statement-body ;comment)

You can divide each source line into columns using the tab settings. Thus, label starts in
the leftmost column, statement-body starts at the first tab stop, etc.

The maximum allowable length for a source statement is 132 characters. The
Macroassembler truncates all lines that are too long.

If you include the two asterisks (**) no-listing indicator on a source line, you should
make sure that no characters precede the asterisks:

** Jabel: statement-body icomment)
Refer to “Assembly Listing” in Chapter 4 for a discussion of the no-listing indicator (**).

The following sections of the manual discuss the three source statement fields: label,
statement-body, and comment.

093-000242 Licensed Material--Property of Data General Corporation 2-31

Input to the Macroassembler

Labels

2-32

A label symbolically names a memory location. By using labels, you can refer to locations
without regard for numeric addresses.

Any source statement can have a label. It must appear at the beginning of the source line
and must be followed by a colon (:). All labels must conform to the rules for symbol
names (see “Symbol Names” earlier in this chapter).

The following source lines show how to use labels:

BEGIN: XWLDA 0, SEVEN
JUMP: JMP @17
SEVEN: 7

Like other symbols, a label has a value. The value of a label equals the value of the
current location counter. MASM computes the label value prior to processing the rest of
the source line. Thus, a label usually equals the address of the next storage location that
the assembler creates. (Be sure to read about the exceptional case at the end of this
section.) You can not alter the value of a label at any point in your program.

According to these rules, the label BEGIN in the first line of the previous example
receives the address of the assembled XWLDA instruction as its value. Location SEVEN
contains the value 7.

Since some source lines do not generate storage words, a label is not necessarily
associated with the source statement it appears in. For example,

START: .TITLE MOD1
LDA 0,1

Here, the first statement assigns the title MODI1 to the source module. This statement
does not generate a storage word. Therefore, the label START receives as a value the
address of the next location assembled; in this case, the address of the LDA instruction.

Similarly, a label can appear alone on a line, in which case its value equals the address
of the next storage location assembled.

LABEL1:
LDA 0,1

In this example, the value of LABEL1 equals the address of the assembled LDA
instruction.

LABEL1:
LABELZ2: LDA 0,1

Here, both LABEL1 and LABEL2 equal the address of the LDA instruction.

You can place more than one label on a source line; all labels will receive the same
value. For example:

LOOP1: LOCP2: LOOP3: ADD 0,1

LOOP1, LOOP2, and LOOP3 all equal the memory address of the assembled ADD
instruction.

Licensed Material--Property of Data General Corporation 093-000242

—

21

Input to the Macroassembler

In the previous examples, all labels receive the address of the next location MASM
created. However, this is not the case if your label appears on a source statement that
alters the value of the location counter. Since it computes a label’s value before
evaluating the source line, MASM may never actually create the location it assigns to the
label. Consider the following example:

.LOC 100 ;Set the location counter to 100.
A .LoC .+50 ;Increase the location counter by 50.
B: LWLDA 0,1

The first statement directs MASM to start assigning addresses at absolute location 100.
When MASM encounters label A on the next statement, it immediately assigns that label
the value 100. Before MASM actually creates location 100, however, the second .LOC
statement changes the value of the location counter to 150. Thus, label B’s value, 150,
is the address of the LWLDA instruction but label A’s value, 100, does not identify an
allocated location. References to address A produce unpredictable results.

Any of the following pseudo-ops may change the value of the location counter:

.GLOC
.LOC

.NREL
.PART
.ZREL

In general, you should not place labels on these pseudo-op statements. In fact, except
for .BLK, .TXT, and the local data placement pseudo-ops (.DWORD, .SWORD,
XL WORD, and .WORD), you need not place a label on any pseudo—op statement.

Statement Body
The statement—body field of a source line may contain one of the following:
® assembly language instruction
® macro or system call
® pseudo-op directive
® assignment
® data

We discuss these five types of source statements later in this chapter (see “Statement
Types”).

Comments

You can include comments in your program to facilitate program development,
maintainance, and documentation. The assembler does not interpret comments and, thus,
comments do not affect the generation of the object module.

Precede all comments with a semicolon (;). When the assembler encounters a semicolon,
it ignores all subsequent characters up to the statement terminator.

083-000242 Licensed Material-—-Property of Data General Corporation 2~33

Input to the Macroassembler

The following source statements show the use of comments:

LWLDA 0,A ;Load ACO with the contents of location A
LWLDA 1,B ;Load AC1 with the contents of location B
WADD 0,1 ;Add ACO and ACl1 together

A: 63 ;Value for ACO

B: 44 ;Value for AC1

iAlso note that comments can appear alone on a line.

Statement Types

As we mentioned previously, there are five different types of source statements:
® assembly language intructions

¢ macros and system calls

¢ pseudo-op directives

® assignments

® data

Each statement type must conform to the general statement format that we presented in
the previous section. Thus, the general statement format is now

assembly language instruction
macro or system call
label: pseudo-op directive jcomment)
assignment
data

In addition to the general statement format, each of the five statement types also has a
syntax specific to that type.

The following sections of this manual describe the five statement types and the syntax for
each.

Assembly Language Instructions

Assembly language instructions perform specific operations at execution time. All
assembly language instructions fall into the following three categories:

e input/output instructions (I/0)
® memory reference instructions (MRI)

® arithmetic and logic class instructions (ALC)

2-34 Licensed Material-—Property of Data General Corporation 093-000242

input to the Macroassembler

Use I/0 instructions to communicate with peripheral devices. In particular, these
instructions

e start and stop peripheral devices

e transfer data from a device to an accumulator in the central processing unit (CPU)
e transfer data from an accumulator to a device

® test the status of a device

Note that you can not use I/O instructions in your module if that program will run under
an operating system. Instead, you must use I/O system calls (see “Macros” below).

Memory reference instructions (MRI) allow you to perform the following operations:

modify the program counter (PC)

modify an operand in memory

transfer data from memory to an accumulator

transfer data from an accumulator to memory

Arithmetic and logic class (ALC) instructions allow you to manipulate data in the CPU.
That is, the ALC instructions perform operations on data residing in the accumulators
(e.g., add, subtract, complement, logical AND).

The syntax for using an assembly language instruction in your source module is

instr<[Jarg>...
where:
instr is an assembly language instruction mnemonic; all such mnemonics are
instruction symbols. Refer to “Instruction Symbols” earlier in this chapter for
more information about the properties of this symbol type.
arg is an argument to the assembly language instruction. Not all instructions

require arguments; some require many.

The ECLIPSE® MV/Family 32-Bit Principles of Operation manual describes the
MV/Family 32-bit assembly language instructions and specifies what arguments you must
supply to each. Examples of MV/Family 32-bit assembly language instructions are

XWLDA 0,-2,1
ADD 2,3
XJIMP START
HALT

093-000242 Licensed Material--Property of Data General Corporation 2-35

Input to the Macroassembler

Macros

A macro is a series of assembly language source statements which you assign a name.
Whenever you want to place that section of source code in your source module, you
simply enter the macro name; the assembler substitutes the corresponding code. The

syntax of a macro call is

macro-name<[larg>...

where:
macro-name is the name you assign to a series of assembly language source
statements
arg is an argument to the macro

In Chapter 5, we explain how to create and use macros. Chapter 3 describes how the

Macroassembler processes macros.

Pseudo-Ops

A pseudo-op, also called an assembler directive, directs the operation of the

Macroassembler. It is called a “pseudoinstruction” because your program never executes

it; rather, the assembler executes it.
In addition to performing other functions, pseudo-ops

@ tell the assembler where in memory your source code is to reside

® allow separately assembled source modules to communicate with each other

® define macros

The syntax for a pseudo-op source statement is

.pseudo-op<arg>...

where:
.pseudo-op is the name of a pseudo-op. All pseudo-ops begin with a period (.)
and every pseudo—-op mnemonic is a permanent symbol. Refer to
“Pseudo-Op Symbols” earlier in this chapter for more information
about this class of symbols.
arg is an argument to the pseudo-op.

The following are examples of pseudo-op source statements:

.ZREL

.NREL 1
.TITLE MOD1
.ENT GLOBE
.RDX 8

2-36 Licensed Material--Property of Data General Corporation

093-000242

input to the Macroassembler

~ Note that you may use certain pseudo-op symbols as values in other source statements.
: ' For example,

X=,RDX

assigns the value of the current input radix to the variable X. This statement is not a
pseudo-op directive but rather an assignment (see the “Assignments” section).

When using a pseudo-op symbol in this fashion, we refer to it as a value symbol. We
discuss value symbols under “Pseudo~Op Symbols” earlier in this chapter.

Chapter 6 discusses the different types of pseudo—ops. Chapter 7 describes the
pseudo-ops individually and specifies what arguments you must supply to each.

Assighments

An assignment statement assigns a double precision (32-bit) integer value to a symbolic
name. After associating a value with a symbol, you can use the symbol any time you
want to indicate the value.

The syntax of an assignment statement is

integer
. symbol
numeric-symbol = y .

expression

instruction
(™

where:

numeric-symbol is a numeric symbol conforming to the rules for symbols (given
earlier in this chapter); the Macroassembler assigns numeric-symbol
the value on the right side of the = character

integer is any integer value; you can not place a floating—point number on
the right side of an assignment statement

symbol is any numeric symbol or value symbol

expression is any legal expression

instruction is any legal MV/Family 32-bit assembly language instruction

Examples of assignment statements are

A=322

B=10*3
C=(A/2)+B

D=C

E=.RDX
F=(.PASS+10)
G=ADD 0,1
H=XWLDA 0,1

If you place an instruction on the right side of an assignment statement, MASM
N computes the assembled value of that instruction and assigns it to the variable on the left
side of the statement. You should avoid including instructions within expressions. If you
must include an instruction within an expression, enclose the instruction in parentheses.

093-000242 Licensed Material--Property of Data General Corporation 2-37

Data

2-38

Input to the Macroassembler

T,
A data statement is one of the simplest assembly language statements you will use in your '
program. It consists of a single number, symbol, or expression. When the assembler
encounters a data statement, it simply evaluates the number, symbol, or expression and
stores the value in memory. Examples of data statements are
o
322
10255
32*5
5.3E4
A/2
SIX
You should use data placement pseudo-ops to control whether MASM generates single or
double-word storage areas. Use the .DWORD pseudo-op to store data in two words of
memory, and use the .WORD pseudo-op to store data in one word of memory. The
.WORD pseudo-op truncates the high—order word of data before storing the result in 16
bits of memory. The use of these pseudo-ops is illustrated in the following assembly
language program:
Location Data Source
Counter Field Code
o1 .TITLE TEST
02 00000000001 .NREL 1 o
03 000000 SC 000003 .WORD 3 _ ST
04 000001 5C 00000000004 .DWORD 4
05 000003 SC 000005 .WORD 5
06 .END
Note that the numbers 3 and 5 are stored in one data word each by using the .WORD
pseudo—-op. By contrast, the number 4 is stored in two data words because of the
.DWORD pseudo-op. Notice that the location counter jumps from 000001 in line 04 to
000003 in line 05, indicating that the number 4 takes up two words of memory storage
(see “Data Placement” in Chapter 6 for more information).
Other useful data placement pseudo-ops include .SWORD and .UWORD. The .SWORD
and .UWORD pseudo-ops act the same as .WORD but provide error messages when
truncation from 32 bits to 16 bits results in an error (see the “Pseudo-Op Dictionary” in
Chapter 7, and “Data Placement” in Chapter 6 for more information).
The .TXT pseudo-op allows you to store a string of ASCII characters in memory. For
example the following source code:
.TXT %hello%
when assembled produces three words of data storage as shown below:
Location Data Source
Counter Field Code
AT
03 000000 SC 064145 066154 .TXT %hello%
04 087400
Licensed Material--Property of Data General Corporation 093-000242

Input to the Macroassembler

These three data words contain the ASCII code for the lowercase letters “hello” packed
two letters per word. The last word, 067400, contains the ASCII code for “0” in its
most-significant byte, and all zeroes in its least—significant byte.

You can include the special character @ in a data statement. The assembler then places
a 1 in bit 0 (the indirect addressing bit) of the storage word. The @ sign must
immediately precede the data on the source line; for example:

@113
@1032

Refer to “At Sign (@)” earlier in this chapter for more information.

End of Chapter

093-000242 Licensed Materlal--Property of Data General Corporation 2-39

The Assembly Process

The Assembly Process

As we discussed in Chapter 2, your assembly language source module is a series of ASCII
characters grouped into source statements. The Macroassembler interprets those
statements and produces a binary representation of your source module. The resulting
binary module is called an object module.

To produce an object module, the Macroassembler must scan your source code twice;
that is, MASM is a two—pass assembler. On the first pass, MASM finds the names and
values of all the symbols and keeps a tally of how many words of code and data there
are. On the second pass, MASM resolves the final value of all the words of code and
data, and puts them in the object file.

MASM needs to make two passes in order to allow your source program to make use of
Jorward references. A forward reference occurs whenever an assembly language
statement includes the name of a memory location that is situated further on in the code.
For example, if your program contains the statement:

XWLDA O,NEXTPTR

and further down in the code contains:

NEXTPTR: .DWORD -1

then MASM could not assemble the first statement on only one pass. MASM cannot
assign NEXTPTR a numerical value until MASM encounters the second statement. It is
only then that MASM assigns NEXTPTR the value of its location within the program.
MASM must then go back and plug in NEXTPTR’s value in the first statement.

093-000242 Licensed Material--Property of Data General Corporation 3-1

3-2

The Assembly Process

During the two passes through your source code, the Macroassembler performs four
major functions:

interprets symbols
checks source statement syntax
expands macros and system calls

resolves memory locations

In the following sections, we describe how the Macroassembler performs these functions.

Note that the above list of assembler functions is by no means complete. For example,
the Macroassembler can produce a variety of listings, conditionally assemble code, and
generate a symbol table for future use. Though these are important capabilities of the
AOS/VS Macroassembler, they are not its major functions. Thus, we describe these
additional features in other chapters of the manual.

Symbol Interpretation

Chapter 2 describes the four types of symbols that can appear in your source module

(i.e., numeric, instruction, macro, and pseudo-op).
your source module, it translates all symbols into their binary equivalents.

As the Macroassembler processes

The Macroassembler uses two different tables to resolve the symbols in your source code:

permanent symbol table

temporary symbol table

During the assembly process, the Macroassembler makes sure that all symbols are defined
in one of these tables (adding definitions from your source, if necessary). On its second
pass through your program, the assembler uses these tables to substitute binary code for

the symbols in your source module.

The following discussion focuses on the creation and use of these two symbol tables. The
flowchart in Figure 3-1 parallels this discussion and can help you understand the symbol
resolution process.

Licensed Material--Property of Data General Corporation

093-000242

—,

I

-

093-000242

The Assembly Process

A

A

Figure 3-1 Resolving Symbols

Licensed Material--Property of Data General Corporation

INT-01028

3-3

The Assembly Process

Symbol Tables

The Macroassembler software defines all pseudo-ops and all instructions in the ECLIPSE
MV/Family instruction set in the permanent symbol table. Thus, from the outset, the
MASM can recognize all pseudo~op and instruction symbols in your source module.

Upon executing MASM, the Macroassembler automatically creates a temporary symbol
table. Initially, this table does not contain any information. However, when you define
a symbol (such as a label, a macro, etc.) in your source code, the symbol is put into the
temporary symbol table unless there is already a symbol with the same name in either the
permanent or the temporary table. Thus, by the end of the assembly process, this table
will contain a definition for each symbol in your program, except pseudo—-ops and
MV/Family 32-bit instruction mnemonics.

When the Macroassembler encounters a symbol in your program, it first checks to make
sure the symbol is valid (i.e., conforms to the rules for legai symbols presented in
Chapter 2). MASM returns an error if the symbol is not legal.

If the symbol is valid, the Macroassembler looks for its definition in the permanent
symbol table. When looking up symbols in the permanent symbol table, MASM uses
only the first eight characters of the name. In addition, MASM accepts all pseudo-op
names in either upper- or lowercase. If MASM finds the symbol in the permanent table
(i.e., if the symbol is a pseudo-op or instruction), the assembler does not have to check
any other tables for that symbol’'s definition.

If the permanent symbol table does not contain a definition for the symbol, the
Macroassembler checks the temporary symbol table. When looking up or adding symbols
to the temporary symbol table, MASM uses only the first eight characters of the name.
All names are case—insensitive, by default. You can change to case-sensitive by using the
/ULC switch, and you can change the 8-character recognition limit to a number between
5 and 32 by using the /SYMBOLS=<n> switch.

If the Macroassembler does not find a symbol's definition in either of the tables or in the
current source statement, it enters that symbol in the temporary table and flags it as
undefined. MASM then moves on to the next symbol in your source.

Note that the Macroassembler may not find a symbol’s definition the [irst time that
symbol appears in your source. This is because of forward references (see the beginning
of this chapter).

If, during pass two, the Macroassembler encounters a symbol that is not defined in either
table, MASM returns an error when it tries to substitute a value for that symbol. If you
indicate that a separately assembled module defines a symbol (i.e., with an inter-module
communication pseudo—op), the Macroassembler does not return an error. (Chapter 6
contains more on inter-module communication.)

3-4 Licensed Material--Property of Data General Corporation 093-000242

The Assembly Process

Permanent Symbo'l Files

To speed up assembly, you can “pre—assemble” any number of assignment statements
and macros, save the resulting temporary table in a file, and reuse it again and again.
This type of file is called a permanent symbol, or .PS file. For example, suppose you
have written a short program (here called MYPROG.SR) that makes several system calls.
Normally, you would need to include all the AOS/VS system call parameter files in your
assembly:

XEQ MASM/0=MYPROG.OB PARU.32/.§R SYSID.32.SR MYPROG.SR

Even if your program is quite short, this assembly will take a long time because of the
length of PARU.32.SR and SYSID.32.SR. You can get around this delay by
“pre-—-assembling” your own .PS file (here called MYMASM.PS) which contains both
PARU.32.SR and SYSID.32.8R:

XEQ MASM/MAKEPS/PS=MYMASM.PS PARU.32.PR SYSID.32.SR

Having done this, you can now assemble MYPROG much more quickly by using your
MYMASM.PS file instead of PARU.32.SR and SYSID.32.SR:

XEQ MASM/PS=MYMASM.PS MYPROG.SR

If you do not create your own .PS file, MASM uses file MASM.PS as the default
permanent symbol file. MASM.PS contains definitions for all AOS/VS system calls.
MASM moves the permanent symbol file into the temporary symbol table at the start of
the assembly process. This allows MASM to recognize all AOS/VS system calls in your
source module from the outset.

Syntax Checking

As we explained in Chapter 2, all source statements and their component parts must
conform to specific syntaxes. The following discussion describes how the Macroassembler
checks your source module for syntax errors. This presentation is a general overview and
does not list all the syntax rules; we provide those rules in appropriate places throughout
the manual.

When the Macroassembler scans your source module, it must determine whether a given
string of ASCII characters is a valid assembly language statement. Thus, the
Macroassembler must first divide your module into distinct source statements by searching
for statement terminators.

The Macroassembler then divides each statement into a series of atoms or syntactic units
(see Chapter 2). During this process, MASM rejects any character that is not in the legal
Macroassembler character set.

After isolating the atoms in each line, MASM determines whether those atoms form a
legal source statement. If they do, MASM processes the statement according (o its type
(see “Statement Types” in Chapter 2). If the atom sequence is not a legal statement,
MASM returns an error.

The remainder of this section explains how MASM performs this statement evaluation
process. Figure 3-2 provides an overview of the operations involved and will help you
understand the following discussion.

093-000242 Licensed Material--Property of Data General Corporation 3-5

3-6

The Assembly Process

A

A

A

A

Figure 3-2 Processing Source Statements

Licensed Material-—Property of Data General Corporation

INT-01029

093-000242

A

A7 T

The Assembly Process

MASM starts processing each source line by evaluating the first atom. If the atom is not
a symbol, MASM assumes that the line is a data statement. The Macroassembler knows
that a data statement consists of a single expression followed by an optional comment
string. If the atoms on the current source line do not conform to this format, MASM
returns an error. The following statements generate errors because they do not conform
to the format for data statements:

12+3 17 20
100:
5+10*2 LDA 0,1

If, on the other hand, the source line conforms to the data statement format, MASM
stores the data value in memory and moves on to the next statement.

If the first atom on a source line is a symbol, MASM determines whether a colon (:)
follows it. If so, MASM assumes the symbol is a label and makes sure it is legal (see
“Labels” in Chapter 2). At this point, the following statements would cause errors
because pseudo-ops and instruction mnemonics may not appear as labels:

.RDX: 10
ADD: 717

If the symbol is an acceptable label, MASM enters it in the temporary table along with
the appropriate value.

Labels can appear on any source line and do not place any restrictions on a statement’s
format and content. Thus, after MASM processes the label, it treats the atom following
the colon as if it were the first atom on the source line.

If the first atom on the source line is a symbol and is not followed by a colon, MASM
checks the symbol tables to see if it is a pseudo-op, an instruction mnemonic, or a
macro. If so, MASM makes sure the rest of the atoms on that source line conform to
the syntax implied by the first symbol. That is, MASM ensures that the number of atoms
and their values conform to the rules associated with the first symbol’s use. At this point,
MASM would return errors for the following statements:

XWLDA [} ;Not enough arguments.
.PUSH ;Requires an argument.
LWLDA 15,L0C ;Illegal AC value.
.PASS=10 ;I1legal syntax format.
LWLDA 0,0,0,0 ;Too many arguments.

If the first symbol on a source line is a pseudo-op, instruction mnemonic or macro and if
the other atoms on the line conform to that symbol’s use, MASM performs one of the
following operations:

® Pseudo-op Interprets and performs the appropriate action
® Instruction Assembles and stores it in memory
® Macro Expands it (see “Processing Macros” later in this chapter)

If the first atom on the source line is a symbol but is not a label, pseudo-op, instruction,
or macro, MASM determines whether the equal sign (=) follows it. If so, MASM
assumes that the statement is an assignment. Again, MASM checks to make sure the
rest of the atoms in the line conform to the syntax rules for an assighnment statement.
The following assignment statements would generate syntax errors (see “Assignments” in
Chapter 2):

093-000242 Licensed Material--Property of Data General Corporation 3-7

The Assembly Process

A=10 20 30
B=
C=100=200

If the assignment statement is legal, MASM evaluates the expression on the right side of
the statement and stores its value in the temporary symbol table with the symbol on the
left side of the statement.

If the first atom in a source statement is a symbol but is not a label, pseudo-op,
instruction, or macro, and does not precede an equals character (i.e., is not an
assignment), then MASM assumes that the statement is a data entry. In this case,
MASM makes sure the rest of the line conforms to the data statement syntax.

Processing Macros

Chapter 2 describes macros. To review, a macro is a section of source code that you
assign a name. Whenever you want to insert that code in your module, simply specify the
macro name. AOS/VS system calls are pre—defined as macros.

The following discussion explains how the Macroassembler processes macros. Refer to
Chapter 5 for information about using macros in your source module.

Processing Macro Definitions

When you define a macro, you associate a symbol with a series of assembly language
statements: the macro definition string. When it encounters a macro definition during
pass one, MASM places the macro name in the temporary symbol table. MASM then
copies the macro definition string onto a different part of the temporary symbol table and
places a pointer to that string with the macro name.

The Macroassembler does not check the syntax of the macro definition string at this
time. It simply copies the definition directly into the temporary symbol table.

“Macro Definition” in Chapter 5 explains how to define a macro in your source module.

Expanding Macros

When it encounters a macro call, MASM searches the permanent and temporary symbol
tables for that entry. All macro definitions you supply in your source module reside in
the temporary table.

If MASM does not find the macro symbol in either the permanent or temporary symbol
tables, MASM then searches your permanent symbol (.PS) file.

When it has found the macro definition, MASM expands the macro. That is, the
Macroassembler processes the macro definition string that resides in the temporary
symbol table as if it were in your source module. During this operation, MASM checks
the macro definition string for syntax errors. It also substitutes any arguments you supply
in the macro call for formal (dummy) arguments in the definition string.

After assembling the macro definition string, the Macroassembler continues processing
your source module, moving to the statement immediately following the macro call.

Assigning Locations

As the Macroassembler processes your source module, it assigns a memory location to
each word of machine code it generates. The following discussion describes how the
Macroassembler assigns memory addresses and how you can control this process.

3-8 Licensed Material--Property of Data General Corporation 093-000242

The Assembly Process

~~ Memory

In order to explain how assembly language programs are stored in memory, it is necessary
to define the concept of memory partitions. A partition is a contiguous section of
memory that possesses one common set of attributes.

These attributes determine whether the information in the partition is data or executable
code, is shared or unshared, global or local. In addition, the attributes determine how
the information is aligned within the partition, and whether the information can be
overwritten without generating an error message (see the “Partition Attributes” section ol
this chapter for more detail on attributes).

In general, you create and define memory partitions using the .PART pseudo-op.
However, there are also several predefined partitions that you can access by using the
.ZREL and .NREL pseudo-ops.

These three pseudo-ops, .PART, .ZREL, and .NREL, are not executed during assembly
time. Instead, they are interpreted as orders which the assembler passes to the linker.
The Link utility, in turn, sorts sections of your program and stores them in the proper
partitions. Figure 3-3 shows sections of source code sorted into different partitions.

Source Code Object Code

Partition 1

Partition 2

Partition 3

INT-01030

Figure 3-3 Sorting Code into Memory Partitions
[

Note that several sections of source code can be in the same partition. In Figure 3-3
code blocks A and E both reside in memory partition 1.

083-000242 Licensed Material--Property of Data General Corporation 3-8

The Assembly Process

Logical Address Space

Each process running under AOS/VS has access to 23! words of virtual memory called
the logical address space. The lowest address in the logical address space is 0, and the
highest address is 228 ~ 1, the largest number that can be represented with 28 bits.

This logical address space can be subdivided as shown in Figure 3-4, into three areas.
The first forty locations, 0-39, are reserved (see ECLIPSE® MV/Family 32-Bit Principles
Of Operation for more information). The topmost area, called ZREL, extends from
addresses 40 to 255. Any code stored in this area can be accessed with only 8 bits of
address.

Logical Address Spac

0
39
40
255
256
Location 3
Counter
32767
32768
228 4

INT-01031

Figure 3-4 Organization of Logical Address Space

The second area begins at address 256 and can extend as far as address 32767. This
area is called Short NREL. Any data stored in Short NREL can be accessed with only
15 bits of address, since 25 - 1 equals 32767.

Use the .NREL pseudo-op with an argument of 2 to indicate this predefined partition.
For example:

.NREL 2
;These words reside
;in the predefined
;Short NREL partition.

The third area is called Long NREL. Link places Long NREL code wherever Short
NREL data ends. If Short NREL were entirely full, Long NREL would start at location
32768 and perhaps extend out to the end of the logical address space. Code stored in
Long NREL requires full 31-bit addresses. (The logical address space is divided into eight
segments. Three of the 31 address bits determine the current segment of execution. See
the ECLIPSE® MV/Family 32-Bit Principles Of Operation for more information on
segments.)

Licensed Material--Property of Data General Corporation 093-000242

The Assembly Process

LLocation Counter

When assigning memory locations to the words in your source, the Macroassembler
manipulates an internal variable called the location counter. This variable holds the
numeric address and relocation base (described later in this chapter) of the next memory
location that MASM will assign. In other words, during assembly, the location counter
points to MASM’s position in the logical address space.

Use the value symbol period (.) to represent the location counter; thus, the expression

.+3

equals the current value of the location counter plus 3. Chapter 7 provides more
information about this value symbol.

You can alter the value and relocation base of the location counter with pseudo-ops
.GLOC, .LOC, .NREL, .PART, and .ZREL. We explain most of these pseudo—-ops later
in this chapter; detailed descriptions of each appear in Chapter 7. '

The assembly listing specifies the numeric address and memory partition of every word in
your program. (See “Assembly Listing” in Chapter 4 for more information).

Relocatable and Absolute Code

All code placed using the .ZREL, .NREL, and .PART pseudo-ops is relocatable. This
means that the code does not need 1o be placed at any specific location in memory;
anywhere within the partition will do. Most of the program code you write will be
relocatable code.

Although the position within memory of a block of relocatable code may vary, the
relationships between elements within the block of code remain constant. That is, a block
of relocatable code is relocated as a block; the relative positions of instructions within the
block are maintained.

Occasionally, you may need to specify precisely where within the logical address space a
section of code will reside. For example, you may need to ensure that an error-handling
routine starts at a specific address. To do this, you use the .LOC pseudo-op. Code that
you place using the .LOC pseudo-op is absolute code, provided the argument used with
.LOC is an absolute expression (see “Absolute Expressions” in this chapter).

For example:

A=50
.LOC A+100

directs the assembler to start placing object code at location 150 (the value of A plus
100). Note that the variable A has an absolute value (50).

In general, you do not store your source code in absolute locations. Instead, you use the
relocatable partitions (described in this chapter).

If you must use absolute locations, be aware that relocatable code may overwrite your
absolute code (or vice versa). For example, suppose you specify an absolute reference to
location 100g. If you include ZREL code in your program (relocatable code in locations
50g - 377g), the Macroassembler may overwrite the absolute code at location 100.

093000242 Licensed Material--Property of Data General Corporation 3-11

The Assembly Process

The only way to prevent overwriting absolute locations is to redefine the partition
boundaries such that the relocatable code cannot overlap the absolute area(s). For
example, you can redefine ZREL to extend from locations 100g to 377 instead of {rom
505 to 377g. Then, vou can use locations 50g to 77g as absolute addresses and ZREL
code will not overwrite them. Refer to the AOS/VS Link and Library File Editor (LFE)
User’s Manual for information about how to change relocatable partition boundaries.

Partition Attributes

There are six di{ferent types of partition attributes:

® shared or unshared

® code or data

e normal base or common base

e alipnment

® overwrite—with-message or overwrite—without—message

® global or local (user—defined partitions only)

We discuss these attributes in the following sections of this manual. The AOS/VS Link
and Library File Editor (LFE) User’s Manual also describes the various partition
attributes.

Shared and Unshared Attributes

The shared and unshared atiributes determine whether several processes can execute the
code in a partition at the same time. Shared partitions, which are usually write protected,
must reside in the NREL portion of memory. Unshared partitions can reside in either
ZREL or NREL memory.

Refer to the AOS/VS Link and Library File Ediior (LFE) User’s Manual for more
information about shared and unshared memory partitions.

Code and Data Attributes

These attributes determine whether your partition contains code (executable instructions)
or data (constants, variables, text, etc.). In general, use data parltitions for memory
words that your program will not execute at runtime. Code partitions can contain both
executable and nonexecutable words of memory.

Normal and Common Base Attributes

The normal and common base attributes determine how Link relocates similar partitions
[rom separately assembled modules. Link arranges normal base partitions in consecutive
order on a module by module basis. Thus, separately assembled partitions with similar
attributes follow one another in the program file. If separately assembled partitions have
a common base, Link does not arrange them in consecutive order but uses the same
relocation base for each one. That is, Link relocates each contribution as an offset from
the same memory location.

Licensed Material-—Property of Data General Corporation 093-000242

The Assembly Process

Alignment Attribute

The alignment attribute directs Link to align the contents of a partition on a
power—of-two word boundary. Partitions may begin on any power-of-two word boundary
(2™ word boundary) from a single word boundary (29) to a 1K-word boundary (219). A
partition with an alignment factor of 20 can begin on any word boundary; that is, the
partition is word aligned.

Overwrite-with-message and Overwrite-without-message Attributes

These attributes control whether Link returns a warning message if it overwrites some
code in a partition. If a partition has the overwrite-with-message attribute, Link issues a
warning when it places data in a location that already contains a nonzero value. The
overwrite—without—message attribute directs Link to suppress these warning messages.

Global and Local Attributes

The global and local attributes apply only to user—defined partitions (that is, partitions
you define with the .PART pseudo-op). Suppose you have written two different
modules, each with a user-defined partition as shown below.

Module A Module B
.PART MINE LONG,GLOBAL,6MESS .PART MINE LONG,GLOBAL,MESS
.END .END

The partitions in each module are named ‘MINE’ but contain different code. If you
assign each partition the global attribute, Link will consider the two partitions to be one

and the same. Code from module A wili be placed in partition ‘MINE’ along with code
from module B.

If you assign either or both of the partitions the local attribute, Link will create separate
‘MINE’ partitions for modules A and B. Code from each module will then be
segregated.

Partition Types

Each memory partition has one attribute from each of the categories described previously.
The Macroassembler recognizes two types of partitions:

] prédeﬁned partitions
e user—defined partitions

MASM defines certain partitions for your use; we refer to these as predefined partitions.
They represent the combinations of attributes that you usually use in your program.
Table 3-1 lists the predefined partitions and their attributes.

093-000242 Licensed Material--Property of Data General Corporation 3-13

The Assembly Process

Table 3-1 Predefined Memory Partitions

Partition Name

Attributes

Pseudo-Op

ZREL

Short NREL

Unshared NREL code

Shared NREL code

Unshared NREL data

Shared NREL data

ZREL

unshared

normal base

word alignment

code
overwrite-with-message

NREL (short)

unshared

normal base

1-word alignment

data
overwrite~-with-message

NREL (long)

unshared

normal base

word alighment

code
overwrite-with-message

NREL (long)

shared

normal base

word alignment

code
overwrite-with-message

NREL (long)

unshared

normal base

word alignment

data
overwrite-with-message

NREL (long)

shared

normal base

word alignment

data
overwrite-with-message

.ZREL

.NREL 2

.NREL, .NREL 0. or

.NREL 4

.NREL 1, or .NREL 7

.NREL 6

.NREL 5

To place data in a predefined partition, you must issue the appropriate pseudo-op. The
Macroassembler creates a partition only if you direct code to that partition. Therefore,
each object module does not contain every predefined partition type; it contains only the

necessary ones.

A user—defined partition is one that you declare with the .PART pseudo-op. You can
choose the attributes for this partition yourself; however, all user-defined partitions must

reside in NREL (locations 256 to 231 -1,

more information).

Licensed Material--Property of Data General Corporation

See the .PART description in Chapter 7 for

093-000242

Riga N

The Assembly Process

Relocatability

The previous sections describe memory partitions and their attributes. To review the main
points, the Macroassembler groups words of code with similar attributes together into a
partition. MASM usually creates a number of partitions since all words in a module rarely
have the same attributes.

- All partitions contain relocatable code. This code does not have to reside at specific
addresses but can be anywhere within broad location ranges. Relationships between
relocatable words are more important than specific locations.

Absolute code does not reside in a partition, but is scattered throughout the logical
address space. You use the .LOC pseudo-op to place sections of this code wherever
needed. Absolute code has the common base and overwrite-with—message attributes.

Relocation Bases

As the Macroassembler places words from your module into the various partitions, it
assigns each word a unique address within that partition. For words of absolute code, the
assembler assigns the addresses you explicitly specify in your source module; all other
partitions contain relocatable words whose addresses are not explicitly stated in the
source.

The assembler assigns temporary locations beginning with zero to the words in each
relocatable partition. Each partition has its own address base, called a relocation base,
and the locations in each partition start at temporary address 0. For example, the words
in the ZREL partition receive contiguous addresses starting at 0; similarly, the words in
the unshared NREL code partition also receive contiguous addresses starting with 0.

Note that each user-defined partition (i.e., defined with .PART) receives a unique
relocation base.

Table 3-2 illustrates how the assembler assigns addresses to the words in your source
module. By default, each data entry occupies two words of memory. Thus, there are two
addresses for each data statement in Table 3-2.

093-000242 " Licensed Material--Property of Data General Corporation 3-15

The Assembly Process

Table 3-2 Assigning Addresses Within Partitions

Source Code Addresses Partition
LTITL RELOC
.ZREL
20 0 ZREL
1
30 2
3
.NREL 0
40 0 Unshared NREL code
1
50 2
3
60 4
5
.NREL 1
70 0 Shared NREL code
1
100 2
3
.LOC 250
110 250 Absolute code
251
120 252
253
.NREL 0
130 6 Unshared NREL code
7
.END

During your assembly, you can leave a partition and later return to it (as in the case of
the unshared NREL code partition in Table 3-2). When you return, the Macroassembler
continues assigning addresses from the point where it left off earlier.

From the above discussion, we can see that the assembler assigns consecutive addresses
starting at 0 within each relocatable partition. These addresses serve as offsets from the
partition’s relocation base. The assembler cannot assign an absolute value to the
relocation base because several separately assembled modules may specify the same
memory partitions.

For example, two separately assembled modules may both place data in the ZREL
memory partition. Since the assembler knows of only one module at a time, it always
assigns ZREL locations starting with 0. Thus, each module will contain ZREL words with
the same relative locations. Table 3-3 shows two separately assembled modules that both
place code in the ZREL partition.

Licensed Material--Property of Data General Corporation 093-000242

Relative
Address
Assighed

The Assembly Process

Table 3-3 Separately Assembled Modules With Similar Partitions

Source Relative Source Relative
Module A Locations A Module B Locations B
TITL A ,TITL B
.ZREL .ZREL
20 0 40 0
1 1
30 2 50 2
3 3
.END .END

The Link utility can assign a value to each partition’s relocation base because it knows of
all the partitions and locations you use in the program. Since all predefined partitions
have the normal base attribute (see Table 3-1), Link assigns values to the relocation
bases in such a way that similar predefined partitions from different modules are
contiguous in memory. Figure 3-5 illustrates how Link assigns addresses to similar
predefined partitions from the separately assembled modules A, B, and C.

Order of Linking Memory Image
Module A
0
a
Module B
0 a+b+1
a+b+2
b
atb+c+2
Module C
0
c

INT-01032

Figure 3-5 Linking Modules With Similar Predefined Partitions

The Link utility calculates each word’s new location by adding the offset assigned by the
Macroassembler to the relocation base assigned by Link. Thus, the Link utility maintains
the relationships between words within a partition; i.e., contiguous words in a partition
are also contiguous in the program file that Link produces.

The AOS/VS Link and Library File Editor (LFE) User’s Manual provides more
information about how Link assigns values Lo the relocation bases.

093-000242 Licensed Material--Property of Data General Corporation 3-17

Relocation Bases and Symbols

The Assembly Process

Thus far, we have discussed relocation bases only with respect to partitions and
addresses. However, the value of each symbol you use in your program also has a
relocation base associated with it.

To review, there are seven major relocation bases: one is associated with absolute code
and the rest are associated with the six predefined memory partitions. These seven
relocation bases are:

® absolute

® ZREL

® relocatable NREL data (Short NREL)
® unshared NREL code

¢ shared NREL code

® unshared NREL data

¢ shared NREL data

By using .PART, you can create additional NREL partitions. The Macroassembler assigns
each user-defined partition a unique relocation base. In addition, each symbol that you
declare as external (in an .EXTD, .EXTN, or .EXTL statement) also receives a unique
relocation base.

The Macroassembler defines each symbol’s value relative to a relocation base. For
example,

.ZREL ;The following words reside in
;the predefined ZREL partition.
A: 10 iEach entry requires two words of
B: 20 istorage. Thus, the value 10 resides

;at relative location 0 and the value
120 resides at relative location 2.

The Macroassembler evaluates the label B relative to the ZREL relocation base:

B=RBz+2
where:
RB; is the ZREL relocation base
2 is the- offset from RBz that the Macroassembler assigns to B

When you use a symbol, you associate it with a relocation base either explicitly or
implicitly.

If a symbol appears in a .PART, .EXTD, .EXTN, or .EXTL statement, the assembler
assigns it a unique relocation base. The symbol receives its relocation base explicitly
because you directly associate the symbol with the base when you issue the pseudo-op.

Other symbols receive relocation bases implicitly through their association with a partition T

or another symbol. For example, a label always receives the relocation base of the
partition in which it appears.

Licensed Material-—-Property of Data General Corporation 093-000242

The Assembly Process

The following list summarizes the ways that the assembler can implicitly assign a
relocation base to a symbol:

® If you associate a symbol with an address in a partition (e.g., a label), then that
symbol’s value receives that partition’s relocation base. For example:

.NREL ;Unshared NREL code partition.
X: 5 ;X has the same relocation base as
;the unshared NREL code partition.
A=.+2 ;A is defined with respect to the

;location counter and, thus, has the
;same relocation base as the unshared
;NREL code partition.

® If you define one symbol with respect to another symbol that has a relocation base,
the first symbol gets the second symbol’s relocation base. For example:

.EXTD M ;M receives a unique relocation base.
.NREL ;Unshared NREL code partition.

X: 5 ;X has the unshared NREL code base.
A=X+3 ;A has the same relocation base as X.
N=M+1 ;N has the same relocation base as M.

e If you define a symbol in terms of integers alone, the symbol receives the absolute
relocation base. For example:

B=3 ;B has the same relocation base
;as 3 (i.e., absolute base).

® All symbols defined by instructions have the absolute relocation base. For example:
F=XWLDA 0,0 ;F has the absolute relocation base.

e All value symbols, except .LOC and period (.), have the absolute relocation base.

The assembly listing indicates both the value and the relocation base for each number,
symbol, and expression you use in your program (see “Assembly Listing” in Chapter 4).

Absolute Addresses Versus Absolute Values

When discussing symbol relocation, we distinguish between absolute addresses and
absolute values. A symbol with an absolute value has a constant, integer value that
remains the same through the assembly, Link, and runtime processes. The symbol’s
value is exactly equal to the value you assign it in your source module. For example:

A=10 ;Symbols A, B, ¢, and D
B=A+4 ;all have absolute values.
C=LDA 0,0

D=.RDX

MASM can completely resolve all symbols with absolute values.

083-000242 Licensed Material--Property of Data General Corporation 3-19

The Assembly Process

Absolute addresses represent specific address values in your logical address space. For
example:

.LoC 100
A: 0
Symbol A’s value represents the address of the 100™ word in your logical address space.
However, MASM does not simply store A’s value as 100. Rather, A’s internal
representation contains information required for address resolution at link time and
runtime.

The address 100 is absolute only within your logical address space. That is, all processes
have a location 100 and A’s value is relative to your own particular address space.

Since MASM cannot determine where in AOS/VS memory your logical address space will
reside, it cannot determine what A’s value will be at runtime. Thus, MASM cannot
assign to any address, absolute or otherwise, a constant, integer value.

Suffice it to say that all locations have relocatable values at link time and runtime, even
addresses of absolute code. Thus, all labels have relocatable values. This point is
important when we discuss the relocation properties of expressions in the next section.

Relocation Bases and Expressions

Chapter 2 introduced expressions and explained the various operators. The following
sections examine a different aspect of expressions: their relocation properties.

As we have seen, each symbol has a relocation base associated with its value. Similarly,
MASM assigns a relocation base to each expression in your source.

There are two types of expressions:
® absolute expressions
® relocatable expressions

The following sections of this manual describe the properties of these two expression
types.

Absolute Expressions

3-20

An absolute expression has an absolute value; that is, MASM can completely resolve the
expression to an integer value.

The simplest absolute expressions contain operands that have integer values. For
example, the following are all absolute expressions. (Remember that all value symbols
except .LOC and . have the absolute relocation base.) '

5 6*3 (.PASS) 3771177 (.RDX)< = (6/2)

Similarly, the following are also absolute expressions if A and B have absolute values
(e.g., A=10, B=.RDX):

A A+150 B*.PASS A+B*(A-10)

Licensed Material--Property of Data General Corporation 093-000242

i

The Assembly Process

All the absolute expressions we’ve presented thus far contain operands that have absolute
values. However, absolute expressions can also contain relocatable operands if the
resulting value has no relocatable components. That is, if all relocatable components
cancel each other out, the expression is absolute. Consider the following example:

.ZREL

A: 10

B: 20
(B-A)+40

Earlier in this chapter (“Relocation Bases and Symbols”), we showed how MASM
evaluates each symbol’s value with respect to a relocation base. Thus, MASM computes
the values for A and B as follows:

A=RBz+ 0
B=RBz+2
where:
RB; is the ZREL relocation base
0 is the offset from RBz that MASM assigns to A
2 is the offset from RBz that MASM assigns to B

The values for A and B are relative to the ZREL relocation base. Thus, A and B have
relocatable values.

MASM evaluates the expression (B-A)+40 as follows:
(B-A)+40 = ((RBz + 2) - (RBz + 0)) + 40
= (RBz - RBz) + (2 - 0) + 40
=(0) + (2) + 40
=42

In this expression, the two relocatable components (RBz) cancel each other out, leaving
an absolute value (i.e., 42). Thus, the expression (B-A)+40 is an absolute expression,
even though it contains relocatable operands.

As we mentioned earlier, all labels have relocatable values. Thus, you can never use
labels in absolute expressions unless their relocatable components cancel out.

As we have seen, MASM can completely resolve absolute expressions. That is, absolute
expressions resolve to integer values at assembly time. Thus, you generally use absolute
expressions when a value is required during the assembly process (e.g., index and
accumulator arguments to memory reference instructions, and certain pseudo-op
arguments).

093-000242 Licensed Material--Property of Data General Corporation 3-21

The Assembly Process

In addition, since MASM can completely resolve an absolute expression, it verifies that
the expression’s value is legal for the field it appears in. For example: s

LDA 0,23571

The absolute expression 23571 is too large to fit in the 8-bit LDA displacement field.
Thus, MASM returns an error for this instruction.

Relocatable Expressions

3-22

Relocatable expressions resolve to relocatable values. That is, the result of a relocatable
expression is not simply an integer; it contains a relocatable component that cannot be
resolved until link time.

All relocatable expressions conform to one of the following syntaxes:
+
<2*>rel-symbol abs-expr
or
+
abs—expr rel-symbol <*2>

where:

rel-symbol is a symbol whose value is relocatable (see “Relocation Bases and
Symbols” earlier in this chapter)

Jo—

/1

abs-expr is an absolute expression

According to this definition, the following module contains several relocatable
expressions:

.ZREL
A: 10 ;A has the ZREL relocation base.
.NREL
B: 20 ;B and ¢ have the unshared NREL code
C: 30 ;relocation base.
A+20 ;Relocatable symbol A plus absolute expression 20.
B-5 ;Rel-symbol B minus abs-expr 5.
A+(B-C) ;Rel-symbol A plus abs-expr (B-C).
(10+(B-C))-A ;Abs-expr (10+(B-C)) minus rel-symbol A.

Note that you can include more than one relocatable symbol in an expression as long as
all but one of their relocation bases cancel out. In the example module, A+(B-C)
contains three relocatable values. However, B and C have the same relocation base
(unshared NREL code); thus, (B-C) has an absolute value (see “Absolute Expressions”
for more information).

Also, remember that MASM assigns each external symbol a unique relocation base. This
is true even if you declare several symbols in the same statement; for example:

.EXTL X, Y

X and Y receive different relocation bases. Since their bases are unique, you cannot i
cancel either base out, as you could with symbol B and C in the previous example.
Thus, you can never use two external symbols in the same expression.

Licensed Material--Property of Data General Corporation 093-000242

The Assembly Process

The relocatable expression syntax shows that you can multiply the relocatable symbol by
two. For example:

. ZREL

X: 10

Y: 20
2*X
(10)+(2*Y)

Both 2*X and (10)+(2*Y) are legal expressions.

An expression whose relocatable symbol value is multiplied by two is called byte
relocatable. In most cases, you use byte relocatable expressions as byte pointers (values
that specify a byte’s address). In the example module, the expression 2*X is a byte
pointer to the byte starting at address X. For more information on byte pointers, refer to
the ECLIPSE® MV/Family 32-Bit Principles of Operations manual.

MASM cannot completely resolve relocatable expressions since relocation bases do not
receive values until link time. Thus, MASM cannot determine whether a relocatable
expression’s value is legal for the corresponding field. For example:

.NREL ;Unshared NREL code.
X: 10 1Symbol X is relocatable.
.NREL 1 ;Shared NREL code.
XWLDA 0,X+50 ;Load the value starting at the 50th

;word after address X into ACO.

The XWLDA instruction provides a 16-bit field for the displacement value. However,
since X does not have an absolute value at assembly time, MASM cannot determine
whether the expression X+50 can fit into a 16-bit field.

In short, when using a relocatable expression, be sure that its value can be represented in
the corresponding field. If it cannot, you will receive an error when Link resolves the
expression.

Resolving Relocatable Expressions

The previous discussion explained how to create and use relocatable expressions in your
source module. This section describes how MASM evaluates relocatable expressions.

At assembly time, all relocatable expressions must resolve to a relocatable component, an
unresolved operator, and an integer component (i.e., an absolute value).

093-000242 Licensed Material--Property of Data General Corporation 3-23

3-24

The Assembly Process

An example will help clarify these rules:

.ZREL 3ZREL memory partition.
Y: 5 ;The value 5 resides at location O
X: 15 ;in this partition; 15 resides at
X+4 ;location 2.

In this example, the value of label X equals the ZREL relocation base plus 2 words; i.e.,
X’s value equals the third address in the ZREL partition. Thus, we can think of X’s
value as "

X = RBZ + 2
where:
RB; is the ZREL relocation base

2 is the offset from RBz that MASM assigns to X

The Macroassembler cannot completely resolve the expression X+4 because the ZREL
relocation base does not have a value. However, the Macroassembler can partially
evaluate the expresssion as follows:

(X+4)

((RBz + 2) +4)

(RBz + 6)

At this point, the Macroasembler cannot process the expression any further. Thus, it
passes Link the absolute value 6 (integer component), the ZREL relocation base RBz
(relocatable component), and the unresolved operator +.

During the Link process, the ZREL relocation base receives a value. Then, Link can
fully resolve the values for the symbol X and the expression X+4.

Licensed Material--Property of Data General Corporation 093-000242

The Assembly Process

In most cases, you include only one relocatable operand in each expression (as in the
example). The Macroassembler does, however, allow you to include more than one
relocatable value in a single expression. Again, the expression must resolve to a single
relocation base, an operator, and an integer component or you will receive an error. For

example:

.ZREL

Y: 10

X: 20
.NREL

W: 30

Z: 40
(X-Y)+Z

The expression (X-Y)+Z includes three relocatable operands. X and Y have the ZREL
relocation base; Z has the unshared NREL code base. The Macroassembler evaluates
this expression as follows:

(X-Y)+Z

((RBz + 2) - (RBz + 0)) + (RBn + 2)

((RBz ~ RBz) + (2 - 0)) + (RBn + 2)

((0) + (2)) + (RBn + 2)

RBn+4

RB; is the ZREL relocation base, and RBn is the unshared NREL code base. The
values 2, 0, and 2 are the offsets for X, Y, and Z from their respective relocation bases.

Since both ZREL relocation bases cancel out, the expression is legal. After processing
the expression, MASM passes Link the absolute value 4 (integer component), the
relocatable value RBn (relocatable component), and the unresolved operator +.

The previous section explained how you can multiply a relocatable symbol value by 2 to
create a byte-relocatable expression; for example:

.ZREL
Y: 10
X: 10
2*X

The expression 2*X serves as a byte pointer to the first byte at address X. MASM
evaluates this expression as follows:

2*X =2 * (RBz + 2)
= (2* RBy) + (2 *2)
=(2*RBZ)+4

MASM cannot process this expression any further. Thus, it passes Link the relocatable

component 2 * RBz, the unresolved operator +, and the integer value 4. Any expression
whose relocatable component equals two times a relocation base is byte-relocatable.

Table 3-4 shows the different forms of expressions and how the assembler resolves each.

093-000242 Licensed Material--Property of Data General Corporation 3-25

The Assembly Process

Table 3-4 Relocatable Expressions

Expression Relocatable Integer
Component Component

n+m 0 n+m

n-m 0 n-m

n*m 0 n*m

n/m 0 n/m

n&m 0 n&m

nim 0 nlm

d+n base(d) offset(d)+n

d-n base(d) offset(d)-n

d*n base(d)*n 0 *
d/n illegal

d&n illegal

din illegal

n+d base(d) n+offset(d)

n-d -base(d) n-offset(d)

n*d base{d)*n 0 *
n/d illegal

n&d illegal

n'd illegal

r+n base(r) offset(r)+n

r-n base(r) offset(r)-n

r*n base(r) *n offset(r) *n i
r/n illegal

r&n illegal

r'n ilegal

n+r base(r) offset(r)+n

n-r legal

n*r base(r)*n offset(r)*n **
n/r egal

n&r illegal

nlr illegal

r+p illegal

r-p base(r)-base(p) offset(r)-offset(p) R
r*p iltegal

r/p ilegal

r&p ilegal

rip illegal

* If offset(d) is not equal to 0, this is an error.

*x If n is not equal to either 2 or 16., this is an error.
*hk If the relocation bases of r and p are the same, then the result is an absolute value If

the relocation bases of r and p are not the same. and the relocation base of p is not
the current partition, this is an error.

m and n represent two distinct absolute values.
r and p represent two distinct relocatable values.
d is a data external, an-expression involving a data external. or a symbol value defined

relative to a data external. (A data external is one declared with either the .EXTDD,
.EXTND or .EXTLD pseudo-o0p.)

3-26 Licensed Material--Property of Data General Corporation 093-000242

The Assembly Process

Resolving Locations in Memory Reference Instructions

The section “Assembly Language Instructions” in Chapter 2 briefly mentioned memory
reference instructions (MRIs) and their major uses. Again, MRIs allow you to access
locations in your logical address space.

Each MRI requires you to specify a unique location in memory. You can do this in one
of two ways:

® You can explicitly supply a displacement value and an addressing index or

® You can supply a single address value and let MASM calculate the appropriate
displacement and index values

These two addressing methods provide you with considerable programming power and
flexibility. The following sections of this chapter explain how to use these two methods.

We do not describe indirect addressing in this section of the manual. Refer to “At Sign
(@)” in Chapter 2 for a description of how MASM assembles memory reference
instructions containing the indirect addressing indicator @. The ECLIPSE® MV/Family
32-Bit Principles of Operation manual provides more information on indirect addressing
and also describes each memory reference instruction in detail.

Supplying Both a Displacement and an Index

The MV/Family 32-bit memory reference instructions provide different methods for
addressing locations in memory:

® absolute addressing
e program counter (PC) relative addressing
& accumulator (AC) relative addressing

In absolute addressing, the Macroassembler takes the value you specify in the MRI’s
displacement field as an address in your logical address space.

In PC relative addressing, the Macroassembler uses the displacement value as an offset
from the address of the MRI. That is, the Macroassembler computes the memory address
by adding the displacement value to the address of the MRL

In AC relative addressing, the Macroassembler computes the memory address by adding
the displacement value to the contents of an accumulator (either AC2 or AC3). In other
words, the displacement value serves as an offset from the value in an accumulator.

You can indicate one of these addressing modes by placing a value from 0 through 3 in
an memory reference instruction’s optional index argument (sometimes called the mode
argument). Table 3-5 describes the four index values.

093-000242 Licensed Material-—Property of Data General Corporation 3-27

The Assembly Process

Table 3-5 MRI Index Values

Index Value Addressing Mode

Absolute addressing
PC-relative addressing

AC2-relative addressing

w MM = O

AC3-relative addressing

The following two examples illustrate the use of the index argument in MRIs.

Our first example specifies PC-relative addressing. When MASM calculates a PC-relative
address, it considers the value in the displacement field as an offset from the address of
that field. Since the displacement field often begins at the second word of the
instruction, choose your displacement value accordingly.

XWLDA 0,3,1
100
200

The XWLDA instruction loads accumulator 0 (ACQ) with the value that begins three
words after the location of the displacement field (i.e., displacement value of 3; index
value of 1). The XWLDA instruction is two words long and the second word contains
the displacement field. The value 200 begins three words after the displacement field.
Therefore, after the XWLDA instruction, ACO contains the value 200. (Remember that
each data entry occupies two words of memory, by default.)

The second example shows the use of the absolute addressing index:

.LOC 110

4 ;The value 4 resides at
;absolute location 110.

LWLDA 1,110,0 ;Load the value at absolute

;location 110 into AC1.

The LWLDA index value of 0 directs MASM to use the displacement value as an
absolute address (not as an offset from the PC or an AC). Thus, the Macroassembler
loads the value at address 110 into ACI1.

When specifying a displacement, be sure that value can fit into the corresponding field of
the MRI. The various instructions have displacement fields of varying length (i.e., 8, 16,
and 32 bits). Table 3-6 shows the legal range of the displacement value under various
conditions.

Licensed Material--Property of Data General Corporation 093-000242

The Assembly Process

Table 3-6 MRI Displacement Values

Index Value Length of Displacement Field
8 bits 16 bits 32 bits *
0 0 to 377g 0 to 77777g 0 to 1777777777
{absolute addressing) or or or
0 to 2559 0 to 32,7674 0 to 268,435,4564¢
1, 2,8 —-200 to +177g -40000 to +37777g -1000000000 to +777777777g
(PC or AC relative or or or
addressing) -128 to +127, -16,384 to +16,383g -134,217,728 to

+134,217,727 9

* Note that you can refer to any location in your logical address space with a 32-bit
displacement field.

Supplying Only a Displacement Value

The previous discussion showed how you can identify a location by specifying a
displacement value and an addressing index. Alternatively, you can supply a single
argument and let MASM compute the appropriate displacement value and addressing
index.

The following shows how MASM generates PC-relative (index mode 1) addressing for an
instruction that does not have an addressing index. The source contains:

.NREL

LDA 0,A

MASM calculates the displacement of the LDA instruction relative to A. The
displacement is simply the result of (A-.), which in this case is a negative result. The
resulting instruction is the same as if the statement had been:

LDA 0,A-.,1

0393-000242 Licensed Material--Property of Data General Corporation 3-29

The Assembly Process

In most cases, AOS/VS MASM will use PC-relative addressing if you do not supply an
addressing index. There are, however, many ways that you can explicitly or implicitly
override this.

e JIf the address is nonrelocatable, the index mode is always absolute. For example:

.DUSR .FP=41
LDA 3,FP

In this case, the addressing index as assembled would be 0.

e If the address is in the range 0 to 377 (octal), the index mode is always absolute.
For example:

.LOC 41
.DUSR FP=.
.ZREL

.DUSR A=,
LDA 3,FP
LDA 2,A

In both these cases, the index mode as assembled would be 0.

If the address is in the same partition as the instruction, the index mode is always
PC-relative. For example:

.NREL
.DUSR A=,
LDA 0,A

In this case, the index mode as assembled would be 1.

If the instruction is LDA, STA, ISZ, DSZ, JMP, JSR, ELDB or ESTB, the index
mode is absolute. For example,

.EXTN A
ELDB 0,2*A

In this case, the index mode as assembled would be 0.

The default index mode as set by the .ENABLE pseudo-op, if set.

Absolute (index mode 0) if the /W command-line switch is set,

PC-relative (index mode 1).

Licensed Material--Property of Data General Corporation 093-000242

A

The Assembly Process

Using Literals in Memory Reference Instructions

The MV/Family instruction set includes a number of instructions for loading a constant
directly into an accumulator. However, the 16-bit ECLIPSE and especially the NOVA
instruction set do not include similar instructions. Therefore, the assembler provides a
literal facility, which manages the content and placement of groups of constants, called
literal pools.

A typical memory reference instruction might look like:

LDA 1,A

Which loads the contents of variable A into AC1. However, if you wanted to load ACI1
with the constant 2, a code sequence such as the following would be required:

LDA 1,c2
c2: 2

Rather than have to define label C2 and set the value of the location to 2, the
assembler’s literal facility can do this for you. The example above might merely be
replaced with:

LDA 1,=2

Then, when MASM assembles the instruction, “=2" is replaced with the actual address of
2 in the literal pool, which is created by the assembler.

Expressions are also acceptable as literals. For example:
LDA 1,=1BO+"A/2

loads AC1 with the value 100040 (octal). Furthermore, literals need not be absolute;
they can be any valid expression, absolute or relocatable. You can use the literal facility
to load addresses or byte addresses:

LDA 1,=2*%A

A .TXT "TEXT"

By default, all literals are placed in a single literal pool in ZREL. Frequently, it is
desirable to place literal pools elsewhere. The .NLIT pseudo~op causes the default literal
pool to be placed in whatever partition is active at the end of the assembly pass. The
.LPOOL pseudo—-op permits creation of any number of literal pools at any place desired.
Be sure that the program’s flow of control does not inadvertently enter a literal pool.

End of Chapter

093-000242 Licensed Material--Property of Data General Corporation 3-31

Output from the Macroassembler

Output from the Macroassembiler

The Macroassembler can produce four diflferent types of output during the assembly
process:

® object file

® assembly and cross-reference listing
& crror listing

® permanent symbol file

All these forms of output, except the error listing, are optional; the Macroassembler
always reports assembly errors.

The permanent symbol file defines symbols for use in future assemblies. It usually resides
in disk file MASM.PS and contains definitions for all AOS/VS system calls and system
parameters.

If you produce a permanent symbol file, you can also generate an assembly listing, but it
will only contain assembly errors and, optionally, assembly statistics. Refer to Chapter 8§
for information about how the Macroassembler uses the permanent symbol file and how
you can build one.

The following sections of this chapter describe the other four types of Macroassembler
output.

093-000242 Licensed Material--Property of Data General Corporation 4-1

Output from the Macroassembler

Object File i

The output file of the Macroassembler is called an object file. When MASM creates this
object file, you are one step closer to having an executable program. When you use the
AOS/VS Link utility (LINK.PR) to combine the contents of this object file with others,
you produce an executable program file (usually designated by a .PR extension).

The contents of an object file are a representation of what was in your source file. All
the code and data you defined is in it, as well as much additional information. This
object file is not, however, in a human-readable form. Instead, it is in a form that is
easily read by Link and other utilities. You cannot type out an object file. Symbols
have been replaced with numerical values, instructions have been assembled into
numerical codes, and there are no comments. In short, the object file is a
machine-usable representation of your source file.

The Macroassembler normally produces an object file whether your source contains errors
or not. If you do not want the Macroassembler to produce an object file, include the /N
function switch on the MASM command line. Then, the Macroassembler will perform
all assembly operations correctly but will not store the resulting binary object code on
disk. You usually use the /N switch to locate errors in your source code.

Normally, the object file receives the same name as the first source module on the
MASM command line without the .SR extension, if any, and with the new extension .
.OB. If you include either the /O= switch on the MASM command line or the .OB
pseudo-op in your source module, the Macroassembler overrides the default naming
convention. Table 4-1 shows the hierarchy that the Macroassembler uses to name object
files.

Table 4-1 Object Filename Hierarchy

Priority Object Filename Description

1 {highest) /O=filename Function switch on the MASM command line

2 .OB[_filename Pseudo-op in a source module

3(lowest) Default name The name of the first source module on the MASM command
line

The object file is not executable; you must process it with the Link utility to produce a
program file. Chapter 8 provides the general Link command line; the AOS/VS Link and
Library File Editor (LFE) User’s Manual describes the Link utility in detail.

Assembly Listing

The information in the assembly lisiing shows you how the Macroassembler interpreted
your source file. The listing consists of a series of lines, each divided into various fields.

AT e

Table 4-2 lists the fields and the information contained in each one. Figure 4-11is a
sample assembly listing.

Licensed Material-—-Property of Data General Corporation 093-000242

ol
02
03
04
o5
06 0Q00SE
07 000057
0§ 000051
09 000063
10 0000&64
ii 000068
iz 0Q000&7
13 000070
14 000072
15 000073
i6 000075
17 000077
13 000100
i3
20 000403
21
22
25 000107

25

16 000075 UC
17 000077 UC
18 000100 UC

19

20 000103 UC

uc
uc
uc
uc
uc
uc

uc
uc
uc
uc
uc
uc

uc

uc

Qutput from the Macroassembler

N=DGT: RCHAR O

.FUSH . NOMAC
00000000001 . HOMAC i ;IRHIBIT LISTING
102551 WCLK 0, O
00000000050 "o
00000000071 "3
100570 WER NODIGIT
163371 177720 WHADI -"0, O
163531 WILS
170770 WER NEDGT
163311 000012 NODIGIT: WSEQI 12, O
100670 WER CERINT
1631431 Q79770 DONE: XWsTA 0, ?0ACO, 3

165431 077772 AWSTA 1, P04C1, 3

103551 WEIN
147371 CERINT: LEFEFE ERROR%2
FITTIITISTG
123311 LCALL FRINT, 0 , 1
00000000000 PR

000001
127331 LIV ERRRTIH
17277777725

.END

165431 077772 {WSTA 1, ?0ACL1, 3

103651 WRTH

147371 CPRINT: LPEFE ERROR*Z
37777777576

123311 LCALL PRINT, 0 , 1

11 1113111 222222 22 33333
12 456789 12 456789 123456 89 23456
? N\ p— ol — /N - gl ~ -
Line Location Data Field Data Field Source Line
Number Counter For Words Fer Words
1and 3 2 and 4
Location Counter Data Figld
Relocation Symbol Relocation
Symbol INT-01033
Figure 4-1 Sample Assembly Listing
093-000242 Licensed Material--Property of Data General Corporation 4-3

4-4

Output from the Macroassembler

Table 4-2 Assembly Listing Fields

Columns Information Contained

1-2 Line number within the current listing page. Each page of the listing begins with
line 1.

3 Space

4-9 The value of the location counter (address). Iif applicable. If the current source
statement generates more than one word of memory, the value in columns 4 through
9 is the address of the first one. If the current source statement does not generate
any storage words, columns 4 through 9 are blank.

10 Space

11-12 A 2-character symbol indicating the relocation base (or partition) of the address in
columns 4 through 9 (see Table 4-3).

13 Space

14-19 Data field for the first (or third) 16-bit word of the assembled instruction or
expression; or the first (or third) 16 bits of the value on the right side of an
assignment statement or a pseudo-op argument. In all other cases, these columns
are blank.

20 Space

21-26 Data field for the second {or fourth) 16-bit word of the assembled instruction or
expression: or the second (or fourth) 16 bits of the value on the right side of an
assignment statement or a pseudo-op argument. In all other cases, these columns
are blank.

27 Space

28-29 A 2-character symbol indicating the relocation base of the values in columns 14
through 19 and 21 through 26, If present {see Table 4-3).

30-31 Space

32... The source statement exactly as written (except for macro expansions).

The Macroassembler displays the value of the location counter in columns 4 through 9.
This address corresponds to the first word of the assembled source statement.

Columns 10 and 11 contain a 2-character symbol indicating the relocation base
(partition) of the address. Table 4-3 lists the symbols and their meanings.

Table 4-3 Assembly Listing Relocation Symbols

Symbol Relocation Base

{spaces) Absolute

ZR Lower page zero relocatable (ZREL)
LC Short NREL

ucC Unshared relocatable code (NREL)
uD Unshared relocatable data (NREL)
sSC Shared relocatable code (NREL)
sD Shared relocatable data (NREL)
other User-defined partition or external

Licensed Material--Property of Data General Corporation 093-000242

Output from the Macroassembier

If the address resides in a user—defined partition, the Macroassembler places the first two
letters of the partition’s name in columns 11 and 12. See the .PART description in
Chapter 7 for more information.

Similarly, if the address value is relative to an external symbol, MASM places the first
two letters of that symbol in columns 11 and 12 of the listing.

Refer to Chapter 3 for a description of how the Macroassembler assigns locations and
relocation bases to the statements in your source file.

Following the address relocation symbol are two 6-column data value fields or one
11-column field. These fields contain the assembled values of the first and second 16-bit
words in the current source statement. The following example shows how the MASM
listing represents one— and two-word instructions:

01 000000 107000 ADD 0,1 ;Oone-word instruction.
02 000001 163770 000100 ADDI 100,0 ;Two-word instruction.

If a source statement requires more than two words of memory, the assembled values of
these additional words appear on subsequent lines of the listing. For example:

01 000000 103211 000000 WADDI 0,0 ;Three-word instruction.
02 000000

03 000003 123311 000000 LCALL 15,0 ;Four-word instruction.
04 000015 000000

Note that the listing contains the address of the instruction’s first word only (in columns
4 through 9). In the example, the first word of the LCALL instruction resides at
location 3. Subsequent words in the LCALL instruction reside at locations 4, 5, and 6.

Certain source statements do not generate storage words in your object file. For these
source lines, the listing data fields contain the value of an argument or other relevent
expression. For example:

01 000000 000001 .NREL 1

The first data field (columns 14 through 19) contains the value of the argument to
.NREL (i.e., 1).

A 2-character symbol indicating the relocation base of the data value(s) follows the
second data field. The data field relocation symbols are the same as the address
relocation symbols (see Table 4-3). Chapter 3 describes how the Macroassembler assigns
a relocation base to a value in your source.

If your source statement is a memory reference instruction with an externally defined
displacement field, MASM places the first two letters of the external symbol in columns
28 and 29 of your listing. If the displacement field contains more than one external
symbol, MASM places the first two letters of the first external symbol in columns 28 and
29.

The last item on each line of the assembly listing is the original ASCII source line. The
listing gives your source line exactly as you entered it, except that it includes macro
expansions in the appropriate places, and “\” and “$” numbers are expanded.

When the Macroassembler outputs an assembly listing, you usually receive a
cross-reference listing of symbols in the same file. See “Cross—Reference Listing’
chapter for more information.

»

in this

093-000242 Licensed Material--Property of Data General Corporation 4-5

As

4-6

Output from the Macroassembler

In addition, the Macroassembler reports all assembly errors at the end of the assembly
listing file. Refer to “Error Listing” later in this chapter for more information about how
the Macroassembler reports assembly errors. Appendix C lists assembly errors.

sembly Listing Control

The Macroassembler does not automatically produce an assembly listing. If you want
one, you must include either the /L or /L=filename switch on the MASM command line.
The /L switch directs the Macroassembler to send the assembly listing to the generic file
@LIST; the /L=filename switch sends the listing to the specified file.

The Macroassembler provides several tools that allow you to manipulate the contents and
format of the assembly listing:

listing control pseudo-ops: .EJECT, .LCNS, .NOCON, .NOLOC, .NOMAC,
and .RDXO

listing control switches: /FF, /Z, /IXREF

listing suppression indicator: two asterisks (**)

listing suppression override switch: /XPAND

assembly statistics switch: /STATISTICS

page size switches: /CPL= and /LPP=

These features do not alter the object file; they affect only assembly listing.

Listing Control Pseudo-Ops

There are five pseudo—-ops that alter the assembly listing, Table 4-4 lists these e~
pseudo-ops and describes their functions.

Table 4-4 Assembly Listing Control Pseudo-Ops

Pseudo-Op Description

.EJECT Begin a new page in the assembly listing (i.e., generate a form feed
character)

.NOCON Enable or suppress the listing of conditional source lines

.NOLOC Enable or suppress the listing of source lines that lack location fields

.NOMAC Enable or suppress the listing of macro expansions

.RDXO Specify the radix (base) for numeric values in the output listing(s)

.LNCS Adds Data General proprietary software notice to top of each page of output

Refer to the individual pseudo-op descriptions in Chapter 7 for more detailed information
about these pseudo-ops.

1

Licensed Material-—Property of Data General Corporation 093-000242

Output from the Macroassembler

Asterisks (**)

You can suppress the listing of any line in the source file by placing two consecutive
asterisks (**) at the beginning of that line. For example, the following source code:

.NREL

LDA 0,0,1
** LDA 0,0,2

LDA 0,0,3

.END

produces the following assembly listing:

SOURCE: .MAIN MASM 08.00.00.00 28-JAN-87 18:35:268 PAGE 1
o1 .NREL

02 000000 UC 020400 LDA 0,0,1

03 000002 UC 021400 LDA 0,0,3

04 .END

NO ASSEMBLY ERRORS

Note that the location counter in the assembly listing (columns 4 through 9) jumps from
0 to 2. The Macroassembler assembled all three source lines but did not list the second
statement. The asterisks do not alter the object file, only the assembly listing.

If you place two asterisks on a source line that generates an error, the Macroassembler
ignores the listing suppression, prints the line, and reports the error.

You can override the ** listing suppression indicator at assembly time by using the
/XPAND switch on the MASM command line (see Chapter 8).

Assembly Statistics

The Macroassembler reports certain statistics about your assembly in the listing file if you
include the /STATISTICS switch on the MASM command line. The statistics you
recelve include the following:

e Total number of source lines that MASM processed
e Total elapsed time for the assembly (not CPU time)
e The average number of lines that MASM processed each minute

® The total number of symbols you used in your source module, excluding pseudo—ops
and MV/Family 32-bit instruction mnemonics; that is, the statistics listing shows how
many symbols MASM entered in the temporary symbol table.

MASM places the statistics information on the last page of the assembly listing. Thus, you
must issue the /L or /L= function switch in conjunction with /STATISTICS. Figure 4-2
shows the statistics section from a sample assembly listing.

STAT: numin MASM 06.00.00.00 27-JAN-87 09:26:53 PAGE 4
ELAPSED TIME: 00:00:08
CPU TIME: 00:00:00
TOTAL LINES: 65
TOTAL SYMBOLS: 13
LINES/MINUTE: 650

NO ASSEMBLY ERRORS

Figure 4-2 Sample Statistics Listing

093-000242 Licensed Material--Property of Data General Corporation 4-7

Output from the Macroassembler

Page Size " —

By default, the Macroassembler places 80 characters on each line and 60 lines on each
page of your output listing(s). These values are appropriate for 8 by 11 inch line-printer
paper. Using the /CPL= and /LPP= command line switches, you can alter the size of
your listing pages.

The /CPL= switch specifies how many characters the Macroassembler will place on each
line of your listing. You can select any line length from 80 to 136 characters, inclusive.
If a line is too long, the Macroassembler truncates the excess characters.

Similarly, the /LPP= switch indicates how many lines each listing page will contain. You
can specify any value from 6 to 144, inclusive.

Please note that the /CPL= and /LPP= function switches apply to the error and
cross-reference listings, as well as to the assembly listing.

Refer to Chapter & for more information about command line function switches.

Cross—-Reference Listing

By default, the Macroassembler generates a cross-reference listing of symbols with every
assembly listing. The cross-reference listing provides an alphabetic list of symbols and
their values. It also shows the page and line numbers of the assembly listing in which the
symbols appear.

For example, suppose the symbol SUB2 has the value 613 and appears on the first page,

A7

fourth line of your program. The cross reference shows the symbol SUB2, followed by
the value 000061; then the page/line indicator, 1/04.
In addition to that information, the cross-reference listing also identifies the page and
line on which you defined (or redefined) the symbol (if applicable). The Macroassembler
signals the defining location(s) by placing a number sign (#) after the appropriate
page/line indicator.
The cross-reference listing includes several assignment mnemonics that provide additional
information about the symbols in your program. Table 4-5 lists the assignment
mnemonics and their meanings.
Table 4-5 Cross—-Reference Assignment Mnemonics

Mnemonic Meaning Defining Pseudo-op

EN Entry symbol .ENT

MC Macro symbol .MACRO

NC Named common symbol .COMM

XD External displacement symbol .EXTD

XN External narrow symbol .EXTN

XL External long symbol EXTL

PT User-defined partition symbol .PART f\

(spaces) All other symbols

Licensed Material--Property of Data General Corporation 093-000242

QOutput from the Macroassembler

These mnemonics appear in the cross reference immediately after the symbol’s value
(where applicable).

Figure 4-3 is a sample cross-reference listing.

XREF: numin 'MASM 06.00.00.00 27-JAN-87 09:26:53 PAGE 3
?70ACO 37777777770 2/15

?0AC1 37777771772 2/186

?READ 00000000000 MA 2/08

?SYST 00000000000 MA 2/086

?XCALL 00000000001 2/06 2/06
BUF$ 00000000000 XL 2/06

CPRINT 00000000100 2/14 2/18#
DONE 00000000073 2/15#

ERROR 00000000000 1/07# 2/18
ERRRTN 00000000033 1/59# 2/23
IOSDEF 00000000000 1/21#

IOSERR 00000000000 XL 2/08
IO$PKT 00000000000 XL 2/086

NODIGIT 00000000070 2/09 2/13#
NUMIN 00000000031 EN 1/04 1/58#
NXDGT 00000000036 2/01# 2/12
PRINT 00000000000 XL 1/08 2/20
RCHAR 00000000000 MA 1/23# 2/01

Figure 4-3 Sample Cross-Reference Listing

Cross-Reference Listing Control

The assembler produces a cross-reference listing only when it generates an assembly
listing. Thus, to receive a cross-reference listing, you must include the /L or /L= switch
on the MASM command line. The cross reference appears after the assembly listing in
the same file.

The cross-reference listing normally contains only numeric symbols. By using the /XREF=
switch on the MASM command line, you can direct the Macroassembler to include
macro, instruction, and permanent symbols in the listing. The /XREF= switch also allows
you to suppress the cross-reference listing completely.

Chapter 8 describes the various values you can pass to the /XREF= switch. Chapter 2
explains the four symbol types (numeric, macro, instruction, and permanent).

Error Listing

The error listing contains the title of your source module and information about all
statements in it that cause errors. MASM divides the error listing into two sections:

® Pass one errors
® Pass two errors

The first section lists errors that MASM detected on its first pass through your program.
The pass one error section includes the following information:

e The source page and line numbers of all statements that cause pass one errors

® A short message describing each assembly error (Appendix C lists all assembly error
messages)

The second section of the listing shows the errors that MASM detected on its second
pass through your program. This pass two error section includes the following:

093-000242 Licensed Materlal-~Property of Data General Corporation 4-9

Output from the Macroassembler

® The page and line numbers in your source module for all statements that cause pass
two errors T ow

® The page and line numbers in your assembly listing for all statements that cause pass
two errors; MASM includes this information only if you produce an assembly listing
(i.e., issue the /L or /L= function switch on the MASM command line)

® A short message describing each assembly error (see Appendix C)

The Macroassembler may report many errors for the same source statement; there is no
maximum. In addition, a source statement may generate the same error on both
assembler passes.

Figure 4-4 is a sample error listing. The Macroassembler generated this listing while
assembling source file MODULEL.SR, which contains the following source code:

.TITLE MOD1
.NREL
X=9
B=DATA+2
DATA: 50
.END
ERRORS: MOD1 MASM 06.00.00.00 28-JAN~-87 18:56:41 PAGE 3
pass 1 errors:
SOURCE 1/3: error in a constant
SOURCE 1/4: symbol is undefined
pass 2 errors:
SOURCE 1/3: listing 1/03: error in a constant AT

3 ASSEMBLY ERRORS

Figure 4-4 Sample Error Listing

Figure 4-4 shows that the assembler detected a string conversion error on pass one. The
report indicates that the third statement in the first page of the source module causes that
error.

X=9

Since the default input radix is octal (base 8), the digit 9 is illegal.

The assembler also reported an undefined symbol error on the first pass for the statement
B=DATA+2

The source code in MODULE1.SR does not define the symbol DATA until after this
statement. Thus, on pass one, MASM did not have a definition for symbol DATA.

On pass two, MASM again detected the string conversion error (illegal digit for octal
input). However, the undefined symbol error disappeared. That is, on pass two, MASM
had information about the symbol DATA and, therefore, did not return an error for the
statement

B=DATA+2

Since MASM may resolve pass one errors by the end of the assembly, you usually use
the pass two error section to locate errors in your source.

Licensed Material--Property of Data General Corporation 093-000242

QOutput from the Macroassembler

Appendix C lists the assembly errors that the Macroassembler can return.
Error Listing Control

The Macroassembler always produces an error listing; you cannot suppress it. If you do
not include the /E= switch on the MASM command line, the Macroassembler reports all

errors to the generic file @OUTPUT. If you use the /E=filename function switch, the
Macroassembler sends errors to the specified file.

When you produce an assembly listing (i.e., issue the /L or /L=filename function switch),
the Macroassembler reports all errors to both the error listing file and the assembly listing
file. Within the assembly listing, the error report appears after the source code listing.

Output Function Switches

Throughout this chapter, we have discussed the MASM command line switches that
affect Macroassembler output. Table 4-6 lists useful switch combinations, shows what

output the Macroassembler produces in each case, and also indicates where that output
resides.

083-000242 Licensed Material-—-Property of Data General Corporation 4-11

Table 4-6 Macroassembler Output Function Switches

Output from the Macroassembler

Output
Output
Function Cross- Permanent
Switches Assembly Reference Error Object Symbol
Listing Listing Reports File File
No
Switches @OUTPUT <sourcefile>.0OB
@OUTPUT
/L @LIST @LIST and <sourcefile>, OB
@LIST
@OUTPUT
/L=FILE1 FILE1 FILE1 and <sourcefile>. OB
FILE1
/E=FILE2 FILE2
/O=FILE3 @OUTPUT FILE3.OB
/N @OUTPUT
FILE1
/L=FILE1 FILE1 FILE1 and <sourcefile>.0OB
/E=FILE2 FILE2
/L=FILE1 FILE1
/E=FILE2 FILE1 FILE1 and
/N FILE2
/L=FILE2 FILE1
/E=FILE2 FILE1 FILE1 and FILE3.OB
/O=FILE3 FILE2
IMAKEPS @OUTPUT MASM.PS

The general form for using these switches on the MASM command line is

XEQ MASM<function switch>...

sourcefile</PASSI> ...

Refer to Chapter 8 for descriptions of /PASS1 and all the MASM function switches and
for further discussion of the Macroassembler command line.

End of Chapter

Licensed Material--Property of Data General Corporation 093-000242

/]

o

s

%,

Macros and Generated Numbers and Symbols

Macros and Generated Numbers
and Symbols

In many cases, you will use a series of source statements repeatedly in one module.
Rather than manually inserting the same code at several places, you can assign the source
string 2 name. Then, each time you want to insert that source code in your module,
simply use the assigned name. The Macroassembler automatically substitutes the
corresponding code.

We refer to this programming construct as a macro. By using macros in your module, you
can greatly simplify assembly language programming. Incidentally, it is from this
programming construct that the Macroassembler derives its name.

The following sections of this chapter describe macros and their uses in detail. Refer to
Chapter 3 for a discussion about how the Macroassembler actually processes macros.

093-000242 Licensed Material--Property of Data General Corporation 5-1

Macros and Generated Numbers and Symbols

Macro Definition —

To associate a name with a source string, use the .MACRO pseudo-op. The format for
using .MACRO is

.MACRO[Jmacro-name
macro-definition-string

Go
where:

macro-name is the name you will use to refer 1o this particular macro.
Macro-name must conform to the rules for symbols
presented in Chapter 2 (see “Macro Symbols™).

macro-definition-string consists of one or more source statements. The assembler
substitutes these statements for macro-name in your
module.

% terminates the macro definition string and must be the

first character on that source line. Do not place any
spaces or tabs before the percent character.

The following source code defines a simple macro and then uses that macro.

.MACRO FIVES ;The name of the macro is FIVES.

5 ;The macro definition string consists of e

5 ;two data entries. T
% ;End of macro definition string.

FIVES ;When the assembler encounters the macro

iname FIVES, it substitutes the macro
;definition string in your module (in
:this case, two consecutive data entries).

Within the macro definition string, two characters have special meanings: underscore ()
and uparrow (). The underscore (ASCII code 137g) directs the assembler to store the
next character without interpreting it. Thus, you usually use the underscore to store
characters that have special significance when in a macro definition string. In other

words, if you precede the characters %, _, or " with an underscore, MASM does not
interpret them.

For example, if you want to place a percent sign at the beginning of a source line, you
must precede it with an underscore. If you do not, the assembler interprets % as the
end of the macro. Thus, if you want to place the string % MEANS PER 100 in a
macro, you must enter _% MEANS PER 100. Also, by using the underscore and
percent in this fashion, you can write one macro that creates a second macro at
expansion time.

5-2 Licensed Material--Property of Data General Corporation 093-000242

Macros and Generated Numbers and Symbols

If you place an underscore before a character that the assembler would not interpret
anyway (i.e., a character other than %, _, or "), the assembler ignores the underscore.
For example, the assembler interprets

.MACROC X
A_B ;The assembler removes_
% ;from the symbol A_B.

as equivalent to

-MACRO X
AB
%

Inside a macro, to use a symbol containing an underscore, include an extra underscore in
the symbol. The first underscore directs the assembler to store the second one as part of
the symbol. Thus, to store the symbol A_B in a macro, enter A_ _B.

The second character that has a special meaning inside macros is the uparrow (*) (ASCII
136g). You use this character when defining a macro that accepts arguments. The
following section, “Arguments in Macro Definitions,” provides information about macro
arguments and the uparrow character.

The assembler returns all characters in the macro definition string, except the underscore
(), uparrow (), and percent (%), exactly as you enter them. The assembler does not
automatically insert statement terminator (end-of-line) characters in macro definitions.
Thus, you must explicitly terminate each line in your macro definition string with a
statement terminator (carriage return, form feed, or NEW LINE).

If you include an expression in your macro definition string, be sure that it appears on
one source line. You can not break up an expression with comments or statement
terminators. Each expression must be less than or equal to 132 characters in length, the
line limit of the assembler.

To delete a macro definition, use the .XPNG pseudo-op. .XPNG removes the macro
name and the associated macro definition string. If you try to redefine a macro name
without first using .XPNG, the Macroassembler returns an error. See .XPNG in Chapter
7 for more information.

Arguments in Macro Definitions

You can include formal (dummy) arguments in the macro definition string. When you
call the macro, you supply an actual value for each formal argument. At expansion time,
the assembler replaces the formal arguments in the macro definition string with the actual
arguments in the macro call.

This section describes how to place formal arguments in the macro definition string.
“Macro Calls” explains how to pass actual arguments to the macro.

Within the macro definition string, all formal (dummy) arguments begin with an uparrow
(") (ASCII 136g). There are three conventional formats for formal arguments:

A

n where n is a digit from 1 to 9

A

a where a is a letter from A to Z

093-000242 Licensed Material--Property of Data General Corporation 5-3

5-4

Macros and Generated Numbers and Symbols

“%a where a is a single character from the following set: A - Z,a-12,0-9, ?

A digit following " represents the position of an actual argument in the macro call’s
argument list. That is, when the assembler expands the macro, it replaces all occurrences
of “n with the nth actual argument in the macro call.

For example, in the following macro, the formal argument "2 appears in the macro
definition string. When you call the macro, the assembler replaces "2 with the second
argument in the macro call.

.MACRO TWO ;Define macro TWO.
A="2 ;A equals the second argument you
;pass to macro TWO.
% ;Macro terminator.
TWO 3,4 ;Call macro TWO with two arguments.

;The assembler substitutes the second
;argument for "2 and, therefore, A
;now equals 4.

The “n format allows you to reference only the first nine arguments to the macro (°1,
*2,..., 79). Since the assembler allows you to supply up to 63,5 arguments, you must use
the “a and “?a formats to represent arguments 10 through 6344.

In order to make use of the “a or “?a formats, you must assign numeric values to the
symbols used in the formats. By convention, you assign the value 10 to the letter A in
the "a format, so that MASM replaces “A by the tenth argument in the macro call.
Similarly, the convention calls for you to assign B the value 11, C the value 12, and so
on. The convention is illustrated in the table below.

Symbol Value

10
i1
12
13
14

mooOw>»

31
32
33
34
35

N < X 5 < -

The a or ?a following " is a numeric symbol whose value the assembler looks up when
expanding the macro. The value of the symbol indicates the position of the actual macro
argument that replaces it (as in "n). The value for a or ?a must be in the range 1-63;g,
since no macro can have more than 63 arguments.

The following example illustrates the use of "a and “?a within a macro definition string.
Note that this example does not follow the convention above, which is needed only for
macros with more than nine arguments.

Licensed Material--Property of Data General Corporation 093-000242

T b

Macros and Generated Numbers and Symbols

D=1 ;Initialize symbols D and ?N.
?N=3
.MACRO ADD ;Define macro ADD.
X="D+"?N ;X is the sum of two arguments.
% ;Macro terminator.
ADD 2,4,5 ;Call macro ADD with three arguments.

When MASM expands the macro, D equals 1 and ?N equals 3. Thus "D evaluates to "1
and “?N evaluates to 3. Consequently, MASM converts the statement X="D+"?N to
X="1+"3. After the call to macro ADD, X has the value of the first argument plus the
third argument (X=2+3).

A zero or negative number following an uparrow (e.g., "0, "-5) is unconditionally
replaced by the null string (a string with no characters). Similarly, MASM substitutes the
null string for any formal argument value that is larger than .ARGCT (.ARGCT equals
the number of actual arguments you supply to the macro call). For example, MASM
substitutes the null string for “3 if you supply only two arguments when calling the macro.
These rules apply to all three formal argument formats (i.e., "n, “a, and "?a).

Macro Calls

After defining a macro, you can issue the macro name wherever you want to insert the
macro definition string in your module. We refer to the source line that calls the macro
as a macro call.

A macro call consists of the macro name defined in the .MACRO statement followed by
actual arguments to replace any formal arguments in the macro definition string. You can
call a macro any number of times in your source module.

Calling Macros Without Arguments

If your macro definition string contains no formal arguments, simply enter the macro
name on a source line. The Macroassembler inserts the corresponding macro definition
string in your object module.

Thus, the syntax for calling a macro without arguments is
macro-name
where:

macro-name is the name you assigned to a macro definition string in a
.MACRO statement

The following example shows this type of macro call:

.MACRO FOURS ;Define macro FOURS
4 ; (no formal arguments).
4
%
FOURS :¢all to macro FOURS (no arguments).

093-000242 Licensed Material--Property of Data General Corporation 5-5

Macros and Generated Numbers and Symbois

Calling Macros With Arguments —

5-6

If your macro definition string contains formal arguments, you must supply actual
arguments in the corresponding macro call(s). There are two formats available for
passing arguments to macros:

1. macro-name[Jarg...

2. macro-name[][arg...)

arg...]
where:
macro-name is the name you assigned to a macro definition string in a
.MACRO statement
arg is an actual argument that you pass to macro macro-name
) is a New Line or Carriage Return you must enter

During macro expansion, the assembler replaces formal arguments in the macro definition
string with the actual arguments in the macro call. If you supply more than one
argument, separate them with spaces, horizontal tabs, and/or one comma.

In most cases, you use the first macro call format. Simply enter the macro name
followed by the actual arguments on the same line. The following example illustrates this
form of macro call:

.MACRO FORM1 ;Define macro FORM1. P
"1 ;The macro definition string)
LDA “2,%38 ;contains 3 formal arguments.

%
FORM1 &,8,DATA ;Call maoro FoRM3 with 3 arsgumentsa.

The assembler substitutes 5, 2, and DATA for “1, "2, and "3, respectively. Thus, the
FORM1 macro call generates the following two source lines:

]
LDA 2,DATA

If the arguments in your macro call extend to a second source line, you must enclose
them in square brackets; that is, use macro call form 2. The following example shows this
form of macro call:

.MACRO FORM2 ;Define macro FORM2.

1 ;The macro definition contains
“2: LDA ~3,%4 ;4 formal arguments.
%

FORM2 [5, START,
1, DATA] ;Macro call to FORM2.

The assembler substitutes 5, START, 1, and DATA for "1, "2, "3, and "4, respectively.
Thus, the FORM2 macro call generates two source lines:

5
START: LDA 1,DATA e -

Note that MASM processes both forms of macro calls in the same manner. That is, the
call form you use does not influence the macro expansion.

Licensed Material--Property of Data General Corporation 093-000242

Macros and Generated Numbers and Symbols

The actual arguments you pass to a macro can be integers, symbols, or expressions.
However, you must be sure that the value of an actual argument is legal for the
corresponding field in the macro definition string. For example:

.MACRO LOAD ;Macro name is LOAD.
LDA “1,DATA :The first argument to LOAD goes
% ;in the AC field of the LDA instruction.
A=6
LOAD A ;Call macro LOAD with an argument.

This macro call causes an error because it generates the instruction LDA 6,DATA. The
value 6 is illegal for an accumulator (AC) field.

A=2
LOAD A ;Call macro LOAD with an argument.

This macro call is acceptable because LDA 2,DATA is a legal instruction.

If you supply more actual arguments in the macro call than formal arguments in the
macro definition, the assembler ignores the excess arguments. That is, the assembler
ignores all arguments in the macro call that do not have counterparts in the macro
definition string.

If you do not supply enough actual arguments in your macro call, the assembler
substitutes null strings (strings with no characters) for excess formal (dummy) arguments.
For example, if you include formal argument "3 in your macro definition string but only
supply two arguments when you call the macro, MASM replaces *3 with the null string.

No macro call can have more than 63,4 arguments.

Passing Special Characters and Null Arguments to Macros

The previous discussion showed how to use square brackets to extend a macro call onto a
second source line. You need to use square brackets in macro calls in two other
situations:

e when passing special characters as arguments to a macro
® when passing null arguments to a macro

Special Characters

You must enclose certain characters in square brackets if you intend to pass them as
arguments to a macro. These characters are

@ # *x = : ; \

For example, suppose you want to pass the semicolon character (;) as an argument to
macro MACRO1. You would issue the source statement

MACRO1 [:]
You could not simply say
MACRO1 ;

because the Macroassembler would interpret the semicolon as the beginning of a
comment string, not as an argument to the macro. That is, the second statement calls
MACRO1 with no arguments.

093-000242 Licensed Material--Property of Data General Corporation 5-7

Macros and Generated Numbers and Symbols

To pass a special character to a macro along with other arguments, place either all the
arguments or only the special character inside square brackets. Thus, the following two
macro calls are equivalent:

MACRO2 [:1.4
MACRO2 [; , 4]
Both of these statements call macro MACRO2 with the two arguments ; and 4.

You can never pass certain characters as arguments in a macro call (even within square
brackets). These characters include space, horizontal tab, comma, carriage return, form
feed, NEW LINE, left bracket ([), and right bracket (]).

Null Arguments

In certain situations, you may want to pass null arguments to a macro. A null argument
is a string with no characters (a string of length zero).

To pass a null argument to a macro, simply enter square brackets that enclose no
characters, []. The Macroassembler substitutes the null string for the corresponding
argument in the macro definition string.

The following example defines a macro containing three formal arguments:
.MACRO ADDR
LWLDA 0,%1"2,"3
%

When you call this macro, pass a displacement value and an addressing index in the
second and third arguments, respectively. In the first argument, you can indicate indirect
addressing by supplying the character @, or you can pass a null string.

Our first call to macro ADDR passes @.
ADDR [@],LoC1,2

This macro call generates the source statement LWLDA 0,@LOC1,2. Note that we
passed the @ character inside square brackets (see the previous discussion on special
characters).

If you want to call macro ADDR without indicating indirect addressing, you must pass a
null string in the first argument. That is, the macro call

ADDR [1,L0C1,2

generates the source statement LWLDA 0,LOC1,2. Again, the Macroassembler
substitutes the null string for "1 in macro ADDR.

You should note that two consecutive commas in a macro call also indicate a null
argument. For example, the macro call

MACRO3 0,.2

calls macro MACRO3 with three arguments; the second argument is null.

In general, we recommend that you use square brackets, not consecutive commas, to
indicate null arguments since they improve your program’s readability.

Licensed Material--Property of Data General Corporation 093-000242

Macros and Generated Numbers and Symbols

Macro Expansions in Assembly Listings

When you issue a macro call, MASM substitutes the assembled macro definition string in
the binary object file. However, the assembly listing shows both the macro call and the
macro expansion. Figure 5-1 illustrates a macro in source code and the corresponding
listing. Again, note that the assembly listing contains both the macro call DSP 2 and the
expansion 2.

Source Text

.MACRO DSP ;Macro definition.

~1
%

DSP 2 ;Call to macro DSP.

Assembly Listing

01 .MACRO DSP ;Macro definition.
02 “1
03 %
04 .
05 DSP 2 ;Call to macro DSP.
06 000000 00000000002 2

Figure 5-1 Macro Listing

The assembly listing values for the location counter (columns 4-9) and the data fields
(columns 14-19 and 21-26) reveal that the binary object file contains only the macro
expansion. That is, although the listing says

DSP 2
2

the object file contains the binary code for

2

You can suppress the listing of macro expansions by using the .NOMAC pseudo-op. If
you suppress expansions, the assembly listing shows only the macro call. The .NOMAC
pseudo—op does not affect the object file in any way.

0393-000242 Licensed Material--Property of Data General Corporation 5-9

o1
02
03
c4
05
08
07

Macros and Generated Numbers and Symbols

The following example shows the result of suppressing macro expansions.

.MACRO 2Z ;Define macro Z.
5
LDA 1,72

;Macro expansions are
A 0,4 ;listed by default.

08 000000 00000000005]
03 000002 020004 LDA 0,4

10
11
12
13
14
15
18
17
18
ig
20

00000000001 .NOMAC 1 ;Directs the assembler to
;suppress listings of
;macro expansions (i.e., pass
;a nonzero value to .NOMAC).

00000000000 .NOMAC O ;Re-enable the listing of macro
;expansions (i.e., pass a zero
svalue to (NOMAC).

21 000008 00000000005 5
22 000010 020004 LDA 0,4

23

.END

Again, the .NOMAC setting does not affect macro expansions in the object file. The
assembler expands all macro calls correctly, although it may not list those expansions.
This explains why the location counter jumps from 2 to 6 in the above listing example;
the missing locations represent macro expansions whose listings were suppressed.

You can override the .NOMAC pseudo-op at assembly time by using the /XPAND switch
on the MASM command line. Chapter § provides more information about this switch.

The action performed by the two asterisks (**), the no-listing indicator, is unique in
macro calls that extend to more than one line. If the first line of the macro call starts
with two asterisks, the assembler does not print the last line of arguments. MASM will,
however, assemble the macro correctly.

Macro Related Pseudo-Ops

In addition to .MACRO and .NOMAC (described above), the assembler provides two
other pseudo—~ops you can use with macros: .ARGCT and .MCALL.

The .ARGCT pseudo~op is a value symbol that returns the number of actual arguments
you pass to a macro. Use this symbol inside the macro definition string. For example:

01 .MACRO X

o2 “1+7°2

03 (.ARGCT)

04 %

05

086 X 4,5 ;Pass two arguments to X.

07 000000 00000000011 4+5

08 000002 00000000002 (.ARGCT)

09 ;At expansion time, the value for
10 ;.ARGCT is 2 because macro X was
11 ;called with two arguments.

5-10 Licensed Material--Property of Data General Corporation 093-000242

- H

Macros and Generated Numbers and Symbols

The .MCALL pseudo-op is also a value symbol that you can use inside a macro
definition string. This symbol has the value 0 if this is the first call to that macro on this
assembler pass. The symbol has a value of 1 if this is not the first call in the current
pass. For example:

.MACRO Y

.IFE .MCALL ;Assemble all code up to .ENDC only
JSR @FIRST ;if the value of .MCALL equals zero.
.ENDC

%

The first time you call macro Y, .M._ALL equals 0. Thus, the .IFE condition will be true
and MASM will assemble the statement in the conditional block (JSR @FIRST).
However, on subsequent calls to macro Y, .MCALL will equal 1 and MASM will not
assemble the .IFE block.

Chapter 7 provides more detailed descriptions of .ARGCT, .MACRO, .MCALL, and
.NOMAC.

Loops and Conditionals in Macros

When you use a .DO loop or an .IF conditional inside a macro, be sure you include a
corresponding .ENDC pseudo-op in that same macro. The assembler reports an error if it

encounters the macro definition terminator % before .ENDC. In addition, MASM takes
one of the following actions:

® MASM ignores a .DO statement inside a macro if there is no corresponding .ENDC.

e If you do not terminate an .IF conditional inside a macro, MASM ends the
conditional immediately before the macro definition terminator %.

The remainder of this section shows the correct and incorrect use of .DO loops and .IF
conditionals inside macros.

The following example shows the proper use of a .DO loop:

.MACRO LOOP
.DO “1 ;When you call this macro, the first
3 ;argument indicates how many times to
4 ;assemble the .DO loop.
.ENDC ;The end of the .DO loop is inside the
% ;macro definition string.

Next is an example of an incorrect .DO loop:

.MACRO ERRDO

.DO 5 ;Incorrect use of .DO in a macro.
6
%

When you call macro ERRDO, the Macroassembler will report an error and ignore the

.DO statement since it is not terminated inside the macro (i.e., no corresponding
.ENDC).

083-000242 Licensed Material--Property of Data General Corporation 5-11

Macros and Generated Numbers and Symbols

The following code shows the correct use of an .IF pseudo-op inside a macro:

"I/'"“u

.MACRO COND ;If the first argument you pass to this
.IFE 1 ;macro equals O, MASM assembles the data

10 ;entries 10 and 20. Note that the .ENDC

20 ;statement appears inside the macro.
.ENDC

30 ;MASM assembles data entries 30 and 40

40 ;jregardless of the argument value you pass

;to this macro.
%

This is an example of an incorrect .IF conditional inside a macro:

.MACRO ERRIF

.IFE “1 ;Incorrect use of .IFE in a macro.
50
60

%

When you call macro ERRIF, the Macroassembler reports an error since the .IFE
conditional is not terminated inside the macro (no .ENDC). In this case, MASM
assumes the conditional code ends immediately before the % statement.

Macro Examples

The following examples illustrate the use of the MASM macro facility. Refer to Chapter
7 for descriptions of any pseudo-ops that you are not familiar with.

N
Example 1: Logical OR
Our first example is a macro that computes the logical OR of two accumulators. Of
course, you could use the WIOR instruction (see Chapter 8) to perform the logical OR
operation; we present this example only to illustrate the macro facility.
.MACRO OR
WCOM 1,71 ;Complement AC”1.
WAND 1,2 ;Clear ON bits of AC"1.
WADC 1,72 ;OR result to AC"2.
%
The call format for macro OR is similar to an ALC instruction.
OR[Jacs"acd
where:
OR is the name of the macro
acs is the source accumulator
acd is the destination accumulator
The following macro call shows how the Macroassembler expands macro OR. Note that
MASM substitutes arguments in the comments as well as the instructions.
07 OR 1,2 .
08 000000 126131 WCOM 1,1 ;Complement AC1.
09 000001 132111 WAND 1,2 ;Clear ON bits of AC1.
10 000002 131111 WADC 1,2 ;OR result to AC2.
5-12 Licensed Material--Property of Data General Corporation 093-000242

Macros and Generated Numbers and Symbols

~, Example 2: IF-THEN-ELSE

- Our next example uses a macro to implement an IF-THEN-ELSE structure. Macro IF
compares two accumulators and, depending on the outcome, transfers control to one of
two specified addresses.

The format for calling macro IF is

IF Jac,TJac,CtestC]addr ¢[addr ¢

where:
IF is the name of the macro
acy is the first accumulator
acy is the second accumulator
test is a number, from 0 to 3, that indicates one of the following tests:
Value Test Performed
0 Is acq > ac, ?
1 Is acy = ac, ?
2 Is acy < ac, ?
3 Is acy < > acy ?
addr is the address the macro returns to if the test condition is true
r\ addr¢ is the address the macro returns to if the test condition is false
. 3

As an example, consider the following macro call:
IF 1,2,0,LOC1,LOC2

This macro expansion tests to see if accumulator 1 is greater than accumulator 2. If so,
program execution continues at LOC1; otherwise, control passes to address LOC2.

093-000242 Licensed Material--Property of Data General Corporation 5-13

Macros and Generated Numbers and Symbols

The macro definition for IF follows:

.MACRO IF
.IFE .MCALL ;Variable COUNT keeps track of how
COUNT=0 ;many times you call the macro IF. This
.ELSE ;variable is necessary to generate
COUNT=COUNT+1 ;unique labels each time you call macro
.ENDC ;IF (see the last itwo lines in this
;macro) .

.IFN “8==0 ;GREATER THAN test (third argument to
WSGT 1,72 ;IF is 0). If the first AC is greater
WBR FALSE\COUNT ;than the second, go to location "4;
WBR TRUE\COUNT ;else go to “5.
.ENDC
.IFN “3==1 ;EQUAL test (third argument to IF is 1).
WSEQ 1,72 ;If the first AC equals the second AC,
WBR FALSE\COUNT ;80 to location “4; else go to °5.
WBR TRUE\COUNT
.ENDC
.IFN " 3== ;LESS THAN test (third argument to IF
WSLT 1,2 ;is 2). If the first AC is less than
WBR FALSE\COUNT ;the second, go to location “4; else
WBR TRUE\COUNT ;g0 to "5,
.ENDC
LIFN “3==3 ;NOT EQUAL test (third argument to IF
WSNE 1,72 ;is 8). If the first AC does not equal
WBR FALSE\COUNT ;the second, go to location “4; else
WBR TRUE\COUNT ;80 to 75,
.ENDC

FALSE\COUNT: LIMP"5 ;Jump to appropriate address ("4 or °5).

TRUE\COUNT: LIMP 4 ;The backslash (\) directs MASM to create

;two new labels each time you call IF
. (see "Generated Numbers and Symbols"
;later in this chapter).

%

Example 3: Factorial

Our third example illustrates the recursive property of macros. Macro FACT computes
factorials. Its input consists of an integer I and a variable V, and it computes the value

V=1
using the recursive formula

Il = I* (I-1)!

5-14 Licensed Material-—-Property of Data General Corporation 093-000242

Macros and Generated Numbers and Symbols

The macro definition for FACT is

.MACRO FACT

*x .DO “1<0
“2=0

*x .ENDC

e .DO “1<=1

* &k ’-2=1

> .ENDC

** .Do “1l<>1
FACT "1-1,"2
"2="1%"2

** .ENDC

%
When you issue the statement
FACTLICV
MASM computes the factorial of integer T and stores the result in variable V.
MASM expands macro FACT as follows:
o If I is less than 0, FACT returns the value 0 in variable V.
e IfIis O or 1, FACT returns the value 1 in variable V.

e If I is greater than 1, macro FACT calls itself recursively with successively smaller
values for I. When the integer argument to FACT equals 1, the second .DO
conditional expands to completion. This begins a succession of returns to each level
that made a recursive call to FACT. As these levels expand to completion, MASM
computes I! and stores the result in V.

The following call to FACT computes the factorial of 4 and stores the result in variable
A. The macro listing shows only the recursive calls to FACT and the subsequent
computation statements; the ** indicators in the macro definition suppress the listing of
all other macro statements.

FACT 4,A ;

000000 000002
000000 000008
000000 000030

Example 4: Packed Decimal

A=4-1-1%A
A=4-1%A
A=4*A

Our last macro example stores numeric values in packed decimal format. In packed
decimal format, each decimal digit requires 4 bits for its representation. Thus, a byte
can contain two packed decimal digits, and a 16-bit word can hold four digits.

Our macro outputs the least significant word of the packed decimal representation {irst.
The number’s sign occupies the least significant (rightmost) 4 bits of the word.

093-000242 Licensed Material--Property of Data General Corporation

Macros and Generated Numbers and Symbols

The translation from decimal to 4-bit binary is

Decimal 4-Bit Binary

0011 (same bit pattern as “3")
0100 (same bit pattern as “4")
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001

+

© 00 N D N bh WD = O

The input to macro PACK consists of a string of decimal digits separated by delimiters
and followed by an explicit sign (+ or -) and the precision in 16-bit words.

PACKld<[d...>Js[1w

where:
PACK is the name of the macro.
d is the first decimal digit.
d... is a series of optional decimal digits. If you supply more than one digit,
separate each digit with spaces, tabs, or commas.
s is the sign of the decimal number (+ or -).
w is the precision and indicates how any 16-bit words MASM will allocate

for the packed decimal representation.

Within macro PACK, the input radix must be decimal. So, PACK saves the initial input
radix and changes it to decimal for the macro expansion. Before returning, PACK
restores the original input radix.

To present the output in 4-bit quantities, the output radix must be hexadecimal (base
16). Again PACK saves the initial value at the beginning of the macro and restores it at

the end.

Though MASM assembles many statements for each macro call, the listing shows only
the assembled storage words that hold the packed decimal value.

5-186 Licensed Material--Property of Data General Corporation 093-000242

T

Macros and Generated Numbers and Symbols

The macro definition for PACK follows:

* &k

* h

* k

* &

* %

093-000242

.MACRO
. PUSH
.NOMAC

.PUSH
.PUSH
.RDX

.RDXO

I=.ARGCT
J=I-1
B=11

W=3+((""J)-("+)/2)

J=J~1

.LOC
.DO

.ENDC

.LocC
.RDXO
.RDX
.NOMAC

Licensed Material--Property of Data General Corporation

.DO

.ENDC
.NOMAC
.WORD
.NOMAC
w=0
B=15
LoC

PACK
.NOMAC

.RDX
.RDXO
10

16

+7I-1
1
B+1/4
W=W+0"JBB
B=B-4
.DO

.ENDC

L+ I+l
.POP
.POP
.FOP

J<>0

35
38
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

Macros and Generated Numbers and Symbols

The following listing shows four calls to macro PACK and the corresponding expansions:

0C0041
0000490

000044
000043
000042

000047
000046
0C0045

00004D
00004C
00004B
000044
000049
000048

00000000100

0123
0000

3453
0012
0000

3454
oo1z2
0000

7653
0098
0000
0000
0000
0000

.LOC

PACK
.WCRD
.WORD

PACK

.WORD
.WORD
.WORD

PACK

.WORD
.WORD
.WORD

PACK

.WORD
.WORD
.WORD
.WORD
.WORD
.WORD

100 ;Start at address 100 (octal)

1
w
w

EEErR ===

FEEEEEEO

;or 40 (hexadecimal)

2 +,2

2345 +,3

234585 -,3

8765 +,6

Generated Numbers and Symbols

You can direct the assembler to generate numbers and symbols by using the following
format:

01
02
03
04
05
o8
07
08

\symbol

At assembly time, MASM replaces \symbol with a 3-digit number representing the value
of symbol. The assembler uses the current input radix for this substitution and truncates
the value of symbol to three characters, if necessary.

The \symbol switch can stand alone in code to form an integer, or it can follow
characters that, together with the value of \symbol, will form a number or symbol. For

example,
A=2
B=1234
X\A 1
X\B: 1
C=\A+\B
450.\A

;Initialize A and B.

;X\A evaluates to the symbol X002.
;X\B evaluates to the symbol X234
;(the "1" is truncated from "1234").
:\A equals 002 and \B eguals 234 so
;C equals 236.

;450.\A evaluates to 450.002

The assembly listing for a generated number or symbol shows only the replacement value,
not the \symbol designation. For example, the above section of source code would
appear as follows in the assembly listing:

000000
000002

000004

00000000002
00000001234
00000000001
00000000001

00000000236

10307020010

Licensed Material--Property of Data General Corporation

X002:
X234:

A=2
B=1234

[y

C=002+234

450,002

;Initialize A and B.

:X\A evaluates to the symbol X002.

;X\B evaluates to the symbol X234
;(the "1" is truncated from "1234").

;\A equals 002 and \B equals 234 so
;C equals 236.

;450.\A evaluates to 450.002

093-000242

r—

Macros and Generated Numbers and Symbols

Table 5-1 shows the correspondence between source code, the assembly listing, and the
cross—reference listing. The assembly and cross-reference listings reflect the actual symbol

names.

Table 5-1 Generated Symbols in Source and Listings

Source Assembly Cross-Reference
Code Listing Listing

ONES=111 ONES=111 ONES

A\ONES A111 A1l

You can increment \symbol just as you would

the following code creates labels for a table.

.RDX
** X=0
TABLE: .DO
AN\X:
* &
** .ENDC

X=X+1

64.

The listing for this section of code follows:

ol
02
03
04 000000
08 000002
06 000004
07 000006
08 000010

SOURCE:

01 000182
02 000184
03 000166
04 000170
05 000172
08 000174
07 000176

.MAIN

00000000010

00000000100
00000000000
00000000000
00000000000
00000000000
00000000000

00000000000
00000000000
00000000000
00000000000
00000000000
Q0000000000
Q0000000000

.RDX 8
TABLE: .DO 64.
AOO0O:] ;Create
AOO1: o] ;Create
ADO2: o] ;Create
A003: (o) ;Create
AQ04: o) ;Create
MASM 06.00.00.00 28-JAN-87 08:47:
AO71: 0 ;Create
A072: o] ;Create
A073: 0 ;Create
AO074: 0 ;Create
A075: 0 ;Create
AQ78: o} ;Create
AO077: 0 ;Create

increment any other value. For example,

;Initialize counter X

(** means

;suppress listing of this line).
;Assemble loop 64 (decimal) times.
;Create labels A000, A0O01,...,A077.
iNOTE: label numbers in octal (77 =63,0)
;Increment counter X.
;End of .DO loop.

;Suppress listing of this line.

;Assemble loop

labels
labels
labels
labels
labels

64 (decimal) times.

AQ0Q0,
A0Q00Q,
A00Q0Q,
AQ0O0,
A000,

12 PAGE

labels
labels
labels
labels
labels
labels
labels

A000,
AQQO,
A000,
A0OQO,
A0QO,
AQQO,
A000,

AOC1, ... ,AQ77.
A001,...,AQ07T7.
A001,...,A077.
AQ01,...,A077.
A0O01,...,A077.
2

A0O01,...,A077.
A001,...,A077.
AQO1,...,A077.
AQO01,...,A077.
A0O1,...,A077.
A001,...,A077.
AQO1,...,A077.

If the /S command-line switch is set, you can use the dollar sign character (8) to
generate unique symbol names within macros. Each occurrence of the character § is
replaced by three characters from the set 0-9 and A-Z. The three characters are
determined by converting a count of the number of macro calls in radix 36 to ASCII
characters, where A=10 (decimal) and Z=35 (decimal).

093-000242

Licensed Material--Property of Data General Corporation

5-20

Macros and Generated Numbers and Symbols

For example, each call to the following macro creates and initializes a new one-word
storage location:

.MACRO BLAH

LOC\$: .WORD 0 ;The first call to this macro creates
;LOC000, the second creates LOC001, the third
;creates LOC002, and so on, providing the /$

;command-line switch is set.
%

In nested macro calls, the replacement value for $ in the outer macro is saved and
restored when the inner macro call has been fully expanded.

When you use $ in symbol names, $ should not be the first character in the name, since
the first character it would be replaced by might be a digit.

End of Chapter

Licensed Material--Property of Data General Corporation 093-000242

Types of Pseudo-Ops

Types of Pseudo-Ops

Pseudo-ops direct the action of the macroassembler, rather than the user program.
Pseudo-ops can generally be divided into one of the following categories:

® Jlocation pseudo-ops

e file termination pseudo-ops

® conditional assembly pseudo-ops
® macro assembly pseudo-ops

¢ data formatting pseudo-ops

® literal pseudo—-ops

e inter-module communication pseudo-ops
e listing control pseudo-ops

® stack control pseudo—-ops

® radix control pseudo-ops

® text string pseudo-ops

® symbol table pseudo-ops

® miscellaneous pseudo-ops

The following sections of this chapter describe each of these categories and the
pseudo-ops in those categories.

093-000242 Licensed Material--Property of Data General Corporation

Types of Pseudo-Ops

Location Pseudo-Ops

Generally, you use location pseudo-ops (see Table 6-1) to set the place that code and/or
data will occupy in the program. You can specify these locations explicitly (.LOC 14), in
which case the code and/or data is absolute, otherwise the code or data is relocatable,
Relocatable sections of code and/or data may be named or unnamed. You can name
them by using the .PART pseudo-op, or they may be unnamed, and therefore part of a
default partition, using the .NREL and .ZREL pseudo-ops.

Two pseudo-ops, .BLK and .ALIGN, increment the location counter. .BLK takes an
explicit increment, while .ALIGN increments the location counter to a given memory
boundary.

Both .LOC and . may be used in expressions to obtain the value and relocation property
of the location counter. The results obtained from the two pseudo-ops are the same in
all cases.

Table 6-1 Location Pseudo-Ops

Pseudo-op Directive Value Description

. X Return value of location counter
.ALIGN X Align location to memory boundary
.BLK X Reserve a block of data words
.GLOC X Set location counter

.LOC X X Set or return location counter
.NREL X Use default NREL partition

.PART X Use user-defined partition

ZREL X Use default ZREL partition

File Termination Pseudo-Ops

The assembler provides three explicit file termination pseudo-ops. These pseudo-ops,
listed in Table 6-2, all cause MASM to cease reading, ignoring the remainder (if any) of
the input file.

.END, in addition to terminating the source file, may take an argument giving the starting
address for program execution.

.EOF and .EOT are equivalent. .EOT is provided for compatibility with other Data
General assemblers.

6-2 Licensed Material--Property of Data General Corporation 093-000242

Types of Pseudo-Ops

Table 6-2 File Termination Pseudo-Ops

Pseudo-op Directive Value Description
.END X End-of-file with start address
.EOF, .EOT X End-of-file

Conditional Assembly Pseudo-Ops

The pseudo-ops in this category allow you to assemble a series of source lines
repetitively, or to suppress their assembly entirely. The conditional assembly pseudo-ops
are listed in Table 6-3.

The .DO pseudo-op causes all source lines between it and its corresponding .ENDC
pseudo-op to be assembled repetitively. You specify the number of times as an argument
to .DO.

The .IFE, .IFG, .IFL and .IEN pseudo-ops permit conditional assembly based on
whether their argument is zero or nonzero. The .ELSE pseudo-op, when used with the
JIFx pseudo-ops, permits conditional assembly of two groups of source lines in an
either/or manner.

For compatibility with other Data General assemblers, both .ENDC and .GOTO can take
a label argument, in which case, the following source lines are bypassed until the label,
enclosed in brackets, is seen.

Table 6-3 Conditional Assembly Pseudo-Ops

Pseudo-op Directive Value Description

.DO X Repetitively assemble conditional code
.ELSE X Reverse sense of conditional assembly
.ENDC X Terminate conditional assembly
.GOTO X Jump ahead in conditional assembly
.IFE X Assembile if argument equals zero
AFG X if argument is greater than zero

JAFL X If argument is less than zero

UFN X If argument is not equal to zero

093-000242 Licensed Material--Property of Data General Corporation 6-3

Types of Pseudo-Ops

Macro Assembly Pseudo-Ops

Pseudo-ops associated with macros are listed in Table 6-4. You define macros using the
.MACRO pseudo—-op. There are two value pseudo-ops for use inside macros. The
.ARGCT pseudo-op returns the number of arguments that a macro was called with, while
.MCALL returns a flag indicating whether the macro has been called previously.

Table 6-4 Macro Assembly Pseudo-Ops

Pseudo-op Directive Value Description

.ARGCT X Return number of macro arguments
.MACRO X Define a macro

.MCALL X Return 1 if macro called previously

Data Formatting Pseudo-Ops

You should use data formatting pseudo-ops (listed in Table 6-5) to specily size, range of
value, or relocation properties ol data words. While use of the data formatting
pseudo—ops is recommended, it is not required.

The .DWORD and .WORD pseudo-ops provide explicit specification of the size of a data
item. .SWORD and .UWORD generate one-word data items like .WORD, but with value
range checks at assembly, and, if necessary, at linkage time.

The .GATE pseudo-op permits the generation of gate array entries. Gate arrays control
calls from one ring to another in the MV/Family architecture.

The remainder of the data formatting pseudo-ops are primarily for use with 16-bit
programs. The .GADD and .GREF pseudo-ops are provided primarily for compatibility
with other Data General assemblers. .GADD generates a relocatable data word with
WORD (16-bit) relocation. .GREF generates a relocatable data word with GREF (15-bit)
relocation.

The .CALL, .KCALL, .RCALL and .RCHAIN pseudo-ops generate a one—word data
item with CALL relocation, for use with the AOS or AOS/VS 16-bit resource manager.
.CALL requires you specify the value of the data word; the others implicitly set the value
of the data word. Likewise, .TARG and .PTARG generate TARGET relocation for using
the resource manager; .TARG requires the data word value, .PTARG does not.

- 6-4 Licensed Material-—Property of Data General Corporation 093-000242

Types of Pseudo-Ops

Table 6-5 Data Formatting Pseudo-Ops

Pseudo-op Directive Value Description

.CALL X Create data word with CALL relocation
.DWORD X Create two-word data items

.GADD X Create data word with WORD relocation
.GATE X Create gate entry with ring field

.GREF X Create data word with GREF relocation
.KCALL X Create data word with CALL relocation
.PTARG X Create data word with TARGET relocation
.RCALL X Create data word with CALL relocation
.RCHAIN X Create data word with CALL relocation
.SWORD X Create one-word signed data items
.TARG X Create data word with TARGET relocation
.UWORD X Create one-word unsigned data items
WORD X Create one-word data items

Literal Pseudo-Ops

Literals are needed only for 16-bit programs. Literals are data words created
automatically by the assembler, e.g., “LDA 1,=2" creates a literal of 2. The assembler
brings literals together in groups called literal pools. There are two pseudo-ops for
controlling the placement of literal pools, and these are listed in Table 6—6. If neither of
the pseudo-ops is used, the assembler generates a single default literal pool, and places it
in ZREL. The .NLIT pseudo-op causes this default literal pool to be placed in whatever
partition is active at the end of the assembly pass. The .LPOOL pseudo-op explicitly
locates literal pools, bypassing the default pool.

Table 6-6 Literal Pseudo-Ops

Pseudo-op Directive Value Description
.LPOOL X Create a literal pool
NLIT X Place default poot in NREL

Inter—-module Communication Pseudo-Ops

Inter-module communication pseudo-ops allow you to define symbols and data in one
source module and to refer to that information in a separately assembled module. These
pseudo-ops, listed in Table 6-7, can defline and refer Lo absolute values, relocatable
values and common areas.

You can define a symbol’s value either with an equate statement or as a label. The
symbol’s value, through its name, can be made visible to other modules with the .ASYM,
.ENT or .PENT pseudo-ops. The other modules must then refer to the symbol with one
of the .EXTx pseudo-ops.

093-000242 Licensed Material--Property of Data General Corporation 6-5

Types of Pseudo-Ops

The .ENT pseudo-op is the normal pseudo—op for making a symbol definition globally

visible. Use .PENT only for entries into 16-bit programs that will be using the AOS or !
AOQOS/VS resource manager. .ASYM allows more than one module to define a symbol,

and the symbol’s value to be the sum of their definitions.

The .EXTx pseudo-ops require you to specify the size and type of the external data. To

do this, replace “x” with either one, two, or three letters which describe the external.
The forms of the .EXTx pseudo-op are:

D - -
EXT N A N
L D w

The first letter choice, D, N or L, specifies the expected size of the external’s value: D
specifies an 8-bit external, N a 16-bit external, L a 32-bit external. The second letter
choice, if present, specifies whether the external is an address or an absolute value. If
the second letter is not given, the external is assumed to be an address. If the second
letter choice is “A”, then the third letter choice can optionally specify whether the
address points to a 16-bit or 32-bit data item. If not given, it can be either.

The .EXTC pseudo-op allows one or more modules to build up a chain of
backward-linked memory locations. That is, each reference to a symbol defined with a
.EXTC gets the value of the previous reference to that symbol.

The .ENTO pseudo-op is for use of 16-bit programs that do not use the AQOS and
AOS/VS 16-bit resource manager. It defines a symbol whose value is the overlay area
and overlay number that the symbol is defined in.

The .COMM and .EXTU pseudo-ops are provided primarily for compatibility with other
Data General assemblers. .COMM defines a common area, as does the .PART
pseudo-op. .EXTU causes all undefined symbol error messages to be suppressed, and
assumes undefined symbols to be externals.

Licensed Material—-Property of Data General Corporation 093-000242

Types of Pseudo-Ops

Table 6-7 Inter-module Communication Pseudo-Ops

Pseudo-op Directive Value Description

.ASYM X Define an accumulating symbol
.COMM X Define a named common symbol
LENT X Define a global entry symbol
.ENTO X Define an overlay entry symbol
EXTC X Define a chain-link external

.EXTD X Define 8-bit address external
.EXTDA X Define 8-bit address external
.EXTDAN X Define 8-bit address of one word
.EXTDAW X Define 8-bit address of two words
.EXTDD X Define 8-bit data external

EXTG X Define 32-bit data external

EXTL X Define 32-bit address external
EXTLA X Define 32-bit address external
.EXTLAN X Define 32-bit address of one word
EXTLAW X ~ Define 32-bit address of two words
.EXTLD X Define 32-bit data external

.EXTN X Define 16-bit address external
.EXTNA X Define 16-blt address external
.EXTNAN X Define 16-bit address of one word
EXTNAW X Define 16-bit address of two words
.EXTND X Define 18-blt data external

EXTU X Make all undefined symbols external
PENT X Define a procedure-entry symbol

Listing Control Pseudo-Ops

There are several pseudo-ops which do not affect code or data, but control only the
assembly listing. These pseudo-ops are described in Table 6-8.

The .EJECT pseudo-op causes the next line after the .EJECT to unconditionally begin a
new page.

The .NOCON, .NOLOC and .NOMAC pseudo-ops suppress parts of the listing. The
.NOCON pseudo-op suppresses source lines which are not assembled due to a false
conditional pseudo-op. The .NOLOC pseudo-op suppresses all source lines which do not
have an explicit location, e.g., the second line of .TXT strings. The .NOMAC pseudo-op
suppresses the listing of macro expansions.

The .ERROR pseudo-op prints a user-defined error message in the listing. The .LCNS

pseudo-op places a Data General proprietary header on each page of the listing, the
same as the /Z command-line switch.

093-000242 Licensed Material--Property of Data General Corporation 6-7

Types of Pseudo-Ops

Table 6-8 Listing Control Pseudo-Ops

Pseudo-op Directive Value Description

.EJECT X Begin a new page of the listing
.ERROR X Report a user-defined error message
.LCNS X Begin listing page with DG header
.NOCON X X Suppress listing of conditional code
.NOLOC X X Suppress listing of noncode

.NOMAC X X Suppress listing of macro expansions

Stack Control Pseudo-Ops

The Macroassembler maintains a push-down stack which can be used at assembly time to
save the value and relocation property of any expression. In a push-down stack, the last
expression you place on the stack is always the first to be removed. The pseudo-ops
associated with this stack are listed in Table 6-9.

To place an expression on the stack, use the .PUSH pseudo-op. To get the value of the
item on the top of the stack, use the .TOP pseudo-op. To get the value of the item on
the top of the stack, and pop it off, use the .POP pseudo-op.

Table 6-9 Stack Control Pseudo-Ops

Pseudo-op Directive Value Description

.POP X Return and pop item from top of stack
.PUSH X Push item onto top of stack

.TOP X Return item from top of stack

Radix Control Pseudo-Ops

The assembler allows you to specify both the input radix that the source file is interpreted
in and the output radix used in listing the source. These two radices are separate and you
can set them to the same or different values using the pseudo-ops listed in Table 6~10.

The default for both input and output is octal; that is, radix 8. The input radix can be
set to any integer between 2 and 20 (decimal), while the output radix can be between 8
and 20 (decimal).

6-8 Licensed Material-—Property of Data General Corporation 093-000242

Types of Pseudo-Ops

Table 6-10 Radix Control Pseudo-Ops

Pseudo-op Directive Value Description
.RDX X X Radix for numeric input
.RDXO X X Radix for numeric output on listing

Text String Pseudo-Ops

There are four pseudo-ops for assembling text strings into their ASCII codes, and two
additional pseudo-ops that affect how text strings are assembled. These pseudo-ops are
listed in Table 6-11.

The .TXT, .TXTE, .TXTF and .TXTO pseudo-ops all take a text string as an argument.
They differ only in how the parity bit (bit 0) of each byte of text is set. .TXT generates
no parity. The .TXTE pseudo-op generates even-parity data. The .TXTF pseudo-op
generates one—parity data. The .TXTO pseudo-op generates odd-parity data.

The . TXTM pseudo-op changes how two characters are stored in one word of memory.
By default, characters are packed into words left-to~right.

The .TXTN pseudo-op enables or disables the automatic addition of a terminating null
(zero) byte on all text strings.

Table 6-11 Text String Pseudo-Ops

Pseudo-op Directive Value Description

TIXT X Create data from text string

.TXTE X Create even-parity data from string
TXTF X Create one-parity data from string
. TXTM X X Set high/low packing in text strings
.TXTN X X Add null byte to text strings

.TXTO X Create odd-parity data from string

093-000242 Licensed Material--Property of Data General Corporation 6-9

Types of Pseudo-Ops

Symbol Table Pseudo-Ops —

The majority of the symbol-table pseudo-ops (see Table 6-12) define MV/Family
instructions. Since the MV/Family instructions are already included in AOS/VS MASM’s
permanent table, few programmers will need to use symbol-table pseudo-ops. However,
programmers frequently use the .DUSR pseudo-op to define new instructions or redefine
old instructions previously deleted by the .XPNG pseudo-op.

Symbol table pseudo-op statements have the form:
.Dxxx[Inumeric-symbol = expression

or

.Dxxx[Inumeric-symbol = instruction[J[instruction~argument ... }

The value of the expression, or the assembled value of the instruction and its arguments,
is assigned to numeric-symbol. Unlike other MASM assignment statements (A=5), the
value assigned to numeric-symbol is not expected to change.

To clarify the difference between using .DUSR and using a simple assignment statement,
consider the following code:

.TITLE FOOBAR

.NREL 1
A =25
.DUSR Z =25

At first glance, there doesn’t seem to be any difference between A and Z. Both
represent the numerical value 5. However, A is, implicitly, an assembly-time variable,
while Z is an assembly-time constant. That is, the value of A may change later on in
the same module, while the value of Z should remain constant throughout. If a
subsequent assignment changes Z’s value, MASM reports an error if the /MULTIPLE
command-line switch is set.

There is an instruction format associated with each of the instruction—defining
pseudo-ops. Each instruction format assumes a certain instruction size, a minimum and
maximum number of arguments, and a range of values for each argument. The
pseudo-op also defines whether the instruction might skip the next one-word instruction.
These formats are shown in detail under the specific description of each pseudo-op.

You can use the .XPNG pseudo-op to remove any one or all instruction definitions from
AOQOS/VS MASM'’s permanent symbol table. It can also be used to delete symbols from
the symbol table. However, you cannot use .XPNG to delete pseudo-op symbols from
the permanent symbol table.

6-10 Licensed Material--Property of Data General Corporation 093-000242

Types of Pseudo-Ops

Table 6-12 Symbol Table Pseudo-Ops

Pseudo-op Directive Value Description
.DALC X Define an ALC (ADD) instruction
.DCMR X Define ELDB-format instructions
.DEMR X Define EJMP-format instructions
.DERA X Define ELEF-format instructions
.DEUR X Define SAVE-format instructions
.DFLM X Define FAMS-format instructions
.DFLS X Define FSST-format instructions
.DIAC X Define HLV-format instructions
.DICD X Define ADI-format instructions
.DIMD X Define ClIOl-format instructions
.DIMM X Define ADDI-format instructions
.DIMS X Define WSEQI-format instructions
.DIO X Define NIO-format instructions
.DIOA X Define DIA-format instructions
.DISD X Define PSH-format instructions
.DISS X Define SGT-format instructions
.DIWM X Define WADDI-format instructions
.DIWS X Define WUGTI-format instructions
.DLBA X Define LLEFB-format instructions
.DLBR X Define LPEFB-format instructions
.DLCM X Define LNADI-format instructions
.DLMI X Define LCALL-format instructions
.DLMO X Define LNDO-format Instructions
.DLMR X Define LPEF-format instructions
.DLMS X Define LNDSZ-format instructions
.DLRA X Define LLEF-format Instructions
.DMR X Define JMP-format instructions
.DMRA X Define LDA-format instructions
.DTAC X Define NOVA-4 LDB~format instructions
.DUNR X Define WRTN and other instructions
.DUNS X Define DSZTS and other instructions
.DUSR X Define a numeric symbol
.DUWR X Define WDINC-format Instructions
.DUWS X Define NFSSS-format instructions
.DWMM X Define DERR-format instructions
.DWMR X Define WBR-format instructions
.DWMS X Define WSKBO-format instructions
.DWXO X Define WXOP-format Instruction
.DXBA X Define XLEFB-format instruction
.DXBR X Define XPEFB-format Instruction
.DXCM X Define XNAD!-format instruction
.DXMI X Define XCALL-format instruction
.DXMO X Define XNDO-format instruction
.DXMR X Define XPEF-format instruction
.DXMS X Define XNDSZ-format instruction
.DXOP X Define XOP-format instruction
.DXRA X Define XLEF-format instruction
XPNG X Delete symbols from symbol table
093-000242 Licensed Material--Property of Data General Corporation

Types of Pseudo-Ops

Miscellaneous Pseudo-Ops

A number of additional pseudo-ops do not fit into any previous category. These
pseudo-ops are listed in Table 6-13.

Some of them set miscellaneous data in the object file. The .CSIZE pseudo-op sets the
size of the unlabelled common area. The .FORCE pseudo-op sets the force-link flag,
which is used by LFE and Link. The .REV pseudo-op sets the object’s revision number.
The .TITLE pseudo-op sets the object’s title. And the .TSK pseudo-op sets the
maximum number of concurrent tasks.

The .OB pseudo-op sets the name of the object file, overriding the default of the first
source file. These pseudo—ops may, in turn, be overridden by the /O= command-line
switch. The .RB pseudo-op, which has the same form as .OB, is provided only for
compatibility with other Data General assemblers.

The .ENABLE pseudo-op allows user control of certain defaults used by MASM.
.ENABLE ABS and .ENABLE PCREL change the default indexing mode used in
assembling instructions without an explicit indexing mode. .ENABLE DWORD, .ENABLE
SWORD, .ENABLE UWORD and .ENABLE WORD set the size and expected range of
values for data items given without a data—-formatting pseudo-op.

The .PASS and .SKIP pseudo-ops allow access at assembly time to certain assembler
data. .PASS is a value pseudo-op equal to zero on the assembler’s first pass, and one on
its second pass. The .SKIP pseudo-op returns one if the previous instruction could
possibly skip the next data word.

Table 6-13 Miscellaneous Pseudo-Ops

Pseudo-op Directive Value Description

.Csliz, .CSIZE X Set size of unnamed common area
.ENABLE X Control defaults

.FORC, .FORCE X Set library force-load flag

.OB X Name object file

.PASS X Return pass number

.RB X Name object file

.REV X Set object module revision number
.SKIP X X Flag if previous instruction may skip
LTITL, .TITLE X Set object module title

.TSK X Set maximum concurrent task count

End of Chapter

6-12 Licensed Material--Property of Data General Corporation 093-000242

——

Pseudo-Op Dictionary

Pseudo-Op Dictionary

This Chapter describes all the AOS/VS Macroassembler pseudo-ops. They are in alphabetic
order for easy reference.

For each pseudo-op, we include

the mnemonic that the Macroassembler recognizes (e.g., .NREL)
the pseudo-op’s title

a functional description of the pseudo-op as an assembler directive (under “Purpose”), if
applicable

a functional description of the pseudo-op as a value symbol (under “Value”), if applicable
one or more examples
references for further information about related topics

the syntax of the pseudo-op as an assembler directive, if applicable. Please note that we
use square brackets in a syntax line to set off those arguments or items that are optional.

093-000242 Licensed Material--Property of Data General Corporation 7-1

Pseudo-Op Dictionary

Current location counter ()

Value

The symbol . (period) has the value and relocation property of the current location counter.
The location counter is an assembler variable that holds the address and relocation base of
the next memory location the Macroassembler will assign.

Example

01 .NREL

02 000000 UC 00000000003 3

03 00000000004 UC .LoCc .+2 ;Set the location counter equal to
04 ;its current value plus two words.
05 ;Note that the relocation base

06 000004 UC 101771 LWLDA 0,10 ;Does not change (columns 11-12).
07 00000000010

References

“Location Counter” — Chapter 3
“Relocatability” — Chapter 3

7-2 Licensed Material--Property of Data General Corporation 083-000242

Pseudo-Op Dictionary

Align locations to a memory boundary ALIGN

Syntax
.ALIGNJabs—-expr

Purpose

The .ALIGN pseudo-op establishes the word alignment of the next memory word in the
current partition. The result of abs—expr should be a nonrelocatable expression, n, in the
range 0 to 10 (decimal). The next memory word aligns to a memory address which is a
multiple of 2",

In order to force a particular location in a relocatable partition to be aligned, you must align
the entire partition to a 2" address boundary. AOS/VS MASM automatically takes the
maximum of all .ALIGN values for each partition and sets its alignment attribute to that

maximum.
Example
i ’ .ALIGN 1
2 ; This will be on a double-word boundary
.ALIGN 10.
2 ; This will be on a page (1024-word) boundary

083-000242 Licensed Material--Property of Data General Corporation 7-3

Pseudo-Op Dictionary

P

Number of arguments passed to
a macro

Value

ARGCT

The pseudo-op .ARGCT is a value symbol. Its value equals the number of arguments you

passed to the macro containing it.

For example, if you pass three arguments to a macro, then

the symbol .ARGCT has the value 3 for that macro expansion.

If you use .ARGCT outside a macro, its value is —1.

;Call ARG with 2 arguments

;If you call ARG with no
;arguments, assemble the
Otherwise,
;assemble the value of
;the first argument.

;Call ARG without arguments.
;If you call ARG with no
;arguments, assemble the
Otherwise,
;assemble the value of

;the first argument.

;If you call ARG with no
;arguments, assemble the
Otherwise,
;assemble the value of
;the first argument.

T

093-000242

NOTE: .ARGC is an acceptable abbreviation of this pseudo-op.
Examples
01 00000000000 .NREL ©
02 .MACRO ARG ;Define macro ARG.
03 “1+°2
04 (. ARGCT)
05 %
06
o7 ARG 4,5 ;(value of .ARGCT is 2).
08 000000 UC 00000000011 4+5
09 000002 UC 00000000002 (.ARGCT)
01 .MACRO ARG ;Define macro ARG.
02 .IFE .ARGCT
03 10
04 .ELSE ;value 10.
05 “1
08 .ENDC
07 %
08
09 ARG
10 00000000001 .IFE .ARGCT
11 000000 00000000010 10
12 .ELSE ;value 10.
13
14 .ENDC
15
18 ARG 2
17 00000000000 .IFE .ARGCT
18 10
19 .ELSE ;value 10.
20 000002 00000000002 2
21 .ENDC
22
23
References
“Macros” — Chapter 5
“Macro-Related Pseudo-Ops” - Chapter 5
7-4 Licensed Material-—Property of Data General Corporation

Pseudo-Op Dictionary

Define an accumulating symbol ASYM

Syntax

ASYM_numeric-symbol

Purpose

This pseudo-op defines a numeric-symbol whose value, as an external, will be the sum of
the values assigned to it as an accumulating symbol. For this summing to take place,
numeric-symbol must be declared as a .ASYM and assigned a value. To access its
accumulated value, it must be declared as an external ((EXTL) in a separate module. You
cannot declare numeric-symbol as both a .ASYM and a .EXTL in the same module. Its
intermediate values are not accessible. The relocation property of the symbol is not preserved.

Example

.TITLE A
.ASYM X
X=5

.END
.TITLE B
.ASYM X
X=7

.END
.TITLE C
.EXTLD X
X ; X will have value 12. in this module.
.END

093-000242 Licensed Material--Property of Data General Corporation 7-5

Pseudo-Op Dictionary

Reserve a block of memory BLK

Syntax
.BLKJabs-expr
Purpose

The .BLK pseudo-op reserves a block of memory words. Abs—expr specifies the length (in
16-bit words) of this block. Abs—expr must be a nonnegative absolute expression.

The assembler increments the current location counter by abs-expr when it encounters .BLK
in your source.

Example
01 00000000000 .NREL O
02 000000 UC 122371 LWSTA 0,ACLOC ;Store the four accumulators
03 00000000013
04 000003 UC 1286371 LWSTA 1,ACLOC+2 ;in consecutive locations
05 00000000012
06 000006 UC 132371 LWSTA 2,ACLOC+4 ;starting at address ACLOC.
07 00000000011
08 000011 UC 136371 LWSTA 3,ACLOC+6 AT
09 00000000010 ’
10
11 000014 UC 00000000010 ACLOC: .BLK 10 ;Save 10 (octal) words of
12 ymenory.
13 000024 UC 101771 LWLDA 0,150 ;Note that the location
14 00000000150
15 ;counter jumps 10 words.
16
17
References

“Absolute Expressions” —~ Chapter 3
“Assigning Locations” — Chapter 3

7-6 Licensed Material--Property of Data General Corporation 093-000242

Pseudo-Op Dictionary

Create a data word with call relocation .CALL

Syntax
.CALLOabs-exprCnumeric-symbol

Purpose

The .CALL pseudo—op generates one data word with a value of abs—expr, and call relocates
it relative to mumeric-symbol. Numeric-symbol must be an external (.EXTN) symbol, and
should resolve to a .PENT symbol. .CALL, along with .TARG, generates call and target data
words for using the AOS and AOS/VS 16-bit resource manager. The Link utility resolves the
contents of call and target words based on the value of abs-expr and the program’s overlay
structure. See the AOS/VS Link and Link File Editor (LFE) User’s Manual for a detailed
discussion of resource calls.

Example
.EXTN P
.CALL 4,P ; ?RCALL resource call word
.TARG 4,P i ?RCALL resource target word

093-000242 Licensed Material--Property of Data General Corporation 7-7

Pseudo-Op Dictionary

—
|
Syntax
.COMMOnumeric-symbollabs-expr
Purpose
The .COMM pseudo-op reserves a labeled (or named) common area for intermodule
communication. A common area is a data storage area that you can access from separately
assembled modules in your program.
The assembler assigns the name numeric-symbol to this common area. MASM regards
numeric-symbol as an entry point and, therefore, vou should not redefine this symbol
anywhere in your program.
Specify the size of the common area (in 16-bit words) in the abs—expr argument. This
argument must be a positive absolute expression.
To reference this common area from another module in your program, use .COMM, .EXTN,
or .EXTL to declare numeric-symbol as externally defined. If you issue the same .COMM
statement in two separately assembled modules, Link resolves them to the same area in
memory. AT
Example
.TITLE A ;Module A.
. COMM X,30 ;Reserve a common area named X
;of length 30 words.
.COMM Y,20 ;Common area Y contains 20 words.
.END
.TITLE B ;Separately assembled module B.
. COMM X, 30 ;X refers to the same common area as
. ;declared in module A.
.END
.TITLE C ;Separately assembled module C.
.EXTL X ;X is defined in a different module
. " ;and, in this case, refers to the
;starting address of the common
;area declared in module A.
.END
References
“Absolute Expressions” - Chapter 3
AOS/VS Link and Link File Editor (LFE) User’s Manual - labeled common areas o
N

“Intermodule Communication” - Chapter 6
“Numeric symbols” - Chapter 2

7-8 Licensed Material--Property of Data General Corporation) 093-000242

Pseudo-Op Dictionary

Reserve an unlabeled common area .CSIZE

Syntax
.CSIZE[Jabs~-expr

Purpose

The .CSIZE pseudo-op reserves an unlabeled common area for intermodule communication.

A common area is a data storage area that you can access from separately assembled modules
in your program.

The size of this unlabeled common area is equal to the number of 16-bit words you specify in
the abs—expr argument. This argument must be a positive absolute expression.

Link assigns the name ?CLOC to the starting address of your unlabeled common area. To
reference this common area from a separately assembled module, declare 2CLOC in an
.EXTN or .EXTL pseudo-op. The AOS/VS Link and Link File Editor (LFE) User’s Manual
provides more information about ?CLOC and unlabeled common areas.

If you include more than one .CSIZE pseudo-op in a single source module, MASM uses the
largest value as the size of the unlabeled common area. Similarly, if separately assembled
modules issue .CSIZE pseudo-ops, Link uses the largest value.

NOTE: .CSIZ is an acceptable abbreviation of this pseudo-op.

Example
.TITLE A iModule A.
.CSIZE 100 ;:Reserve an unlabeled common area
;100 words long.
.END
.TITLE B ;Separately assembled module B.

.EXTL ?2CLOC ;2CLOC is the starting address of
. ;the unlabeled common area declared
;in module A.

.END

References

“Absolute Expressions” — Chapter 3

AOS/VS Link and Link File Editor (LFE) User’s Manual
— 7CLOC and unlabeled common areas

“Intermodule Communication” — Chapter 6

093-000242 Licensed Material--Property of Data General Corporation 7-9

Pseudo-Op Dictionary

Define an ALC instruction DALC

Syntax

.DALC[Inumeric-symbol = instruction or expression

Purpose

The .DALC pseudo-op defines numeric-symbol as an ALC-format instruction. When uséd,
an ALC instruction accepts two or three arguments, and several other options, as discussed
below.

The syntax of an ALC instruction is as follows:

numeric-symbol{<carry>] [<shift>] [#] <acs> <acd> [<skip>]

Where
<carry> is either omitted, Z, O or C
<shift> is either omitted, L, R or §
is the ALC instruction no-load indicator
<acs> is an absolute expression between 0 and 3
<acd> is an absolute expression between 0 and 3
<skip> is an absolute expression between 0 and 7

The carry and shift options are available only if the length of the numeric-symbol name is
exactly three characters.

MASM assembles an ALC instruction and its arguments into one word in the following
format:

0o 1 2 3 4 5 6 17 8 9 10 11 12 13 14 15

acs acd shift carry

+—
+—4
+ —-.{_
+—+
+—
+—4

| skip

+—+

AOS/VS MASM includes the following .DALC-defined instructions in its permanent table:

ADC ADD AND COM INC
MOV NEG SUB

In addition, AOS/VS MASM includes the following mnemonics for the skip option in its
permanent table:

SKP SZC SNC SZR SNR
SEZ SBN '

7-10 Licensed Material--Property of Data General Corporation 093-000242

i

1

Pseudo-Op Dictionary

Define commercial memory reference instruction DCMR

Syntax

.DCMRCInumeric-symbol = instruction or expression

Purpose

The syntax of a .DCMR instruction is as follows:

numeric-symbol <ac> <displacement> [<index>]

Where
<ac> is an absolute expression between 0 and 3
<displacement> is either an unsigned relocatable expression between 0 and 177777 or
a signed relocatable expression between -77777 and +77777
<index> is an absolute expression between 0 and 3

MASM assembles the .DCMR instruction and its arguments into two words in the following
format:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

index

¢
ac |
+

1
T
1

-

I
displacement

4 — e ——t

+—+—+

AOS/VS MASM includes the following .DCMR-defined instructions in its permanent table:

ELDB ESTB

093-000242 Licensed Material--Property of Data General Corporation 7-11

Pseudo-Op Dictionary

Define extended memory reference instruction .DEMR

Syntax

.DEMRnumeric-symbol = instruction or expression

Purpose

The syntax of a .DEMR instruction is as follows:
numeric-symbol [@]<displacement> [<index>]
Where

@ is the indirection indicator

<displacement> is either an unsigned relocatable expression between 0 and 77777 or a
signed relocatable expression between -37777 and +37777.

<index> is an absolute expression between 0 and 3

MASM assembles the .DEMR instruction and its arguments into two words in the following
format:

¢ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

T
index |

3

isplacement

o+ —+

=+
F — 4+

+—t—+

AOS/VS MASM includes the following .DEMR-defined instructions in its permanent
table:

EDSZ EISZ EIMP EJSR PSHIJ

7-12 Licensed Material--Property of Data General Corporation 083-000242

- ™,

ST

Pseudo-Op Dictionary

Define extended memory reference instruction .DERA
with accumulator

Syntax

.DERADnumeric-symbol = instruction or expression

Purpose

The syntax of a .DERA instruction is as follows:

numeric-symbol <ac> [@]<displacement> [<index>]
Where
<ac> is an absolute expression between 0 and 3
@ is the indirection indicator
<displacement> is either an unsigned relocatable expression between 0 and 77777 or a
signed relocatable expression between -77777 and +77777.
<index> is an absolute expression between 0 and 3

MASM assembles the .DERA instruction and its arguments into two words in the following
format:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

+
-+

index |

}
T

! 4
T T
t

T

+—+

o +—+

isplacement

.‘______.-
®

AOS/VS MASM includes the following .DERA-defined instructions in its permanent
table:

DSPA ELDA ELEF ESTA

093-000242 Licensed Material--Property of Data General Corporaticn 7-13

Pseudo-Op Dictionary

Define extended user instruction .DEUR

Syntax

.DEURTInumeric-symbol = instruction or expression
Purpose
The syntax of a .DEUR instruction is as follows:
numeric-symbol <n>
Where

<n> is an expression between 0 and 177777

MASM assembles the .DEUR instruction and its arguments into two words in the following
format:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

+ — 4+ —+

+
T

3
T

+
T

AOS/VS MASM includes the following .DEUR-defined instructions in its permanent
table:

SAVE VCT WSAVR WSAVS WSSVR
WSSVS WWCS XVCT

7-14 Licensed Material--Property of Data General Corporation 093-000242

Pseudo-Op Dictionary

Define floating—point and memory instruction

Syntax

DFLM

.DFLMTInumeric-symbol = instruction or expression

Purpose

The syntax of a .DFLM instruction is as follows:

numeric—-symbol

Where

<ac>

@

<displacement>

<index>

<ac> [@]<displacement> [<index>]

is an absolute expression between 0 and 3
is the indirection indicator

is either an unsigned relocatable expression between 0 and 77777 or a
signed relocatable expression between -37777 and +37777

is an absolute expression between 0 and 3

MASM assembles the .DFLM instruction and its arguments into two words in the following

format:

0 1 2 3 4 S 6 7 8 g 10 11 12 13 14 15
| | index | ac | I
| @ | displacement |

AOS/VS MASM includes the following .DFLM-defined instructions in its permanent

table:

FAMS
FMMD
FSTS

093-000242

FAMD FSMS FSMD FMMS
FDMS FDMD FLDS FLDD
FSTD FFMD FLMD

Licensed Material--Property of Data General Corporation

Pseudo-Op Dictionary

Define floating load status instruction DFLS

Syntax

.DFLSTInumeric-symbol = instruction or expression

Purpose

The syntax of a .DFLS instruction is as follows:

numeric-symbol [@]<displacement> [<index>]
Where
@ is the indirection indicator
<displacement> either an unsigned relocatable expression between 0 and 77777 or a
signed relocatable expression between -37777 and +37777
<index> is an absolute expression between 0 and 3

MASM assembles the .DFLS instruction and its arguments into two words in the following
format:

| EY

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

index

+—+
+—+

—t—
+—+—+

@ | displacement

AOS/VS MASM includes the following .DFLS-defined instructions in its permanent
table:

FLST FSST

7-16 Licensed Materlal--Property of Data General Corporation 093-000242

Pseudo-Op Dictionary

Define one—accumulator instruction

Syntax

.DIACDnumeric-symbol = instruction or expression

Purpose

The syntax of a .DIAC instruction is as follows:

numeric-symbol

Where

<ac>

DIAC

is an absolute expression between 0 and 3. MASM assembles the
.DIAC instruction and its argument into one word in the following

format:

9 10 11

12

13 14 15

+—+

ac

+ —+

AOS/VS MASM includes the following .DIAC-defined instructions in its permanent

table:

CVWN
ENEG
INTA
LDATS
STAFP
STI
WSTI

093-000242

FAB
FNOM
LDAFP
LDI
STASB
WHLV
XCT

FEXP
FRH
LDASB
MSKO
STASL
WLDI

FHLV
FSCAL
LDASL
MSP
STASP
WMOVR

FINT
HLV
LDASP
READS
STATS
WMSP

Licensed Material--Property of Data General Corporation

7-17

Pseudo-Op Dictionary

_Define .one—accumulator instruction with
Immediate

Syntax

.DICDInumeric-symbol = instruction or expression

Purpose

The syntax of a .DICD instruction is as follows:

numeric-symbol <n> <ac>

Where

<n> is an absolute expression between 1

<ac> is an absolute expression between 0

MASM automatically subtracts 1 from n and assembles the
arguments into one word in the following format:

0 1 2 3 4 5 6 7 8 9 10 11

.DICD

and 4
and 3

.DICD instruction and its

12 13 14 15

+ — 4

t +
b
+———t

AOS/VS MASM includes the following .DICD-defined instructions in its permanent

table:
ADI DHXL DHXR HXL
NADI NSBI SBI WADI
WSBI

7-18

Licensed Material--Property of Data General Corporation

HXR
WLSI

093-000242

o,
. f

Pseudo-QOp Dictionary

Define immediate and two—accumulator .DIMD
Instruction
Syntax
.DIMDnumeric-symbol = instruction or expression
Purpose
The syntax of a .DIMD instruction is as follows:
numeric-symbol <n> <acs> <acd>
Where
<n> is an expression between -177777 and +177777
<acs> is an absolute expression between 0 and 3
<acd> is an absolute expression between 0 and 3

MASM assembles the .DIMD instruction and its arguments into two words in the following
format:

0 1 2 3 4 5 6 7 8 g 10 11 12 13 14 15

acs acd

4 — 4

4 — e — 1

+—4+—+

AOS/VS MASM includes the following .DIMD-defined instruction in its permanent
table:

CIOI

093-000242 Licensed Material--Property of Data General Corporation 7-19

Pseudo-Op Dictionary

Define immediate and one—-accumulator .
instruction

Define immediate and one—accumulator
instruction which may skip

Syntax

.DIMMCnumeric-symbol = instruction or expression

.DIMSCInumeric-symbol = instruction or expression

Purpose
The syntax of a .DIMM or .DIMS instruction is as follows:
numeric-symbol <n> <ac>
Where

<n> is an expression between -177777 and +177777

<ac> is an absolute expression between 0 and 3

DIMM

.DIMS

MASM assembles the .DIMM or .DIMS instruction and its arguments into two words in the

following format:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ac

AOS/VS MASM includes the following .DIMM-defined instructions in its permanent

table:
ADDI ANDI IORI NADDI NLDAI
WASHI WLSHI WNADI XORI

AOS/VS MASM includes the following .DIMS-defined instructions in its permanent
NSALA NSALM NSANA NSANM WSEQI
WSGTI WSLEI WSNEI

7-20 Licensed Material--Property of Data General Corporation 09

table:

3-000242

el

Pseudo-Op Dictionary

Define /O instruction

Syntax

.DIOInumeric-symbol = instruction or expression

Purpose

The syntax of a .DIO instruction is as follows:

numeric-symbol [<control>] <device>

Where
<control> is either omitted, S, C or P
<device> is an absolute expression between 0 and 77

.DIO

The control option is available only if the length of the name of numeric-symbol is exactly

three characters.

MASM assembles the .DIO instruction and its arguments into one word in the following
format:

0] 1 2 3 4 5 6 7 8 g 10 11 12 13 14 15

lcontrol| device

T

AOS/VS MASM includes the following .DIO-defined instructions in its permanent table:

NIO SKPBN SKPBZ SKPDN SKPDZ

AOS/VS MASM also includes mnemonics for the device codes in its permanent table.

093-000242 Licensed Material--Property of Data General Corporation

7-21

Pseudo-Op Dictionary

Define I/O instruction with accumulator DIOA

Syntax

.DICACnumeric~symbol = instruction or expression
Purpose
The syntax of a .DIOA instruction is as follows:

numeric-symbol[<control>] <ac> <device>

Where
<control> is either omitted, S, C or P
<ac> is an absolute expression between 0 and 3
<device> is an absolute expression between 0 and 77

The control option is available only if the length of the name of numeric-symbol is exactly
three characters.

MASM assembles the .DIOA instruction and its arguments into one word in the following
format:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

: t : + ¢ +
| | ac | |control| device |
+ 4 + ; } +

AOS/VS MASM includes the following .DIOA~defined instructions in its permanent
table:

DIA DIB DIC DOA DOB
DOC

AOS/VS MASM also includes mnemonics {or the device codes in its permanent table.

7-22 Licensed Material--Property of Data General Corporation 093-000242

Pseudo-Op Dictionary

Define instruction with source and destination

Define instruction with source and destination
which may skip

Syntax

.DISDInumeric-symbol

.DISSCnumeric-symbol

Purpose

instruction or expression

instruction or expression

The syntax of a .DISD or .DISS instruction is as follows:

numeric-symbol <acs> <acd>

Where

<acs>

<acd>

DISD
DISS

is an absolute expression between 0 and 3

is an absolute expression between 0 and 3

MASM assembles the .DISD or .DISS instruction and its arguments into one word in the

following format:

g 10 11

13 14 15

4 — 4

AOS/VS MASM includes the following .DISD-defined instructions in its permanent

table:

ANC
COB
FAD
FDS
FMOV
LRB
NNEG
SEX
WANC
WCLM
WFFAD
WLRB
WPOP
WXOR

093-000242

BTO
DAD
EFSS
FDD
FRDS
LSH
NSUB
STB
WAND
WCOB
WINC
WLSH
WPSH
XCH

Licensed Material--Property of Data General Corporation

BTZ
DLSH
FSD
FLAS

IOR
NADD
PIO
sYC
WASH
WCOM
WIOR
WMOV
WSTB
XOR

CIO
DSB
FMS
FFAS
LDB
NDIV
POP
WADC
WBTO
WDIV
WLDB
WMUL
WSUB
ZEX

CLM
FAS
FMD
FCMP
LOB
NMUL
PSH
WADD
WBTZ
WFLAD
WLOB
WNEG
WXCH

7-23

Pseudo-Op Dictionary

TN
.DISD, .DISS (continued)
AOS/VS MASM includes the following .DISS-defined instructions in its permanent table:
SGE SGT SNB SZB SZBO
USEQ USGE USGT USLE USLT
USNE WSEQ WSNE WSLE WSLT
WSGE WSGT WSNB WSZB WSZBO
WUSGE WUSGT
AT

7-24 Licensed Material--Property of Data General Corporation 093-000242

Pseudo-Op Dictionary

Define wide immediate with one accumulator DIWM
instruction
Define wide immediate with one accumulator DIWS

instruction which may skip

Syntax

.DIWMOnumeric-symbol = instruction or expression

.DIWS[Inumeric-symbol = instruction or expression

Purpose

The syntax of a .DIWM or .DIWS instruction is as follows:
numeric-symbol <n> <ac>
‘Whete
<n> is an expression between -37777777777 and ¥37777777777
<ac> is an absolute expressioh betiween 0 and 3
MASM assembles the .DIWM or .DIWS instruction and its arguments into three words in thé

following format:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

| ac

n (bits 0-15)

n (bits 16-31)

4 —

AOS/VS MASM includes the following .DIWM-defined instructions in its permanent
table:

WADDI WANDI WIORI WLDAI WXORI
AOS/VS MASM inc¢ludes the following .DIWS-defined instructions in its pérmanent table:

WSALA WSALM WSANA WSANM WUGTI
WULEI

093000242 Licehsed Material-—Property of Data Genéral Corpdratisii 7-25

Pseudo~Op Dictionary

Define a 32-hit byte reference instruction DLBA
with accumulator

Syntax

.DLBACnumeric-symbol = instruction or expression
Purpose
The syntax of a .DLBA instruction is as follows:

numeric-symbol <ac> <displacement> [<index>]

Where
<ac> is an absolute expression between 0 and 3
<displacement> is either an unsigned expression between 0 and 37777777777 or a
signed expression between -17777777777 and +17777777777
<index> is an absolute expression between 0 and 3

MASM assembles the .DLBA instruction and its arguments into three words in the following
format:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

index ac |
.

+ — 4
4 — 4+

displacement (bits 0-15)

F—t——

displacement (bits 16-31)

'1'—‘1"—'}'_1)'

AOS/VS MASM includes the following .DLBA-defined instructions in its permanent
table:

LLDB LLEFB LSTB

7-26 Licensed Material--Property of Data General Corporation 093-000242

A7

Pseudo-Op Dictionary

Define a 32-bit byte reference instruction .DLBR

Syntax

.DLBRC!numeric-symbol = instruction or expression
Purpose
The syntax of a .DLBR instruction is as follows:
numeric-symbol <displacement> [<index>]

Where

<displacement> is either an unsigned expression between 0 and 37777777777 or a
signed expression between —17777777777 and +17777777777

<index> is an absolute expression between 0 and 3

MASM assembles the .DLBR instruction and its arguments into three words in the following
format:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

¢
index |
t

displacement (bits 0-15)

+—+—+—+

displacement (bits 16-31)

—g— 4 — 4

AOS/VS MASM includes the following .DLBR-defined instruction in its permanent
table:

LPEFB

093-000242 Licensed Material--Property of Data General Corporation 7-27

Pseudo-Op Dictionary

Define a 32-hit memory reference with immediate .DLCM

Syntax
.DLCM[Jnumeric~-symbol = instruction or-expression
Purpose

The.syntax of a_ .DLCM instruction is as follows:

numeric-symbol <n> [@]<displacement> [<index>]
Where
<n> is an absolute e_xp_ress_ion_ between 1 and 4
@ is the indirection indicator
<displacement> is_either an unsigned expression between 0 and 17777777777 or a
signed expression between -7777777777 and +7777777777
<index> is an absolute expression between 0 and 3

MASM automatically subtracts 1 from n and assembles the .DLCM instruction and its
arguments into three words in the following format:

0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

| | n-1 | index | [
e _ T T |
== B v o ey |

AOS/VS MASM includes the following .DLCM-defined instructions in_its permanent
table:

LNADI LNSBI LWADI LWSBI.

7-28 Licensed Material-~Property .of Data General. Cerporation 093-000242

Pseudo-Op Dictionary

Define a 32—bit memory reference with DLM|
immediate
Syntax
.DLMIC numeric-symbol = instruction or expression
Purpose
The syntax of a .DLMI instruction is as follows:
numeric-symbol [@]<displacement> [<index> [<n>]]
Where
@ is the indirection indicator
<displacement> is either an unsigned expression between 0 and 17777777777 or a
signed expression between -7777777777 and +7777777777
<index> is an absolute expression between 0 and 3
<n> is an absolute expression between 0 and 177777

MASM assembles the .DLMI instruction and its arguments into four words in the following
format:

0 1 2 3 4 L 6 7 8 9 10 11 12 13 14 15
| index |
@ 1 diéblacement (bits 1-15)

dispiacement (bits 16-31)

n

SIS S B

—t——+—

AOS/VS MASM includes the following .DLMI-defined instruction in its permanent
table:

LCALL

093-000242 Licensed Material--Property of Data General Corporation 7-29

Pseudo-Op Dictionary

Define a 32-bit memory reference with DLMO
accumulator and offset

Syntax

.DLMO[Cnumeric-symbol = instruction or expression
Purpose
The syntax of a .DLMO instruction is as follows:

numeric-symbol <ac> <address> [@]<displacement> [<index>]

Where
<ac> is an absolute expression between 0 and 3
<address> is an address in the current partition
@ is the indirection indicator
<displacement> is either an unsigned expression between 0 and 17777777777 or a
signed expression between -7777777777 and +7777777777
<index> is an absolute expression between 0 and 3 P

MASM subtracts .+1 from address and assembles the .DLMO instruction and its arguments
into four words in the following format:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

address — (.+1)

i [ac | index l: 1
i @ l r dispiacement (bits 1-15) |
|I ' displacement (bits 16-31) i
! i.

AOS/VS MASM includes the following .DLMO-defined instructions in its permanent
table:

LNDO LWDO

7-30 Licensed Material--Property of Data General Corporation 093-000242

Pseudo-Op Dictionary

Define a 32-bit memory reference DLMR

Define a 32-bit memory reference DLMS
which may skip

Syntax

.DLMRCJnumeric-symbol = instruction or expression

.DLMS :numeric-symbol

instruction or expression

Purpose

The syhtax of a .DLMR or .DLMS instruction is as follows:

numeric-symbol [@]<displacement> [<index>]
Where
@ is the indirection indicator
‘<displacement> is either an unsigned expression between 0 and 17777777777 or a
signed expression between 7777777777 and +7777777777
<index> is an absolute expression between 0 and 3

MASM assembles the .DLMR or .DLMS instruction and its arguments into three words in the
following format:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1
+
!

index

|
| @ | displacement (bits 1-15)
|

displacement (bits 16-31)

4+ — + — 4 4

AOS/VS MASM includes the following .DLMR-defined instructions in its permanent
table:

LFLST LFESST LIMP LJSR LPEF
LPSHIJ

AOS/VS MASM includes the following .DL.MS-defined instructions in its permanent table:

LNDSZ LNISZ LWDSZ LWISZ

093-000242 Licensed Material--Property of Data General Corporation 7-31

Pseudo-Op Dictionary

Define a 32-bit memory reference DLRA
with accumulator

Syntax
.DLRAJnumeric-symbol = instruction or expression
Purpose
The syntax of a .DLRA instruction is as follows:
numeric-symbol <ac> [@]<displacement> [<index>]
Where
<ac> is an absolute expression between 0 and 3
@ is the indirection indicator
<displacement> is either an unsigned expression between 0 and 17777777777 or a
signed expression between ~7777777777 and +7777777777
<index> is an absolute expression between 0 and 3

MASM assembles the .DLRA instruction and its arguments into three words in the following
format:

(o]
=
N
w
'S
(9]
(o))
~J

8 9 10 11 12 13 14 15

ac index

+—+

+ —+

displacement (bits 1-15)

+—+—+

displacement (bits 16-31)

r.—-’_-—-.l’_-_..ir.

-r._-.lr._—.i’_..._.lr.
®

AOS/VS MASM includes the following .DLRA-defined instructions in its permanent

table:
LDSP LFLDS LFLDD LFSTS LFSTD
LFAMS LFAMD LFSMS LFSMD LFMMS
LFMMD LFDMS LFDMD LLEF LNLDA
LNSTA LNADD LNSUB LNMUL LNDIV
LWLDA LWSTA LWADD LWSUB LWMUL
LWDIV

7-32 Licensed Material--Property of Data General Corporation 093-000242

Pseudo-Op Dictionary

Define an 8-bit memory reference .DMR

Syntax

.DMR[Jnumeric-symbol = instruction or expression
Purpose
The syntax of a .DMR instruction is as follows:
numeric-symbol [@]<displacement> [<index>]
Where

@ is the indirection indicator

<displacement> is either an unsigned expression between 0 and 377 or a signed
expression between -177 and +177

<index> is an absolute expression between 0 and 3

MASM assembles the .DMR instruction and its arguments into one word in the following
format:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

+4 — 4
+—+

displacement

+—+

@ index

AOS/VS MASM inctudes the following .DMR-defined instructions in its permanent
table:

DSZ ISZ JMP JSR

093-000242 Licensed Material--Property of Data General Corporation 7-33

Pseudo-Op Dictionary

Define an 8-bit memory reference .DMRA
with accumulator

Syntax

.DMRA[Inumeric-symbol = instruction or expression

Purpose

The syntax of a .DMRA instruction is as follows:

numeric-symbol <ac> [@]<displacement> [<index>]
Where
<ac> is an absolute expression between 0 and 3
@ is the indirection indicator
<displacement> is either an unsigned expression between 0 and 377 or a signed

expression between -177 and +177

<index> is an absolute expression between 0 and 3

/rq-
MASM assembles the .DMRA instruction and its arguments into one word in the following
format:

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ac displacement

+—+
+—4

4+ —+
@

-+ — 4
-
=
Q.
®
”

+ —+

+—+

AOS/VS MASM includes the following .DMRA-defined instructions in its permanent
table:

LDA LEF STA

7-34 Licensed Material--Property of Data General Corporation 093-000242

Pseudo-Op Dictionary

Assemble source lines repetitively DO

Syntax

.DOJabs—expr

Purpose

The .DO pseudo-op directs MASM to assemble a portion of your source module repetitively.
MASM assembles the source lines following .DO the number of times given in abs-expr.
Abs—expr must be an absolute expression.

You must terminate the .DO loop with the .ENDC pseudo-op. Thus, the .DO portion of your
module has the general form:

.D0abs-expr
;MASM assembles these
;lines abs-expr times.

.ENDC ;Terminates the .DO loop.

You can use .DO to perform conditional assembly of source lines by passing a relational
expression as an argument (pass an expression that contains <, >, ==, <=, >=, or <>). If the
relational expression is true, its value is 1 and MASM assembles the .DO loop once. If the
relational expression is false, its value is 0 and MASM does not assemble the loop.

You can nest .DOs to any depth. Be sure the innermost .DO corresponds with the innermost
.ENDC, etc.

You must place the .ENDC pseudo-op at the same source level as the .DO pseudo-op or
MASM will report an error and ignore the .DO statement. See “Loops and Conditionals in
Macros” (Chapter 5) for more information.

Examples
Source code for the first example:
.DO 3 ;Assemble the following code 3 times.
20
.ENDC ;End of .DO loop.

Assembly listing for this code:

01 00000000003 .DO 3 ;Assemble the following code 3 times.
02 000000 00000000010 10

03 000002 00000000020 20

04 .ENDC ;End of .DO loop.

05 000004 00000000010 10

06 000006 00000000020 20

07 .ENDC ;End of .DO loop.

08 000010 00000000010 10

09 000012 00000000020 20

10 .ENDC ;End of .DO loop.

093-000242 Licensed Material--Property of Data General Corporation 7-35

Pseudo~Op Dictionary
.DO (continued) | -

The second example shows how to use the .DO pseudo-op to perform conditional assembly:

A=3

.DO A==3 ;Assemble the following code once

3 ;if the value of A eguals 3. Otherwise,

.ENDC ;do not assemble the code at all.
References

“Absolute Expressions” - Chapter 3
“Loops and Conditionals in Macros” ~ Chapter 5
“Repetitive and Conditional Assembly” — Chapter 6

7-36 Licensed Material--Property of Data General Corporation 093-000242

Pseudo-Op Dictionary

Define a two—accumulator instruction DTAC
Syntax
.DTACCInumeric-symbol = instruction or expression
Purpose
The syntax of a .DTAC instruction is as follows:
numeric-symbol <acs> <acd>
Where
<acs> is an absolute expression between 0 and 3
<acd> is an absolute expression between 0 and 3

MASM assembles the .DTAC instruction and its arguments into one word in the following
format:

0 1 2 3 4 5 6 7 8 g 10 11 12 13 14 15

+ — 4

4 . .
| | acd acs |
+ t +

AOS/VS MASM does not include any .DTAC-defined instructions. This instruction
format is required only for the LDB and STB instructions on the Data General NOVA4 and
microNova machines.

093-000242 Licensed Material--Property of Data General Corporation 7-37

Pseudo-Op Dictionary

Define a 1-word instruction with no arguments

Define a 1-word instruction with no arguments
which may skip

Syntax

.DUNR'numeric-symbol =

.DUNS[Cnumeric-symbol

Purpose

instruction or expression

instruction or expression

The syntax of a .DUNR or .DUNS instruction is as follows:

numeric~symbol

.DUNR and .DUNS instructions do not accept arguments.

.DUNR
.DUNS

MASM assembles the .DUNR or .DUNS instruction into one word in the following format:

10 11

13 14 15

AOS/VS MASM includes the following .DUNR-~defined instructions in its permanent

table:

BAM
CMT
DIV
FCLE
FPOP
FCOSS
FLOGS
HALT
LCS
LPSR
MULS
PRTSEL
RSTR
SPSR
WCMP
WDIVS
WLDIX
WPOPJ

7-38

BKPT
CRYTC
DIVS
FNS
FPLYD
FCOSD
FEXPD
INTEN
LCSF
LSBRA
NCLID
PSHR
RTN
SSPT
WCMT
WDPOP
WLMP
WRSTR

Licensed Material--Property of Data General Corporation

BLM
CRYTO
DIVX
FTE
FPLYS
FSQRD
FEXPS
INTDS
LDIX
LSBRS
ORFB
POPB
SAVZ
STIX
WCMV
WEDIT
WLSN
WRTN

CMV
CRYTZ
ECLID
FTD
FSIND
FSQRS
FXTD
IORST
LMP
LSN
PATU
POPJ
SCL
SvC
WCST
WFPOP
WMULS
WSTIX

CMP
CTR
EDIT
FPSH
FSINS
FLOGD
FXTE
LCPID
LMRF
MUL
PBX
RRFB
SMRF
WBLM
WCTR
WFPSH
WPOPB

093-000242

Pseudo-Op Dictionary

.DUNR, .DUNS (continued)

AOS/VS MASM includes the following .DUNS-defined instructions in its permanent table:

DEQUE
FSEQ
FSGT
FSNO
LPHY
VWP

093-000242

DSZTS ENQH
FSNE FSLT
FSNM FSND
FSNOD ESNUO
LPTE SNOVR
WMESS

ENQT
FSGE
FSNU
FSNER
SPTE

FSA
FSLE
FSNUD
ISZTS
VBP

Licensed Material--Property of Data General Corporation

7-39

Pseudo-Op Dictionary

Define a numeric symbol | DUSR
Syntax
integer
.DUSRJnumeric-symbol = { SYmbe! .
expression
instruction

Purpose

The .DUSR pseudo—op defines numeric-symbol as having the value of integer, symbol,
expression, or instruction.

integer can be any integer value, but can not be a floating—point constant.

symbol can be any numeric symbol, instruction symbol, or permanent value
symbol (a pseudo-op that represents an internal assembler variable).

expression can be any legal Macroassembler expression.

instruction can be any legal MV/Family 32-Bit assembly language instruction. If

you supply an instruction, MASM computes the assembled value of
that instruction and assigns it to numeric-symbol. MASM pads or
truncates the instruction’s value to produce a double precision (32-bit)
integer, if necessary. Refer to “Assignments” in Chapter 2 for more
information about using instructions in assignments.

Once defined, you can use numeric-symbol anywhere you would use a double precision
(32-bit) operand. In addition, you can change the value of numeric-symbol at any time
without using . XPNG or .DUSR.

The above description shows that the .DUSR pseudo-op performs the same function as the
simple assignment statement (see Chapter 2). For example, the statements in the two
columns of Table 7-1 assign equivalent values to the symbols A, B, C, and D.

Table 7-1 .DUSR Assignments Versus Simple Assignments

.DUSR Assignments Simple Assignments
.DUSR A=10 A=10

.DUSR B=A+20 B=A+20

.DUSR C=XWLDA 0,0 C=XWLDA 0,0

.DUSR D=.RDX D=.RDX

The only difference between using a simple assignment statement and using the .DUSR
pseudo-op concerns multiple definitions of symbols. If you assign a symbol two or more
different values with simple assignment statements, no error occurs. However, if you set the

7-40 Licensed Material-—Property of Data General Corporation 093-000242

Pseudo-Op Dictionary

(" .DUSR (continued)

/MULTIPLE command-line switch , and assign a symbol two or more different values with
.DUSR assignments, MASM reports a multiple symbol definition.

MASM treats the I/0 device symbols (e.g., LPT, TTO, PTR), the ALC skip mnemonics (e.g.,
SKP, SNC, SNR), and the hardware stack location mnemonics (e.g., SP, FP, SL, SFA} as if
they were defined by the .DUSR pseudo-op.

Example

.DUSR Z =5 :Define Z as an assembly-time constant.

References

“Expressions” - Chapter 2
“Symbols” — Chapter 2
“Numeric Symbols” - Chapter 2

093-000242 Licensed Material--Property of Data General Corporation 7-41

Pseudo-Op Dictionary

Define a 2-word instruction with no arguments .DUWR

Define a 2—-word instruction with no arguments DUWS
which may skip

Syntax

DUWROnumeric-symbol = instruction or expression

.DUWS[numeric-symbol

instruction or expression

Purpose

7-42

The syntax of a .DUWR or .DUWS instruction is as follows:
numeric-symbol
.DUWR and .DUWS instructions do not accept arguments.

MASM assembles the .DUWR or .DUWS instruction into two words in the following format:

i S

0 1 2 3 4 S 6 7 8 9 10 11 12 13 14 15

+——

+—+—+

AOS/VS MASM includes the following .DUWR-defined instructions in its permanent
table:

JPID JPLOAD JPFLOAD WDCMP WDDEC
WDINC WDMOV

AOS/VS MASM includes the following .DUWS-defined instructions in its permanent table:

CINTR IMODE JPFLUSH JPLCS JPSTART
JPSTATUS JPSTOP NFSSS NBSSS NFSSC
NBSSC NFSAS NBSAS NFSAC NBSAC
NFSE NBSE NFSGE NBSGE NFSLE
NBSLE NFSNE NBSNE WESSS WBSSS
WFSSC WBSSC WESAS WBSAS WFSAC
WBSAC WEFSE WBSE WFSGE WBSGE
WESLE WBSLE WESNE WBSNE

FATN

Licensed Material--Property of Data General Corporation 093-000242

Pseudo-Op Dictionary

- Define instruction with 5-bit immediate .DWMM

Define instruction with 5-bit immediate DWMS
which may skip

Syntax

.DWMM[Inumeric-symbol = instruction or expression

.DWMS[Cnumeric-symbol = instruction or expression

Purpose
The syntax of a .DWMM or .DWMS instruction is as follows:
numeric-symbol <n>

Where

<n> is an absolute expression between 0 and 37

I‘,-\‘- MASM assembles the .DWMM or .DWMS instruction and its argument into one word in the
following format:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

n(3-4)

| n (0-2)

+—4
+—+
+—1

+— 4

AOS/VS MASM includes the following .DWMM-defined instruction in its permanent
table:

DERR
AOS/VS MASM includes the following .DWMS-defined instructions in its permanent table:

WSKBO WSKBZ

093-000242 Licensed Material--Property of Data General Corporation 7-43

Pseudo-Op Dictionary

Define instruction with 8-hit immediate DWMR

Syntax
.DWMR['numeric-symbol = instruction or expression
Purpose
The syntax of a .DWMR instruction is as follows:
numeric-symbol <address>

Where

<address> is an address in the current partition

MASM subtracts . (location counter value) from address and assembles the .DWMR
instruction and its argument into one word in the following format:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
| jaddress—. (0-3)

+ — 4

|address—. (4-7)]

+ ——.{-

AOS/VS MASM includes the following .DWMR-defined instruction in its permanent
table:

WBR

7-44 Licensed Material--Property of Data General Corporation 093-000242

Pseudo-Op Dicticnary

Store expression in two words .DWORD

Syntax

Purpose

.DWORD_lexpr

The .DWORD pseudo-op directs the assembler to generate a two-word (32-bit) integer with
the value and relocation property of expr. You can supply any legal assembler expression to
.DWORD as an argument. 4

By default, MASM generates two words of memory for each data placement expression in
your source module. Therefore, you need not use this pseudo-op unless you alter the global
data placement mode (set with .ENABLE).

Note that the .DWORD pseudo-op does not alter the global data placement mode.

Example
o1 .ENABLE WORD ;Enable single word data
02 000000 000001 1 ;placement (global mode).
03 000001 000002 2
04 000002 00000000004 .DWORD 4,5 ;8tore these values in two
05 00000000005
06 ;words each.
07 000008 000008 8 ;Global mode remains set to
08 000007 000007 7 ;single word data placement.
References

093-000242

“Data Placement” - Chapter 6
“Expressions” — Chapter 2

Licensed Material--Property of Data General Corporation 7-45

Pseudo-Op Dictionary

Define two—word extended opcode instruction DWXO

Syntax

.DWXOInumeric~symbol = instruction or expression

Purpose

The syntax of a .DWXO instruction is as follows:

numeric-symbol <acs> <acd> <n>
Where
<acs> is an absolute expression between 0 and 3
<acd> is an absolute expression between 0 and 3
<n> - is an absolute expression between 0 and 177

MASM assembles the .DWXO instruction and its arguments into two words in the following
format:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

do— e —
-’.———l-—-n)—

+ +
acs | acd |
+ +

+—+
o]

AOS/VS MASM includes the following .DWXO-defined instruction in its permanent
table:

WXOP

7-4%6 Licensed Material--Property of Data General Corporation 093-000242

Pseudo-Op Dictionary

Define 16-hit byte reference with accumulator .DXBA

Syntax

.DXBA[Inumeric-symbol = instruction or expression

Purpose

The syntax of a .DXBA instruction is as follows:

numeric-symbol <ac> <displacement> [<index>]
Where
<ac> is an absolute expression between 0 and 3
<displacement> is either an unsigned expression between 0 and 177777 or a signed
expression between —77777 and +7777777
<index> is an absolute expression between 0 and 3

MASM assembles the .DXBA instruction and its arguments into two words in the following
format:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

|
displacement

AOS/VS MASM includes the following .DXBA-defined instructions in its permanent
table:

XLDB XLEFB XSTB

083-000242 Licensed Material--Property of Data General Corporation 7-47

Pseudo-Op Dictionary

Define 16-bit byte reference with accumulator .DXBR

Syntax

.DXBRCnumeric-symbol = instruction or expression
Purpose
The syntax of a .DXBR instruction is as follows:
numeric-symbol <displacement> [<index>]
Where

<displacement> is either an unsigned expression between 0 and 177777 or a signed
expression between ~77777 and +77777

<index> is an absolute expression between 0 and 3

MASM assembles the .DXBR instruction and its arguments into two words in the following
format:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ‘

displacement

e
o]
Q
o
»
—
+—t — 4+

+——+

AOS/VS MASM includes the following .DXBR-defined instruction in its permanent
table:

XPEFB

7-48 Licensed Material-—Property of Data General Corporation 093000242

Pseudo-Op Dictionary

Define 16-bit memory reference with immediate .DXCM

Syntax

.DXCM[numeric-symbol = instruction or expression

Purpose

The syntax of a .DXCM instruction is as follows:

numeric-symbol <n> [@]<displacement> [<index>]
Where
<n> is an absolute expression between 1 and 4
@ is the indirection indicator
<displacement> is either an unsigned expression between 0 and 77777 or a signed
expression between -37777 and +37777
<index> is an absolute expression between 0 and 3

MASM subtracts 1 from <n> assembles the .DXCM instruction and its arguments into two
words in the following format:

o

=
\V)
w
>
[4)]

[e2]
~3

8 9 10 11 12 13 14 15

7
=
+ —+
e
=}
Qo
0]
»

®

+—4+—+4
-—-}.-—_-

displacement

F o——de—

AOS/VS MASM includes the following .DXCM-defined instructions in its permanent
table:

XNADI XNSBI XWADI XWSBI

093-000242 Licensed Materlal--Property of Data General Corporation 7-49

Pseudo-Op Dictionary

Define 16-bit memory reference with immediate DXMI

Syntax
.DXMIOnumeric-symbol = instruction or expression
Purpose
The syntax of a .DXMI instruction is as follows:
numeric-symbol [@]<displacement> [<index> [<n>]]
Where
@ is the indirection indicator
<displacement> is either an unsigned expression between 0 and 77777 or a signed
expression between -37777 and +37777
<index> is an absolute expression between 0 and 3
<n> is an absolute expression between 0 and 177777

MASM assembles the .DXMI instruction and its arguments intc three words in the following
format:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15§

4 —+
"
5
o,
(0]
Y
+—+

displacement

d— e —
®
+—+
+—4—F+—+

AOS/VS MASM includes the following .DXMI-defined instruction in its permanent
table:

XCALL

7-50 Licensed Material--Property of Data General Corporation 093-000242

Pseudo—-Op Dictionary

Define 16-bit memory reference with DXMO
accumulator and offset

Syntax
.DXMOnumeric-symbol = instruction or expression
Purpose
The syntax of a .LXMO instruction is as follows:
numeric—-symbol <ac> <address> [@]<displacement> [<index>]
‘Where
<ac> is an absolute expression between 0 and 3
<address> is an address in the current partition
@ is the indirection indicator
<displacement> is either an unsigned expression between 0 and 77777 or a signed

expression between —-37777 and +37777

<index> is an absolute expression between 0 and 3

MASM subtracts .+1 from address and assembles the .DXMO instruction and its arguments
into three words in the following format:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ac index

-+ — 4+

address - (.+1)

I
displacement |
|

AOS/VS MASM includes the following .DXMO-defined instructions in its permanent
table:

XNDO XWDO

093-000242 Licensed Material--Property of Data General Corporation 7-51

Pseudo-Op Dictionary

Define 16-bit memory reference .DXMR
Define 16-bit memory reference which may skip DXMS

Syntax

.DXMRJnumeric-symbol = instruction or expression

.DXMSTInumeric-symbol = instruction or expression

Purpose
The syntax of a .DXMR or .DXMS instruction is as follows:
numeric-symbol {@]<displacement> [<index>]
Where

@ is the indirection indicator

<displacement> is either an unsigned expression between 0 and 77777 or a signed
expression between -37777 and +37777

<index> is an absolute expression between 0 and 3

MASM assembles the .DXMR or .DXMS instruction and its arguments into two words in the
following format:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

index

displacement

+——+
_I’__..._
o
.._-——___.4_

AOS/VS MASM includes the following .DXMR-~defined instructions in its permanent
table:

XIMP XJSR XPEF XPSHJ
AOS/VS MASM includes the following .DXMS-defined instructions in its permanent table:

XNDSZ XNISZ XWDSZ XWISZ

7-52 Licensed Material--Property of Data General Corporation 093-000242

-~ =,

Pseudo-Op Dictionary

Define instruction with two accumulators DXOP
and extended opcode
Syntax
.DXOPOnumeric-symbol = instruction or expression
Purpose
The syntax of a .DXOP instruction is as follows:
numeric-symbol <acs> <acd> <n>
Where
<acs> is an absolute expression between 0 and 3
<acd> is an absolute expression between 0 and 3
<n> is an absolute expression between 0 and 37

MASM assembles the .DXOP instruction and its arguments into one word in the following
format:

acs acd

+ <+
+ —+
4+ — 4

AOS/VS MASM includes the following .DXOP-defined instructions in its permanent
table:

XOP XOP1

093-000242 Licensed Material--Property of Data General Corporation 7-53

Pseudo-Op Dictionary

Define 16-bit memory reference

Syntax

.DXRAOnumeric-symbol = instruction or expression

Purpose

7-54

The syntax of a .DXRA instruction is as follows:

numeric-symbol

Where

<ac>
@

<displacement>

<index>

<ac> [@]<displacement> [<index>]

is an absolute expression between 0 and 3

is the indirection indicator

DXRA

is either an unsigned expression between 0 and 77777 or a signed
expression between -37777 and +37777

is an absolute expression between 0 and 3

MASM assembles the .DXRA instruction and its arguments into two words in the following

format:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
| | ac | index | |
| @ | displacement |

AOS/VS MASM includes the following .DXRA-defined instructions in its permanent

table:

XFAMD
XFLDS
XESTD
XNLDA
XWDIV

XFAMS
XFMMD
XESTS
XNMUL
XWLDA

XFDMD
XFMMS
XLEF
XNSTA
XWMUL

XFDMS
XFSMD
XNADD
XNSUB

XWSTA

XFLDD
XFSMS
XNDIV
XWADD
XWSUB

Licensed Material--Property of Data General Corporation

093-000242

Pseudo-Op Dictionary

Begin a new listing page EJECT

Syntax
EJECT

Purpose

The .EJECT pseudo-op directs the assembler to begin a new page in the assembly listing
output (after listing the .EJECT source statement).

NOTE: .EJEC is an acceptable abbreviation of this pseudo-op.

Example

The source code for this example is:

MOV 0.1 _
.EJECT ;Start a new listing page.
LWLDA 2,0,1

The assembly listing for this code is

SOURCE: .MAIN MASM 08.00.00.00 18-JAN-87 16:21:08 PAGE 1
23 000004 105000 MOQ 0,1
24 .EJECT ;Start a new listing page.
SOURCE: .MAIN MASM 06.00.00,00 18-JAN-87 16:21:08 PAGE 2
01 000005 131771 LWLDA 2,0,1
02 00000000000
Reference

“Assembly Listing” - Chapter 4

093-000242 Licensed Material--Property of Data General Corporation 7-55

Pseudo-Op Dictionary

Define alternative source code for ELSE
conditional assembly

Syntax
.ELSE

Purpose

The .ELSE pseudo-op defines source code for MASM to assemble if a conditional expression
is false. You must use .ELSE in conjunction with one of the .IF pseudo-ops.

Use the .ENDC pseudo-op to terminate the conditional assembly source lines.

The conditional portion of your source module has the following format:

.IFx[abs-expr ;one of the four conditional pseudo-ops
:(.IFE, .IFG, .IFL, or .IFN).

;Assemble these source lines if abs-expr
. isatisfies the .IFx condition.
.ELSE

;Assemble these source lines if abs-expr
;does not satisfy the .IFx condition.
.ENDC ;Terminate conditional portion of source.
Example
01 00000000003 A=3
02 00000000000 .IFE A
03 100 ;Assembled if A equals O.
04 .ELSE
05 000000 00000000200 200 ;Assembled if A does not equal O.
086 .ENDC
References

IF pseudo-op description — Chapter 7
“Loops and Conditions in Macros” ~ Chapter 5
“Repetitive and Conditional Assembly”~ Chapter 6

7-56 Licensed Material--Property of Data General Corporation 093-000242

AT

Pseudo~Op Dictionary

Set global data parameters ENABLE

Syntax
WORD
enasien SWORD 4y | pore |
DWORD
Purpose

The .ENABLE pseudo-op allows you to specify a global data placement mode for your source
module. It also allows you to specify how the Macroassembler should resolve addresses in
memory reference instructions (MRIs).

In the first argument, you direct the assembler either to store data in double words (32-bit
storage), or to truncate data values and store them in single words (16-bit storage). In the
latter case, you can have the assembler check the high-order bits before truncating them.

The following descriptions summarize the values you can place in the first argument of

.ENABLE:

DWORD Store the results of expressions in double words (32 bits each). This
is the default global data placement mode.

WORD Truncate the results of expressions and store them in single words (16
bits each). The assembler does not return an error if any of the
high~order (most significant) 16 bits of the result are set.

SWORD Truncate the results of expressions, and store them in single words (16
bits each). The assembler returns an error if the high—order 17 bits
are not all zeros or ones. That is, the assembler returns an error if
each bit in the first word is not equal to the sign bit of the second
word.

UWORD Truncate the results of expressions and store them in single words (16

bits each). The assembler returns an error if any of the high-order
16 bits are set.

Note that the global data placement mode applies only to expressions that appear as data
statements. The assembler does not use the global mode to evaluate expressions that appear in
other types of statements.

You can override the global data placement mode at any time by issuing one of the following
pseudo-ops: .DWORD, .WORD, .SWORD, .UWORD. “Data Placement” in Chapter 6
contains more information about these four pseudo-ops.

The second argument to .ENABLE tells the assembler how to resolve addresses that you use
in memory reference (MRI) instructions. When you pass an address in the displacement field
of a memory reference instruction, the assembler can resolve that address either with or
without reference to the program counter (PC relative or absolute addressing).

093-000242 Licensed Material--Property of Data General Corporation 7-57

Pseudo-Op Dictionary

.ENABLE (continued)

In PC relative addressing, MASM calculates the address as an offset from the location of the
memory reference instruction (the value of the program counter). Thus, MASM passes Link
the relocation bases of both the address and the current partition (the partition containing the
memory reference instruction).

In absolute addressing, MASM calculates the referenced address without regard to the
location of the memory reference instruction. In this case, MASM passes Link the relocation
base of the address only; not the base of the memory reference instruction.

To indicate one of these addressing modes, pass either PCREL or ABS as the second
argument to .ENABLE. The following descriptions summarize their meanings:

PCREL MASM calculates each address you supply to a memory reference
instruction as an offset from the location of that instruction. That is,
MASM resolves the address relative to the current program counter.
PCREL is the default value for MRI address resolution.

ABS MASM calculates each address you supply to a memory reference
instruction without regard for the value of the program counter.

Note that the assembler does not use the PCREL or ABS declaration when you explicitly
indicate a value for the addressing index (mode) in the memory reference instruction.

“Resolving Locations in MRI Instructions” in Chapter 3 provides more information about
absolute and PC relative addressing,.

In general, you want 32-bit data placement and PC relative external references in memory
reference instructions. Thus, DWORD and PCREL are the global settings at the beginning of
each assembly.

When you issue the .ENABLE pseudo-op, you need not supply an argument for both giobal
settings; only the one(s) you want to modify. If you supply only one argument, MASM sets
that global mode accordingly but does not alter the other setting. For example:

.ENABLE ABS

This statement sets the MRI address resolution mode to ABS but does not alter the global
data placement mode.

Examples
The first example illustrates the use of .ENABLE to alter data storage placement.
01 000000 00000000001 1 ;By default, MASM stores data in
02 000002 00000000002 2 ;double words (DWORD mode). Set
03 .ENABLE WORD ;global data placement mode
04 000004 000003 3 ;to single word.
03 000005 000004 4
06 000006 Q00000000086 .DWORD & ;Store the value 5 in two words.
07 000010 0000086 6 :Global mode remains set to single
08 ;word

7-58 Licensed Material-—-Property of Data General Corporation 093-000242

o

B !

.ENABLE (continued)

Pseudo-Op Dictionary

The second example shows how .ENABLE can direct the assembler to evaluate external
references in memory reference instructions with or without respect to the program counter.

01 000000 101771

02 00000000011
03

04

05 000003 105771

06 00000000011
07

08

09 000006 131771

10 00000000002
11

12

13

14

15 000011 00000000005

References

“Data” — Chapter 2

“Data Placement” - Chapter 6
“Expressions” — Chapter 2
“Relocation Bases” - Chapter 3

LWLDA 0,A

.ENABLE ABS
LWLDA 1,A

LWLDA 2,2,1

;MASM resolves address A relative

1to the program counter, by default.
;Set the global mode to absolute
;addressing. MASM now resolves A

;without regard to the value
;of the program counter.
;Since this MRI instruction

;explicitly includes an addressing
;index (1), MASM does not use

;the current .ENABLE setting to
;resolve the referenced address.

“Resolving Locations in MRI Instructions” — Chapter 3

093-000242 Licensed Material--Property of Data General Corporation 7-538

Pseudo-Op Dictionary

End-of-program indicator END

Syntax
.END<[expr>

Purpose

Use the .END pseudo-op to terminate your source program. The assembler does not process
any source code that follows the .END pseudo-op; so, this should be the last statement in
your source.

If you assemble several modules at once, only the last one should include a .END (use .EOF
to end the other modules). If you do not include an .END pseudo-op at the end of the last
module on the assembly command line, MASM supplies one for you (without an argument).

The optional expr argument specifies a starting address for execution of your program file.
You must supply a start execution address in at least one of your source modules or Link
returns an error.

Example

.TITLE MOD1

.NREL
START: SUB 0,0
. ;End of module MOD1. Begin execution
.END START ;of program at location START.
References

AOS/VS Link and Library File Editor (LFE) User’s Manual - end blocks
“Expressions” — Chapter 2
“File Termination” — Chapter 6

7-60 Licensed Material--Property of Data General Corporation 093-000242

Pseudo-Op Dictionary

End of conditional or repetitive assembly ENDC

Syntax
.ENDC

.ENDC[Inumeric-symbol

Purpose

The .ENDC pseudo-op terminates a group of source lines whose assembly is repetitive (.DO)
or conditional (.IFE, .IFG, .IFL, .IFN).

If the optional numeric-symbol is supplied, the .ENDC terminates assembly of lines following
the .DO or .IFx and suppresses the assembly of all lines following the .ENDC up to the
occurrence of numeric-symbol enclosed in square brackets.

In effect, the .ENDC with numeric-symbol provides a mechanism for if-then-else conditional
assembly constructs. However, AOS/VS MASM provides an explicit .ELSE pseudo-op, whose
use is recommended. .ENDC with numeric~symbol is provided primarily for compatibility
with other Data General assemblers.

Example
.DO 2
1 ; These lines are assembled twice
2
.ENDC
.IFN 1
1 ; This is assembled
.ENDC
IF 1
2 ; This is assembled
.ENDC L1
3 ; This is not assembled
[L1]

093-000242 Licensed Material--Property of Data General Corporation 7-61

Pseudo-Op Dictionary

Define an external entry

Syntax

.ENTCnumeric-symbol

Purpose

ENT

The .ENT pseudo-op declares numeric-symbol as a symbol that you define in this source

module but that vou can refer to from separately assembled modules.

You must define a numeric-symbol in the module containing the .ENT declaration (see

“Numeric Symbols” in Chapter 2). This numeric symbol must be unique among all external
symbols you define in the modules you intend to link together. If the symbol is not unique,
Link issues a message indicating multiply defined entries.

To refer to numeric-symbol from a separately assembled module, use one of the following
pseudo-ops:

EXTD

Example

.TITLE
.ENT

.ZREL
PTR: TABLE

+NREL
TABLE: O

.END

.TITLE
.EXTD
.NREL
LWLDA

.END

References

PTR

B
PTR

0,@PTR

.EXTN .EXTL

;PTR is defined in this module and
;can be referred to by other modules.

;Separately assembled module B.
:PTR is defined in another module.

:Reference to externally defined symbol PTR.

“Intermodule Communication” — Chapter 6
“Numeric Symbols” — Chapter 2

7-62

Licensed Material--Property of Data General Corporation

093-000242

A

Pseudo-Op Dictionary

Define an overlay entry symbol

Syntax

.ENTOUnumeric-symbol

Purpose

ENTO

The .ENTO pseudo-op is used when a 16-bit program is using overlays but is not using the
AOS or AOS/VS 16-bit resource manager. When linked, numeric-symbol has a value which
is a combination of the overlay area and overlay number of the module and partition it was
defined in. Other modules can refer to numeric-symbol as an external (.EXTN) and use its
value to load the overlay it was defined in.

Note that AOS and AOS/VS allow both shared and unshared overlays. So that

numeric-symbol is associated with the correct overlay, the .ENTO statement must follow the
corresponding data placement pseudo-op.

Example:

.TITLE
.NREL
.ENTO
.END

.TITLE
.EXTN
«NREL
LDA
ADC
?0VLOD
.END

093-000242

OVERA

B
OVERA
1
0,=0VERA
1,1
; ADS system call

Licensed Material--Property of Data General Corporation

7-63

Pseudo-Op Dictionary

Explicit end—offile EOF, EOT

Syntax
.EOF

Purpose

The .EOF pseudo-op provides the assembler with an explicit end—-of-file indicator. This
pseudo-op indicates the end of one source module, but implies that more source modules
follow in the current assembly. Thus, use .EOF to terminate each source module in the
MASM command line, except the last one (the last module should end with .END).

If you do not include .EOF pseudo-ops in your source modules, MASM automatically
supplies them for you.

NOTE: .EOT is functionally equivalent to .EOF. It is provided for compatibility reasons.
Example
.TITLE A ;The first piece of source code
.NREL jresides in file A. R
START: .
.EOF ' ;End of file A but not of source code.

.NREL :The second part of the source
. ;code resides in file B.

.END éTART ;End of current assembly. Start program
;execution at location START.

The MASM command line that assembles these two source modules is
) XEQ MASM A B)

Reference

“File Termination” — Chapter 6

7-64 Licensed Material-—Property of Data General Corporation 093-000242

Pseudo-Op Dictionary

Report a user—defined error message .ERROR

Syntax

.ERROR[Jtext

Purpose

The .ERROR pseudo-op directs the macroassembler to treat the source line on which it
appears as if it contained an error. Thus, a user-defined error message may appear in the

error file.
Example
.DO .ARGCT<4
.ERROR Too few arguments passed to macro
.ENDC

093-000242 Licensed Material--Property of Data General Corporation 7-65

Pseudo-Op Dictionary

AT

Set macro escape character ESC

Syntax
.ESC

.ESC[Jabs-expr

Purpose

The .ESC pseudo-op changes the macro escape character. The default macro escape
character is an underscore (_}, ASCII code 137g. Within the macro definition string the
escape character directs the assembler to store the next character without interpreting it. See
the “Macro Definition” section of Chapter 5 for examples of the macro escape character.
.ESC alone disables the macro escape character (giving it the value -1). .ESC abs-expr sets
the macro escape character to the value of abs-expr. Abs—expr must be within the range of
printable ASCII values.

You must take care when setting the macro escape character within a macro not to set it to
current value using the single ASCII character to octal conversion format:

Wrong Correct
_/'i.‘-~

.MACRO SET_ESC .MACRO SET_ESC

.ESC "~ .ESC

% .ESC "~

%
.ESC "~ LESC "~
SET_ESC SET_ESC

The first example causes an error because the second tilde (-) is ignored and “ by itself does
not produce a valid 8-bit value. In the second example the macro escape character is
disabled. The tilde (-) is not ignored this time as it is no longer the current macro escape
character. “- produces a valid 8-bit value.

7-66 Licensed Material--Property of Data General Corporation 093-000242

Pseudo-Op Dictionary

Define a chain-link external symbol EXTC

Syntax
EXTCOnumeric-symbol

Purpose

Declares numeric-symbol to be a chain-link external. Each data location that refers to
numeric-symbol will receive the address of the previous reference to numeric-symbol. In
effect, chain-link externals may be used to build single-linked backwards lists of memory
locations.

If numeric-symbol is declared as a chain-link external in more than one module, the
backwards list will run through all modules. Note that no corresponding entry declaration
should be made for numeric-symbol. All modules must declare it as a chain-link external, or
Link will report an error.

Example
.TITLE A
.EXTC X
X ; First reference to X
X ; value is the address of first reference to X
.END
.TITLE B
.EXTC X
X ; Value is the address of second reference to X
.END

093-000242 Licensed Material--Property of Data General Corporation 7-67

Pseudo-Op Dictionary

Define an external displacement EXTD, .EXTDA,
(8-bit) reference EXTDAN, .EXTDAW

Syntax:

.EXTDL_Jnumeric-symbol
LEXTDAOnumeric-symbol
.EXTDANJnumeric-symbol

.EXTDAWLInumeric-symbol

Purpose:

The .EXTDx pseudo-ops declare numeric~symbol as a symbol whose definition appears in a
separately assembled module. You must declare numeric-symbol with a .ENT or similar
pseudo-op in the module that defines it. You cannot redefine numeric-symbol as any other
kind of symbol in the current assembly.

A symbol declared with the .EXTDx pseudo-ops is normally used in an 8-bit memory
reference field of an instruction, but larger memory reference fields can also be used with o
.EXTD symbols.

The alternate forms of the .EXTD pseudo-op allow you to optionally specify the size of the
data item addressed by numeric-symbol. The .EXTDAN specifies that the data item is 16
bits, while .EXTDAW specifies 32 bits.

Example

7-68

.EXTD X
LDA 0,X
ELDA 0,X
Licensed Material--Property of Data General Corporation 093-000242

Pseudo-Op Dictionary

Define an 8-bit data external EXTDD

Syntax:
‘ .EXTDDInumeric-symbol

Purpose:

The .EXTDD pseudo-op declares numeric-symbol as a symbol whose definition appears in a
separately assembled module. You must declare numeric-symbol with a .ENT or similar
pseudo-op in the module that defines it. You cannot redefine numeric-symbol as any other
kind of symbol in the current assembly.

Symbols declared with the .EXTDD pseudo-op resolve to a constant, not an address. This
distinction is important to MASM in how it relocates numeric-symbol. Thus, if you define an
entry symbol in an assignment statement as -1, other modules, when referring to that symbol,
should use the .EXTDD, .EXTND or .EXTLD pseudo-ops.

Example

.EXTDD X

ANDI X,0

093-000242 Licensed Material--Property of Data General Corporation 7-69

5

Pseudo-Op Dictionary

Define a long (32-bit) EXTL, .EXTLA,
external reference EXTLAN, .EXTLAW

Syntax:
.EXTLCnumeric-symbol

.EXTLAInumeric-symbol
EXTLAN Inumeric-symbol

.EXTLAW Inumeric~symbol

Purpose:

The .EXTLx pseudo-ops declare numeric-symbol as a symbol whose definition appears in a
separately assembled module. You must declare numeric-symbol with a .ENT or similar
pseudo-op in the module that defines it. You cannot redefine numeric-symbol as any other
kind of symbol in the current assembly.

A symbol declared with the .EXTLx pseudo-ops is normally used in a 31-bit memory
reference field of an instruction. S

The alternate forms of the .EXTL pseudo-op allow you to optionally specify the size of the
data item addressed by numeric-symbol. The .EXTLAN specifies that the data item is 16
bits, while .EXTLAW specifies 32 bits.

Example

.EXTL X
.EXTLAN XN
.EXTLAW XW

LNLDA 0,X
LWLDA 0,X
LNLDA 0,XN
LWLDA 1,Xw

7-70 Licensed Material--Property of Data General Corporation 093-000242

Pseudo-Op Dictionary

Define a 32-hit data external - EXTLD, .EXTG

Syntax:
EXTLB Inumeric-symbol

.EXTGCInumeric~-symbol

Purpose:

The .EXTLD and .EXTG pseudo-ops declare numeric-symbol as a symbol whose definition
appears in a separately assembled module. You must declare numeric-symbol with a .ENT or
similar pseudo-op in the module that defines it. You cannot redefine numeric-symbol as
any other kind of symbol in the current assembly.

Symbols declared with the .EXTLD pseudo-op resolve to a constant, not an address. This
distinction is important to MASM in how it relocates numeric-symbol. Thus, if an entry
symbol is defined in an assignment statement as -1, other modules, when referring to that
symbol, should use the .EXTDD, .EXTND or .EXTLD pseudo—-ops.

Symbols declared with the .EXTG pseudo-op can be addresses or constants, and are treated
as 32-bit integers, disregarding all address range checking.

Example

LEXTLD X

WANDI X,0

093-000242 Licensed Material--Property of Data General Corporation 7-71

Pseudo-Op Dictionary

Define an external narrow EXTN, .EXTNA,
(16—hit) reference EXTNAN, .EXTNAW

Syntax:
.EXTNCInumeric~symbol

.EXTNAJnumeric-symbol
.EXTNANJnumeric-symbol

.EXTNAW Jnumeric-symbol

Purpose:

The .EXTNx pseudo-ops declare numeric-symbol as a symbol whose definition appears in a
separately assembled module. You must declare numeric-symbol with a .ENT or similar
pseudo—op in the module that defines it. You cannot redefine numeric~symbol as any other
kind of symbol in the current assembly.

A symbol declared with the .EXTNx pseudo-ops is normally used in a 15-bit memory
reference field of an instruction, but larger memory reference fields can also be used with P
.EXTN symbols.

The alternate forms of the .EXTN pseudo-op allow you to optionally specify the size of the
data item addressed by numeric-symbol. The .EXTNAN specifies that the data item is 16
bits, while .EXTNAW specifies 32 bits.

Example

.EXTN X
.EXTNAN XN
.EXTNAW XW

XNLDA
XWLDA
XNLDA
XWLDA

>

H OoORr O
>
€ Z

7-72 Licensed Material--Property of Data General Corporation 093-000242

\

Pseudo-Op Dictionary

Define a 16-hit data external EXTND

Syntax
.EXTND[Onumeric-symbol

Purpose

The .EXTND pseudo-op declares numeric-symbol as a symbol whose definition appears in a
separately assembled module. You must declare numeric-symbol with a .ENT or similar
pseudo-op in the module that defines it. You cannot redefine numeric-symbol as any other
kind of symbol in the current assembly.

Symbols declared with the .EXTND pseudo-op resolve to a constant, not an address. This
distinction is important to MASM in how it relocates numeric-symbol. Thus, if an entry
symbol is defined in an assignment statement as —1, other modules, when referring to that
symbol, should use the .EXTDD, .EXTND or .EXTLD pseudo-ops.

Example

.EXTND X

ANDI X,0

083-000242 Licensed Material-—-Property of Data General Corporation 7-73

Pseudo-Op Dictionary

Treat undefined symbols as externals EXTU
Syntax
.EXTU
Purpose
This pseudo-op causes the assembler to treat all symbols that are undefined after pass 1 as il
they were externals. In effect, MASM assumes that all undefined symbols will be defined in
other modules.
NOTE: We don’t suggest you use this pseudo-op. It is provided primarily for compatibility
with other Data General assemblers.

7-74 Licensed Material-—-Property of Data General Corporation 093-000242

Pseudo-Op Dictionary

Force—link a module from a library FORCE

Syntax
.FORCE

Purpose

The .FORCE pseudo-op directs Link to unconditionally link this object file from a library into
your program file.

Normally, Link includes an object module from a library only if that file satisfies an external
reference appearing in another module. However, if you use .FORCE in a module that resides
in a library, that module will be linked whenever the library name occurs in a Link command
line.

NOTE: .FORC is an acceptable abbreviation of this pseudo-op.

Example

.TITLE SQUARE ;SQUARE is part of a library. Whenever the

.FORCE ;library name appears in a Link command line,
(N .ENT CUBE ;module SQUARE will be linked into the program
.NREL ;file. Thus, the program will have access to

;entry CUBE, even if that symbol is not
;referred to.
CUBE:
.END

Reference
AOS/VS Link and Library File Editor (LFE) User’s Manual - libraries

093-000242 Licensed Material--Property of Data General Corporation 7-75

Pseudo-Op Dictionary

T
Fa £y

Create data word with word relocation .GADD

Syntax:

.GADD[Jnumeric-symbol[Cexpression

Purpose:

This pseudo—op generates a one-word data item whose contents are the 16-bit sum of the
value of numeric-symbol and the expression. Numeric-symbol is assumed to be an
external, and expression is assumed to be absolute.

This pseudo-op is primarily for the use of 16-bit programs, and is provided for compatibility
with other Data General assemblers. AOS/VS MASM permits you to write

.WORD numeric-symbol + expression

which is equivalent to .GADD.

Example

.EXTN X
Ll: .GADD X,1B0

LDA 1,L1

7-76 Licensed Material--Property of Data General Corporation 093-000242

Pseudo-Op Dictionary

Generate gate entry with ring field

Syntax

.GATE[Dnumeric-symbolJexpression

Purpose

GATE

The .GATE pseudo-op permits you to initialize entries for MV/Family hardware gate arrays.

Numeric-symbol can be any label or external address, and expression is an absolute

expression giving the highest ring number that the gate entry is valid for. (The ring number
must be shifted into bits 1-3.) Link will then remove the ring from numeric-symbol’s address
and replace it with the ring in expression.

Example
.EXTL
.GATE
.GATE
.NREL
LABEL:
093-000242

GATEE

GATEE, 7S3
LABEL, 683

1

Licensed Material--Property of Data General Corporation

7-77

Pseudo-Op Dictionary

Set the current location counter .GLOC

Syntax
.GLOC[Jexpression

Purpose

The .GLOC pseudo-op sets the location counter to the value and relocation base given by the
expression. If expression is absolute, data following the .GLOC is absolute. If expression is
relocatable, data following the .GLOC is relocatable relative to the base of the expression.

In AOS/VS MASM, this pseudo-op is the functional equivalent of the .LOC pseudo-op
directive. It is provided primarily for compatibility with other Data General assemblers.

Example

.EXTN X

.GLOC X+5

7-78 Licensed Material-—-Property of Data General Corporation 093-000242

i "-'s_

—

Pseudo-Op Dictionary

Jump ahead in conditional assembly

Syntax

.GOTO Jnumeric-symbol

Purpose

.GOTO

This pseudo—-op suppresses the assembly of lines until MASM encounters an occurrence of
numeric-symbol inside brackets.

NOTE: We do not suggest you use this pseudo-op.

Example

LDA
STA

.GOTO

LDA
STA

[LABEL] LDA

093-000242

0,1,2 ; Assembled instruction
2,1,0 ; Assembled instruction
LABEL

1,1,1 ; Unassembled instruction
2,2,2 ; Unassembled instruction
1,1,1 ; Assembly resumes

Licensed Material--Property of Data General Corporation

7-79

Pseudo-Op Dictionary

Create data word with GREF relocation .GREF

Syntax

.GREFOnumeric-symbol[Jexpression

Purpose

The .GREF pseudo-op is similar to the .GADD pseudo-op, the only difference being that the
high—order bit (bit 0) of the expression is preserved. In other words, .GREF performs a
15-bit addition between numeric-symbol and expression, while .GADD performs a 16-bit
addition.

This pseudo-op is for use primarily in 16-bit programs, and is provided for compatibility with
other Data General assemblers.

Example
.EXTN X
Li: .GREF X,1B0+5 ; Set indirect bit in data word
; which will cause a second level
. ; of indirection
LDA 0,@Ll

7-80 Licensed Material--Property of Data General Corporation 093-000242

A
e

o~

Pseudo-Op Dictionary

Perform conditional assembly IFE, IFG, .IFL, .IFN

Syntax
JFEJabs-expr

JFGCjabs-expr
JFLCabs~expr
.IFNJabs-expr

Purpose
These pseudo-ops

direct MASM to either assemble or bypass portions of your module on the

basis of abs-expr. The Macroassembler assembles the source lines following an .IF
pseudo-op if the value of abs—expr satisfies the condition defined by that pseudo-op. If the
value of abs-expr does not satisfy that condition, MASM assembles the source lines following
the .ELSE pseudo-op, if one is present.

Abs-expr must be an absolute expression.

The four .IF pseudo-ops define the following conditions:

JIFE[Jabs-expr
JIFGOabs-expr
JFLJabs-expr
IFNabs-expr

Assemble if abs—-expr equals 0
Assemble if abs—expr is greater than 0
Assemble if abs-expr is less than 0

Assemble if abs-expr does not equal 0

You must terminate the conditional assembly lines with the .ENDC pseudo-op. Thus, the
conditional portion of your module has the general form:

.IFxDabs-expr ;0ne of the four conditional pseudo-ops

;(.IFE, .IFG, .IFL, or .IFN).

;Assemble these source lines if abs-expr
;satisfies the .IFx condition.

.ENDC ;Terminate conditional assembly.

093-000242

Licensed Material--Property of Data General Corporation 7-81

Pseudo-Op Dictionary

AFE, .IFG, .IFL, .IFN (continued)

If you include the optional .ELSE pseudo-op, your source code will appear as follows:
.IFxOabs-expr ;0ne of the four conditional pseudo-ops
; (.IFE, .IFG, .IFL, or .IFN).

;Assemble these source lines if abs-expr
;satisfies the .IFx condition.

.ELSE

;Assemble these source lines if abs-expr
;does not satisfy the .IFx condition.
.ENDC ;Terminate conditional portion of source.

You can nest conditional pseudo-ops to any reasonable depth (at least 3,000, levels). When
nesting .IFs, be sure the innermost .IF corresponds to the innermost .ENDC, etc.

Note that each .IF condition is a form of a .DO statement (if we ignore the possibility of an
.ELSE block). For example, the statement .IFE A is equivalent to .DO A==0. Both direct
MASM to assemble the following code once if A equals 0.

In the value field of the assembly listing, the assembler places a 1 if abs-expr satisfies the
pseudo—op condition and 0 if it does not satisfy the condition.

Examples
01 00000000000 A=0
02 00000000001 .IFE A ;A equals O so MASM assembles the
03 000000 00000000100 100 ;conditional portion of the module.
04 000002 00000000200 200
05 .ENDC ;End of conditional.
01 Q0000000000 A=0
02 00000000000 .IFG A ;A is not greater than 0 so MASM
03 100 ;assembles the .ELSE portion of the
04 200 ;conditional
05 .ELSE
08 000000 00000000300 300
07 000002 00000000400 400
08 .ENDC ;End of conditional.
References

“ Absolute Expressions” — Chapter 3
“Loops and Conditionals in Macros” — Chapter §
“Repetitive and Conditional Assembly” — Chapter 6

7-82 Licensed Material-—Property of Data General Corporation 093-000242

Pseudo-Op Dictionary

Create a data word with call relocation KCALL

Syntax
KCALL[Onumeric-symbol]

Purpose

The .KCALL pseudo-op generates one data word with a value of 60135 and call relocates it
relative to numeric-symbol, if present. Numeric-symbol must be an external (.EXTN)
symbol, and should resolve to a .PENT symbol.

.CALL, along with .TARG, generates call and target data words for using the AOS and
AOS/VS 16-bit resource manager. The Link utility resolves the contents of call and target
words based on the call type and the program’s overlay structure. See the AOS/VS Link and
Library Fiie Editor (LFE) User’s Manual for a detailed discussion of resource calls.

Example
.EXTN P
' ' .KCALL P ; ?KCALL resource call word
.TARG 0,P i ?KCALL resource target word

093-000242 Licensed Material--Property of Data General Corporation 7-83

Pseudo-Op Dictionary

Begin listing page with Data General LCNS
proprietary header

Syntax
.LCNS

Purpose

The .LCNS pseudo-op directs the assembler to add the Data General proprietary software
notice to the top of each page of the listing. This pseudo-op is for use by Data General
personnel.

7-84 Licensed Material--Property of Data General Corporation 093-000242

Pseudo-Op Dictionary

Set the current location counter LOC

Syntax
LOC[Dexpr]

Purpose

The .LOC pseudo-op sets the current location counter to the value and relocation base given
by expr. The location counter is an assembler variable that holds the address of the next
memory location MASM will assign.

The argument you supply to .LOC can be any legal assembler expression. If you do not
supply an argument, MASM returns an error.

As an example, if expr resolves to an absolute value, then the assembler sets the current
location counter to that value and subsequent addresses are not relocatable (they are

absolute).
Value
'/,-_ You can use .LOC as a value symbol, in which case it has the value and relocation property
" of the current location counter.

For example, using .PUSH and .POP, you can save and restore the value and relocation base
of the location counter as follows:

.PUSH .LoC ;5ave the value and reslocation base
;of the location counter on the stack.

.LOC .POP ;8et the value and relocation base of
;the location counter equal to the entry
;on the top of the stack.

Note that the .LOC and period (.) value symbols are identical.

093-000242 Licensed Material--Property of Data General Corporation 7-85

Pseudo-Op Dictionary

.LOC (continued)

Example
01 00000000000 .NREL 6] ;Unshared code partition (NREL)
02 000000 UC 00000000001 N: 1
03 000002 UC 00000000002 2
04 000004 UC (00000000003 3
05 00000000100 .Loc 100 ;Set the location counter to
06 000100 00000000004 4 ;absolute location 100.
07 000102 00000000005 5
08 000104 00000000006 6
0g 00000000050 UC .LOC N+50 ;Set the location counter to
10 000050 UC 00000000007 7 ;the relocation base of N
11 000052 UC 00000000010 10 ; (unshared NREL code) and
12 000054 UC 00000000011 11 ;start assigning locations
13 ;at the 50th address after N.
14
References

“ Assigning Locations” — Chapter 3
“Expressions” — Chapter 2
“Location Counter” — Chapter 3

7-86 Licensed Material--Property of Data General Corporation 093-000242

Pseudo-Op Dictionary

Create a literal pool LPOOL

Syntax
.LPOOL

Purpose

This pseudo-op directs the assembler to create a literal pool of all the currently outstanding
literals. The pool is created in the partition and the location where the .LPOOL pseudo-op
occurs. Make sure that the literal pool is not in the path of execution.

NOTE: .LPOO is an acceptable abbreviation of this pseudo-op.

Example
.NREL
LDA 1,=2 ; 2 goes into literal pool
LDA 1,=. ; Value of . goes into literal pool
RTN
.LPOOL ; Value of 2 and . go here

093-000242 Licensed Material--Property of Data General Corporation 7-87

Pseudo-Op Dictionary

Define a macro MACRO

Syntax
.MACROnumeric-symbol
macro-definition-string
%

Purpose

The .MACRO pseudo-op defines numeric-symbol as the name of macro-definition-string.
Macro-definition—string is one or more source lines that you use repeatedly in your module.
After defining the macro, you simply insert numeric-symbol in your source module, and the
assembler substitutes macro-definition-string.

When defining a macro, you must terminate the macro definition string with the percent
character (%). % must appear in the first column of its own source line.

Chapter S provides a complete discussion of the MASM macro facility.

NOTE: .MACR is an acceptable abbreviation of this pseudo-op.

Example
0ol 00000000000 . NREL o]
02 .MACRO TEST :Define macro TEST.
03 "1 ;:Macro definition consists of 3
04 "2 ;data statements that get their
05 “3 ;values from the first 3 arguments
06 % ;passed to TEST
o7
08
09 TEST 4,5,6 ;Call TEST with 3 arguments.
10 000000 UC 00000000004 4 ;Macro definition consists of 3
11 000002 UC 00000000005 5 :data statements that get their
12 000004 UC 000000000086 6 ;values from the first 3 arguments
13
14 TEST 0,1,2 ;Call TEST with 3 more arguments.
15 000006 UC 00000000000 o] ;Macro definition consists of 3
16 000010 UC 00000000001 1 ;data statements that get their
17 000012 UC 00000000002 2 ;values from the first 3 arguments
18
19

References

“Macros” — Chapter 5
“Numeric Symbols” — Chapter 2

7-88 Licensed Material--Property of Data General Corporation 093-000242

T

.

Pseudo-COp Dictionary

Indicate macro usage MCALL

Value

The .MCALL pseudo-op is a value symbol. .MCALL has the value 1 if the macro containing
it was called previously on this assembly pass, and the value 0 if this is the first call to that
macro on the current pass. Thus, you generally use .MCALL when you want the assembler
to use one macro expansion the first time a macro is called and a different expansion for
subsequent calls to that macro.

If you use .MCALL outside a macro, its value is -1.

Example

01 .ZREL
02 000000 ZR 00000000100 TABLEl: .BLK 100
03 000100 ZR 000C0000100 TABLE2: .BLK 100
04 000200 ZR OQOCO0O0O00000C ZR LOC1: TABLE1
058 000202 ZR 00000000100 ZR LoC2: TAELE2
(o] -]
07 00000000000 .NREL Q
08
09 .MACRO MC ;Define macro MC.

(f"\ 10 .IFE .MCALL ;0n the first call to macro MC,

3 11 LDA 0,L0C1 ;assemble the first LDA instr.
12 .ELSE ;O0n subsequent calls to macro MC,
13 LDA 0,L0C2 ;assemble the second LDA instr.
14 .ENDC iEnd of conditional.
15 % ;End of macro definition.
16
17
18 MC ;First call to MC (.MCALL equals 0).
19 00000000001 .IFE .MCALL ;0n the first call to macro MC,
20 000000 UC 020200 ZR LDA 0,L0C1 ;assemble the first LDA instr.
21 .ELSE ;on subsequent calls to macro MC,
22 LDA 0,L0C2 ;assemble the second LDA instr.
23 .ENDC ;End of conditional.
24
25 MC ;Second call to MC (.MCALL equals 1).
28 Q0000000000 .IFE ,MCALL ;on the first call to macro MC,
27 LDA 0,L0C1 ;assemble the first LDA instr.
28 .ELSE ;0n subsequent calls to macro MC,
29 000001 UC 020202 ZR LDA 0,L0C2 ;assemble the second LDA instr.
30 .ENDC ;End of conditional.
31
Reference

“Macro—Related Pseudo-Ops” - Chapter 5
“Macros” — Chapter 5

093-000242 Licensed Material--Property of Data General Corporation 7-89

Pseudo-Op Dictionary

Place literal pool in NREL NLIT

Syntax
NLIT

Purpose

The .NLIT pseudo-op directs the assembler to place the default literal pool in whatever
partition is active at the end of the assembly pass. Normally, the default literal pool is placed
in ZREL. This pseudo—op cannot be used subsequent to an actual literal deflinition, and is
usually placed at the beginning of the source file.

Example
.TITLE A
.NLIT
.NREL 1
LDA 0,=2 ; 2 goes into literal pool
.END ; Literal pool is placed in NREL 1

7-30 Licensed Material--Property of Data General Corporation 093-000242

Pseudo-Op Dictionary

Inhibit or enable the listing of .NOCON
conditional lines

Syntax
.NOCON[Jabs—expr

Purpose

The .NOCON pseudo-op either inhibits or permits the listing of the conditional source module
code that does not meet the conditions given for assembly. That is, .NOCON either inhibits or
enables the listing of false conditionals. If the value of abs-expr does not equal zero, the
assembler inhibits listing; if the value of abs-expr equals zero, the assembler lists all
conditionals. Abs-expr must be an absolute expression.

.NOCON does not affect the conditional portions of the source program that MASM
assembles. Again, this pseudo-op influences only the listing of conditionals that are false
{those .DOs and .IFs that MASM will not assemble).

By default, MASM lists all conditionals.

You can override the .NOCON pseudo-op at assembly time by using the /XPAND function
switch on the MASM command line. Refer to Chapter 8 for more information.

NOTE: .NOCO is an acceptable abbreviation of this pseudo-op.

Value

You can use .NOCON as a value symbol in your module. The value of .NOCON equals the
value of the last abs-expr you passed to .NOCON.

The default value for .NOCON is 0.

Example

Consider the following source code:

A=3

.IFE A ;False. MASM lists false

10 ;conditionals, by default.

20

30

.ENDC

.NOCON 1 ;Inhibit listing of false conditionals.
.IFE A ;False. MASM will not list this portion
40 ;of code.

50

60

.ENDC

093-000242 Licensed Material--Property of Data General Corporation 7-91

Pseudo-Op Dictionary

.NOCON (continued)

.IFN A ;True. MASM lists the assembled code
70 ;regardless of the .NOCON setting.
100

110

.ENDC

The assembly listing for this portion of code is:

01 00000000003 A=3
02 00000000000 .IFE A ;False. MASM lists false
03 10 ;conditionals, by default.
04 20
05 30
086 .ENDC
07
08 00000000001 .NOCON 1 ;Inhibit listing of false conditionals.
09
10 00000000000 .IFE A ;False. MASM won’t list this portion.
11
12 00000000001 .IFN A ;True. MASM lists the assembled code
13 000000 00000000070 70 ;regardless of the .NOCON setting.
14 000002 00000000100 100
15 000004 00000000110 110
16 .ENDC
17
18
References

“Absolute Expressions” —~ Chapter 3

“Assembly Listing” - Chapter 4

“Command Line Switches” (/XPAND) - Chapter 8§
“Repetitive and Conditional Assembly” - Chapter 6

7-92 Licensed Material-—Property of Data General Corporation 093-000242

Pseudo-Op Dictionary

Inhibit or enable the listing source NOLOC
lines without location fields

Syntax

NOLOCabs~-expr

Purpose

The .NOLOC pseudo-op directs the assembler to either inhibit or enable the listing of source
lines lacking a location field. That is, .NOLOC controls the listing of source lines that would
not have a location listed in the output. If abs-expr evaluates to a nonzero value, the
assembler inhibits listing; if abs-expr equals zero, listing occurs. Abs—-expr must be an
absolute expression.

By default, the assembler lists all source lines, whether they have location fields or not.

You can override the .NOLOC pseudo-op at assembly time by using the /XPAND function
switch on the MASM command line. Refer to Chapter 8 for more information.

NOTE: .NOLO is an acceptable abbreviation of this pseudo-op.

Value

You can use .NOLOC as a value symbol, in which case it has the value of the last abs—expr
you passed to .NOLOC.

The default value for .NOLOC is 0.

Example

Consider the following source code:

.TITLE DF ‘MASM lists all source lines,
.NREL 1 ;by default.
.TXT "ABCDEF"

.NOLOC 1 ;Inhibit listing of assembly lines
;that lack location fields.

,TXT “"GHIJKL" ;MASM only lists the first line.

LWLDA 0,x ;Listed.
.LOC .+5 ;Not listed.
x: 5 ;Listed.
.END ;Not listed.

093-000242 Licensed Material--Property of Data General Corporation 7-93

Pseudo-Op Dictionary

.NOLOC (continued)

The assembly listing for this source is:

01 .TITLE DF ;MASM lists all source lines,
02 00000000001 .NREL 1 ;by default.
03 000000 SC 040502 041504 .TXT "ABCDEF"
04 042508 000000
05
06 000004 SC 043510 044512 .TXT “"GHIJKL" ;MASM only lists the first line.
07 000010 SC 121771 LWLDA 0,X ;Listed.
08 000020 SC 00000000005 X: 5 ;Listed.
References
“Absolute Expressions” — Chapter 3
“Assembly Listing” - Chapter 4
“Command Line Switches” (/XPAND) - Chapter 8
7-94 Licensed Material--Property of Data General Corporation 093-000242

Pseudo-Op Dictionary

Inhibit or enable the macro .NOMAC
expansions

Syntax

.NOMAC[Jabs-expr

Purpose

The NOMAC pseudo-op either inhibits or permits the listing of macro expansions. If
abs—-expr does not equal zero, the assembler does not include macro expansions in the listing;
if abs—-expr equals zero, listing occurs. Abs-expr must be an absolute expression.

By default, the assembler includes all macro expansions in the listing output.

You can override the .NOMAC pseudo-op at assembly time by using the /XPAND function
switch on the MASM command line. Refer to Chapter 8 for more information.

NOTE: .NOMA is an acceptable abbreviation of this pseudo-op.

Value

You can use .NOMAC as a value symbol, in which case it has the value of the last abs-expr
you passed to .NOMAC.

The default value for .NOMAC is 0.

Examples

01 .

02
03
04
05
06
07
08
09
10
11
12
13
14
15
16

.MACRO MAC ;Define macro MAC.
5
6

MAC ;Call macro MAC. By default,
000000 00000000005 [+
000002 00000000006 6 .
;MASM lists the expansion.
00000000001 .NOMAC 1 ;Inhibit listing of macro expansions.
MAC iMASM does not list MAC’s expansion.

000010 00000000100 100 ;Assemble the value 100.

093-000242 Licensed Material--Property of Data General Corporation 7-95

o r—
ST
.NOMAC (continued)
Our second example shows how to use .NOMAC inside a macro definition string.
01 .MACRO 1INSIDE ;Define macro INSIDE.
02 2
03 3
04 .NOMAC 1 ;During expansion of macro
05 4 INSIDE, MASM does not list
06 5 ;data statements 4 and 5.
07 .NOMAC © ;Re~-enable listing of macro
08 6 ;expansions.
09 7
10 %
11
12 INSIDE ;Call to macro INSIDE.
13 000000 00000000002 2
14 000002 00000000003 3
15 00000000001 . .NOMAC 1 ;During expansion of macro
16 000010 00000000006 8 ;expansions.
17 000012 00000000007 7
18
References
“Absolute Expressions” ~ Chapter 3
“Assembly Listing” — Chapter 4 .
“Command Line Switches” (/XPAND) — Chapter 8 TN
“Listing of Macro Expansions” - Chapter 5
| i
7-96 Licensed Material--Property of Data General Corporation 093-000242

Pseudo-Op Dictionary

Pseudo-Op Dictionary

Set location counter to a default NREL partition NREL

Syntax
.NREL [[Tlexpression}

Purpose

The .NREL pseudo-op directs that subsequent data and/or code be placed in one of the
default NREL partitions, up to the next .GLOC, .LOC, .NREL, .PART or .ZREL pseudo-op.

Using .NREL, you can specify any of five predefined memory partitions. These partitions
provide for the four combinations of the data/code and shared/unshared attributes, plus a fifth
partition with the short attribute. Table 7-2 lists the NREL memory partitions and their
attributes

Table 7-2 NREL Partitions

Partition Attributes

Low Data Short, unshared, data. 1-word alignment normal base, overwrite-with-message
Unshared Data Long, unshared, data. 1-word alignment normal base, overwrite-with-message
Unshared Code Long, unshared, code, 1-word alignment normal base, overwrite-with-message
Shared Data Long, shared, data, 1-word alighment normal base, overwrite-with-message
Shared Code Long, shared, code, 1-word alignment normal base, overwrite-with-message

Short partitions are confined to the first 77777g words of the program’s address space. Long
partitions can be positioned anywhere. The shared partitions are normally write protected
during execution, so more than one process can share a single copy of the shared partitions.
The data partitions usually contain nonexecutable portions of the program. Partitions with the
code attribute usually contain both executable and nonexecutable parts of the program.

You specify which of these prefined partitions to use with the value of the expression. The
expression must be absolute, and it must have one of the values shown in Table 7-3.

083-000242 Licensed Material--Property of Data General Corporation 7-97

.NREL (continued)

Pseudo-Op Dictionary

Table 7-3 NREL Partition Numbers

Partition Number
Low Data .NREL 2
Unshared Data .NREL &

Unshared Code
Shared Data
Shared Code

.NREL 4, .NREL 0, or .NREL
.NREL 5
.NREL 7 or .NREL 1

Example
.NREL 2
L1: [¢]
.NREL 8
L2: o]
. NREL ki

LWADI 1,L2

XWADI 1,L1

; Low data

; Unshared data

; Shared code

; L1 is unshared, not write protected
; and so may be modified.

; A 18-bit displacement can be used to
; address data in NREL 2.

7-98 Licensed Material--Property of Data General Corporation

093-000242

Pseudo-Op Dictionary

Name an object file OB

Syntax

.OB[Cfilename

Purpose

The .OB pseudo-op directs the assembler to name the gobject file filename. The assembler
appends the object file extension .OB onto filename unless that name already ends in .OB,

If more than one .OB pseudo-op appears in the source, the assembler returns an error for
those source lines and names the object file after the first source module on the MASM
command line (less the .SR extension, if any, and with the new extension .OB).

if you include the /N switch in the MASM command line, directing the assembler not to
produce an object file, the assembler ignores the .OB pseudo-op.

If you specify the /O= switch on the MASM command line, the assembler overrides the .OB
pseudo-op, and the object file receives the name following the /O= switch.

NOTE: Older assembly language sources may use .RB in place of .OB. The two
pseudo-ops are interchangeable.

In summary, the assembler uses the following hierarchy to name object files:

Priority Object Fllename Description

1 (highest) /O=filename The switch on the MASM command line

2 .OBfilename Pseudo-op in the source module

3 (lowest) Default name The name of the first source module on the MASM command
line

One of the primary uses of the .OB pseudo—-op is in conditional code assembly. You can
direct the assembler to assign a name to the object file according to the evaluation of some
expression (see the example).

093-000242 Licensed Material--Property of Data General Corporation 7-99

Pseudo-Op Dictionary

.OB (continued)

Example
.IFE VAR ;If the value of VAR equals 0, MASM
.0OB SYSs1 ;names the object file SYS1.0B.
.ELSE ;O0therwise, MASM names the
.OB SYSs2 ;file SYS2.0B.
.ENDC

References

“Command Line Switches” (/N and /O=) - Chapter 8
“Object File” - Chapter 4

7-100 Licensed Material--Property of Data General Corporation 093-000242

Pseudo-Op Dictionary

Create a named relocatable memory partition PART

Syntax
.PARTJnumeric-symbol [Jattribute]

Purpose

Use the .PART pseudo-op to create a relocatable memory partition, i.e., a contiguous
portion of memory with a name and attributes. All code and data that follow .PART, up to
the next .LOC, .GLOC, .NREL, .PART or .ZREL pseudo-op, will reside in that partition.

The assembler also makes available a number of predefined relocatable partitions through the
.NREL and .ZREL pseudo-ops. These are unnamed, and are always the same. The .PART
pseudo—-op permits the creation of partitions with name numeric-symbol, and with a
user—defined combination of attributes. The attributes are:

NREL or ZREL
LONG or SHORT
UNSHARED or SHARED
CODE or DATA

r\ NORM or COMM

' ' GLOBAL or LOCAL
MESS or NOMESS

In addition, you can specify the alignment of the partition as an attribute.

Table 7-4 describes the various attribute arguments. Specify the desired attributes after the
partition name in the .PART statement. If an attribute and its converse are both omitted,
MASM uses the default for that attribute. The defaults are:

NREL, LONG, UNSHARED, CODE, NORM, GLOBAL, MESS, ALIGN=0

093-000242 Licensed Material--Praperty of Data General Corporation 7-101

Pseudo-Op Dictionary

.PART (continued)

7-102

¢

Table 7-4 .PART Attribute Arguments

Attribute Description

{

""'N_'R\EL) or ZREL An NREL partition is normally allocated memory space by Link at address

400, and above. A ZREL partition is normally allocated below address 400,

’LONé"gr SHORT A long partition can reside anywhere in memory. A short partition is
D confined to memory addresses below 100000,.

UNSHARED___i_Sr SHARED An unshared partition can be read, executed, or written to and modified. A
T shared partition is write-protected: it can not be modified. AOS/VS places
all shared partitions at higher addresses than unshared partitions.

CQ__ﬁEor DATA A code partition can contain either code or data. A data partition normally

contains only data.

NORM or COMM If two modules have code or data in the same normal partition, that code
T or data will be allocated sequential addresses in memory. If two modules
have code or data in the same common partition, that code or data will
overlay each other at the same addresses.

____G__LOBAL\Qr LOCAL A global partition's name is visible to all other separately compiled modules.

Thus all global partitions with the same name are the same partition. A
local partition’s name is not visible to other modules. Therefore, that
partition can be referred to by only that module.

ME_ES_S\Sr NOMESS Normally, Link reports an error message when two mo_dules’ data overwrite
each other. This Link warning message can be suppressed with NOMESS.

Any partition can be aligned to a particular memory boundary, e.g.,
double~word alignment, block alignment or page alignment. This alignment,

n, is given as a power of two, and the partition’s address will be a multiple

n
of 2,

If you leave a .PART partition at one point in an assembly and you want to place more data
in that partition at a later point, use a new .PART statement with the same partition name.

If you want to place code or data from separately assembled modules into the same partition
(see example, next page), use another .PART statement with the same partition name.
(Obviously, these separately assembled partitions must not have the LOCAL attribute.) When
you link these modules together, the code or data from both is placed in partition TJ. If the
partitions have the COMM attribute, the code or data from each module is placed on top of
each other. Otherwise, it is placed consecutively in the partition.

If a partition is given different attributes in two .PART statements, MASM and LINK attempt
to resolve the attributes and report an error if they cannot be resolved. The attributes are
resolved as follows:

Licensed Material--Property of Data General Corporation 083-000242

P

Pseudo-Op Dictionary

.PART (continued)

NREL and ZREL

LONG and SHORT
UNSHARED and SHARED
CODE and DATA

NORM and COMM
GLOBAL and LOCAL
MESS and NOMESS
ALIGN differences

Example
.PART TJ ALIGN=1, SHORT
:ZREL
: PART TJ ALIGN=1, SHORT

Resolved in favor of ZREL

Resolved in favor of SHORT

An error is reported

An error is reported

An error is reported

An error is reported

Resolved in favor of NOMESS

Resolved in favor of the higher alignment

; This is code in partition TJ

; This is code in ZREL

; This is also code in partition TJ

093-000242 Licensed Material--Property of Data General Corporation

7-103

Pseudo-Op Dictionary

Number of assembly pass PASS

Value

The Macroassembler scans your source code twice during the assembly process. Each scan is
called a pass.

The .PASS pseudo-op is a value symbol that returns the current assembly pass number.
.PASS equals 0 on assembly pass one and 1 on pass two.

Example

The following example defines parameters A, B, and C for later use in the assembly. Since
the values of A, B, and C remain constant, MASM need not assemble them on pass two.
(This use of .PASS is similar to the /PASS1 local switch described in Chapter 8.)

.IFE .PASS

A=0 ;MASM assembles these statements
B=1 ;on pass one only (i.e., when
c=2 ; .PASS equals 0).

.ENDC

7-104 Licensed Material--Property of Data General Corporation 093-000242

Pseudo-Op Dictionary

Define a procedure entry symbol

Syntax

PENTOnumeric-symbol

Purpose

PENT

This pseudo-op is similar to the .ENT pseudo-op, but defines numeric-symbol as type
PENT, rather than type ENTRY. The difference is important to 16-bit programs using the
AOS or AOS/VS 16-bit resource manager. PENT symbols form the relocation bases for
CALL and TARGET relocations as generated by the .CALL, .KCALL, .RCALL, .RCHAIN,

.TARG and .PTARG pseudo-ops.

Example

TITLE A
.NREL 1
?RSAVE o]
PRCALL B
.END
TITLE B
.PENT B
.NREL 1

B: ?RSAVE 0
RTN

083-000242 Licensed Material--Property of Data General Corporation

7-105

Pseudo-Op Dictionary

Pop the value and relocation property of POP
last expression pushed onto the stack

Value

The permanent symbol .POP has the value and relocation property of the last expression you
placed on the assembler stack (using .PUSH). When you use .POP, the assembler removes
the top entry from the the stack.

If the assembler stack contains no values, then .POP has the value 0 and the absolute
relocation property. In addition, MASM returns an error for that source statement.

Example
01 00000000025 A=25 ;Define A.
02 000000 00000000025 A ;Assemble A’s present value.
03
04 .PUSH A ;Push A’s value onto the assembler’s
05 00000000013 A=15 ;stack. Assign A a new value
06 000002 00000000015 A ;and assemble that value.
07
08 00000000025 A=.POP ;Assign A the value on the top
08 000004 00000000025 A ;of the stack and assemble A’s
10 ;new value.

See the .PUSH description for another example.

References

“Relocatability” - Chapter 3
“Stack Control” — Chapter 6

7-106 Licensed Material--Property of Data General Corporation 093-000242

Pseudo-Op Dictionary

Create a data word with PTARG
target relocation

Syntax

.PTARGCJnumeric-symbol

Purposé

The .PTARG pseudo-op generates one data word with a value of 2, and target relocates it
relative to numeric-symbol. Numeric-symbol must be an external (.EXTN) symbol, and
should resolve to a . PENT symbol.

The .PTARG pseudo-op generates target data words for using the AOS and AQS/VS 16-bit
resource manager. The Link utility resolves the contents of target words based on the value of
the data word and the program’s overlay structure. See the AOS/VS Link and Library File
Editor (LFE) User’'s Manual for a detailed discussion of resource calls.

NOTE: .PTAR is an acceptable abbreviation of this pseudo-op.

Example
.EXTN
L1: :PTARG
LbA
PSH
7RCALL
093-000242

P

P

c,L1 ; Load resource target
0,0 ; Push onto stack

; Make parametric resource call

Licensed Material--Property of Data Geheral Corporation 7-107

Pseudo-Op Dictionary

Piamach
Syntax
.PUSHCexpr
Purpose
The .PUSH pseudo-op allows you to save on the assembler stack the value and relocation
property of any valid assembler expression. You can continue to push expressions onto the
stack until the stack space is exhausted.
The assembler stack is the push-down type. That is, the last expression you place on the
stack is the first one to be removed. Use the .POP pseudo-op to access information on the
stack.
Example
01 00000000010 .RDX 8 ;Input radix is 8 (i.e., AT
02 000000 00000000010 (.RDX) ;octal). Assemble the current
03 ;input radix value.
04 .PUSH .RDX ;Save the input radix on the
05 00000000012 .RDX 10 ;stack. Set the input radix
06 000002 00000000012 (.RDX) ;to 10 (i.e., decimal).
07 ;Assemble the current input
08 ;radix value.
09 00000000010 .RDX . POP ;Set the input radix to the
10 ;value on top of the stack
11 000004 00000000010 (.RDX) 1 (in this case, 8). Assemble
12 ;the current input radix value.

See the .POP description for another example.

References

“Expressions” — Chapter 2
“Relocatability” — Chapter 3
“Stack Control” — Chapter 6

7-108 Licensed Material--Property of Data General Corporation 093-000242

Pseudo-Op Dictionary

Create a data word with call relocation RCALL

Syntax
RCALL

.RCALLCnumeric-symbol

Purpose

The .RCALL pseudo—op generates one data word with a value of 60145, and call relocates it
relative to numeric-symbol, if present. Numeric-symbol must be an external ((EXTN)
symbol, and should resolve to a .PENT symbol.

.RCALL, along with .TARG, generate call and target data words for using the AOS and
AOS/VS 16-bit resource manager. The Link utility resolves the contents of call and target
words based on the data word value and the program’s overlay structure. See the AOS/VS
Link and Library File Editor (LFE) User’s Manual for a detailed discussion of resource calls,

NOTE: .RCAL is an acceptable abbreviation of this pseudo-op.

V) Example
.EXTN P
.RCALL P ; ?RCALL resource call word
. TARG 1,P : ?RCALL resource target word

083-000242 Licensed Material--Property of Data General Corporation 7-109

Pseudo-Op Dictionary

Create a data word with call relocation .RCHAIN

Syntax
.RCHAIN

.RCHAINOInumeric-symbol

Purpose

The .RCHAIN pseudo-op generates one data word with a value of 6015, and call relocates it
relative to numeric-symbol, if present. Numeric-symbol must be an external (.EXTN)
symbol, and should resolve to a .PENT symbol.

.RCHAIN, along with .TARG, generate call and target data words for using the AOS and
AOS/VS 16-bit resource manager. The Link utility resolves the contents of call and target
words based on the data word value and the program’s overlay structure. See the AOS/VS
Link and Library File Editor (LFE) User’s Manual for a detailed discussion of resource calls.

NOTE: .RCHA is an acceptable abbreviation of this pseudo—-op.

Example
.EXTN P
.RCHAIN P ; ?RCHAIN resource call word
.TARG 2,P ; 7RCHAIN resource target word

7-110 Licensed Material--Property of Data General Corporation 093-000242

Pseudo-Op Dictionary

Set radix for numeric input conversion .RDX

Syntax
.RDX[[Dabs—~expr]

Purpose

The .RDX pseudo-op defines the radix (base) that MASM uses to interpret the numeric
expressions in your source module. For example, if you specify an input radix of 16,5 , the
assembler interprets all numeric expressions in your module in hexadecimal.

The assembler always interprets abs-expr in decimal. This argument must be an absolute
expression and its value must be in the following range:

2,0 <= abs-expr <= 20,9
If you do not specify an input radix in your module, the default is octal.

If you specify a radix greater than 10, you must use letters to represent values greater than 10
but less than the specified radix. For example, if you declare an input radix of 1644
(hexadecimal), use the digits 0 through 9 to represent the quantities 0 through 9,0, and use
the letters A through F to represent the values 10 through 15;9. Table 7-5 shows the
correspondence between numeric representations in various bases.

Table 7-5 Numeric Representations in Various Bases

QOctal Declmal Hexadeclimal
(Base 8) (Base 10) (Base 18)

1 1 1

2 2 2

3 3 3

4 4 4

5 5 5

6 6 8

7 7 7

10 8 8

11 9 9

12 10 A

13 11 B

14 12 (o]

15 13 D

16 14 E

17 15 F

20 16 10

093-000242 Licensed Material-—-Property of Data General Corporation 7-111

Pseudo-Op Dictionary

.RDX (continued)

If the input radix is greater than 10, your numeric expressions might start with letters. In
these cases, you must place a 0 before the initial letter of the numeric expression to
distinguish it from a symbol. For example, if you specify an input radix of 16,5 (.RDX 16),
then you should express the value for decimal 15 as OF, not simply F.

Regardless of the input radix, the assembler interprets any number containing a decimal point
as decimal. For example, the numeric expression 12. always equals 12,5 , regardless of the
input radix. This feature allows you to combine decimal numbers in expressions with numbers

of other radixes (e.g., 0F+12.-3A2).

Note that the input and output radixes are entirely distinct. Setting the input radix does not

affect the output radix (set with .RDXO).

Value
You can use .RDX as a value symbol. In this case, .RDX has the value of the current input
radix.
Example
In the following example, the output radix is 8 (i.e., octal). You can alter this setting with .
the .RDXO pseudo-op.
01 00000000010 .RDX 8 ;Input radix is 8.
02 000000 00000000123 123 ;MASM assembles 123 in octal.
03
04 00000000012 .RDX 10 ;Set input radix to 10.
05 000002 00000000173 123 ;MASM assembles 123 in decimal.
06
07 00000000020 .RDX 186 ;Set input radix to 16.
08 000004 00000000443 123 ;MASM assembles 123 in hexadecimal.
09 000008 00000000017 OF ;:Note the leading zero.
10 000010 00000000173 123. ;MASM assembles 123 in decimal even
11 ;though the input radix is 16.
12
135 000012 00000000020 (.RDX) ;Assemble the current input radix
14 ;value.
References
“ Absolute Expressions” — Chapter 3
“Numbers” — Chapter 2
“Radix Control” — Chapter 6
.—/—\~
7-112 Licensed Material--Property of Data General Corporation 093-000242

Pseudo-Op Dictionary

Set the radix for numeric output conversion .RDXO

Syntax
.RDXO[C]abs-expr]

Purpose

The .RDXO psuedo-op defines the radix (base) that the assembler uses to represent numeric
expressions in the assembly listing. For example, if you specify an output radix of 104 , the
assembler presents all locations and values in decimal, regardless of the input radix.

The assembler always interprets abs-expr in decimal. This argument must be an absolute
expression and :ts value must be in the following range:

810 <= abs—expr <= 204,
If you do not specify an output radix in your module, the assembler uses octal.

Table 7-5 in the .RDX pseudo-op description shows the correspondence between numeric
representations in various bases.

Value

You can use .RDXO as a value symbol, in which case it equals the current output radix. The
assembler always expresses the current output radix as ‘10'.

Example
01 00000000010 .RDX 8 ;Input radix is 8.
02 00000000010 .RDXO 8 ;Output radix is 8.
03 000000 00000000077 77
04 000002 00000000022 22
05 000004 00000000045 45
06 00000000012 .RDX 10 ;Input radix is 10.
07 00000000012 ,RDXO 10 ;Output radix is 10.
08 000006 0000000077 77
09 000008 0000000022 22
10 000010 0000000045 45
11 0000000016 .RDX 18 ;Input radix is 16.
12 0000000018 .RDXO 16 ;output radix is 18.
13 00000C 00000077 77
14 OQQQQE Q0000022 22
15 000010 00000045 45
16 00000008 .RDXO 8 ;Input radix is 16.
17 000022 00000000167 77 ;Output radix is 8.
18 000024 00000000042 22
19 Q00028 Q00000001058 45
20 00000000012 .RDXO 10 ;Input radix is 18.
21 000024 0000000119 77 ;Output radix is 10.
22 000028 0000000034 22
23 000028 00000000869 45
24 000030 0000000010 (.RDX0O) ;Assemble the value of the current
25 ;output radix. MASM always
26 ;represents this as 10, regardless
27 ;0f the current base.

093-000242 Licensed Material--Property of Data General Corporation 7-113

Pseudo-Op Dictionary

.RDXO (continued)

References

7-114

“ Absolute Expressions” — Chapter 3
“ Assembly Listing” — Chapter 4
“Numbers” — Chapter 2

“Radix Control” — Chapter 7

Licensed Material--Property of Data General Corporation

093-000242

Pseudo-Op Dictionary

Set revision level .REV

Syntax
REVOw[Dx[Cy[[D2]])

Purpose

The .REV pseudo-op specifies your program’s revision level. Generally, vou use this
pseudo-op when you want to keep track of different versions of the same program.

Arguments w, X, y, and z must be absolute expressions with values in the range 0-2555. The
assembler uses the current input radix to evaluate these expressions.

When issuing .REV, you must supply a value for the w argument. The other three
revision-level arguments are optional (Note, however, that you must supply x if you supply vy,

and you must supply both x and y if you supply z). MASM assigns the value 0 to all missing
arguments.

For example, the following two .REV statements are equivalent:

.REV 1,0,0,0
-REV 1

Similarly, the following three source lines resolve to the same revision level:
.REV 3,2
.REV 3,2
.REV 3,2

,0,0
,0

The revision level you indicate in your source module passes into the object file and then into
the program file. If MASM encounters more than one .REV pseudo-op during an assembly,
the object file receives the level specified in the last .REV statement.

Use the CLI REV command to obtain the revision level of any executable program file.

Example

.TITLE MNTS

.REV 12,5,1,1 ;MASM interprets the revision level

.NREL ;in the current input radix (octal,
;by default).

References

“ Absolute Expressions” — Chapter 3
AOS/VS Command Line Interpreier (CLI) User’s Manual- REV command
AOS/VS Link and Library File Editor (LFE) User’'s Manual — /REV switch

093-000242 Licensed Material--Property of Data General Corporation 7-115

Pseudo-Op Dictionary

Flag if previous instruction may skip SKIP

Value

The .SKIP pseudo-op allows you to examine the state of the Skip flag which indicates
whether the previous instruction may try to skip the next sequential word. This flag is 1 if the
previous instruction was in one of the following classes:

.DIMS .DISS .DIWS .DLMS .DUNS .DUWS .DWMS .DXMS

In addition, this flag is set if a .DALC instruction has a skip option coded. In all other cases,
.SKIP’s value is zero.

The .SKIP pseudo-op can set the value of the Skip flag. The syntax for setting the flag is

.SKIP <n>

Example

XNISZ T,3
.DO . SKIP
NOP

.ENDC

7-116 Licensed Material--Property of Data General Corporation 093-000242

Pseudo-Op Dictionary

Store an expression in one word and SWORD
return an error if the high—-order bits
are not all ones or zeros

Syntax
.SWORDZJexpr

Purpose

Use the .SWORD pseudo~-op to generate a 16-bit storage word with the value and relocation
property of expr.

The assembler first computes the value of the expression in 32-bit mode. Then, the
assembler truncates the leftmost 16 bits of the result and stores the remaining value in a single
16-bit word.

If, before truncation, the high-order 17 bits of the expression are not all ones or all zeros,
the assembler returns an error. That is, the bits in the first word of the supplied expression
must all equal the sign bit of the second word or you receive an error. MASM generates the
16-bit storage word regardless of whether it returns an error.

The above discussion explains the Macroassembler’s actions if you supply .SWORD with an
absolute expression. However, if you specify a relocatable expression, MASM cannot
completely resolve it and, therefore, cannot perform the .SWORD operation. In this case, the
truncation and error testing occur at link time, not assembly time.

Note that this pseudo-op does not alter the global data placement mode (set with .ENABLE).

093-000242 Licensed Material--Property of Data General Corporation 7-117

Pseudo-Op Dictionary

SWORD (continued)

Example
01 000000 00000000005 8 :By default, each data value
02 000002 000000000086 5} ;occupies two words of memory.
03 000004 000003 .SWORD 5,6 :Store the values 5 and 6
04 000008
05 ;in single words of memory.
06 000008 177255 .SWORD 37777777255
07 ;Truncate the first 16 bits
08 ;(all ones) and store the
09 ;result (177255) in a single
10 ;word of memory.
E 000007 065125 .SWORD 1065125 ;This statement generates an
12 ;error because the high-order
13 ;bits are not all ones or =zeros.
14 000010 00000000007 7 ;The global data placement mode
15 000012 00000000010 10 ;8till specifies two words per
186 ;data entry.
17 .END

pass 2 errors:
EX7_42 1/10: listing 1/11: data value is out of range

1 ASSEMBLY ERROR

References

“Absolute Expressions” — Chapter 3
“Data Placement” - Chapter 6
“Expressions” - Chapter 2
“Relocatable Expressions” — Chapter 3

7-118 Licensed Material-—Property of Data General Corporation 093-000242

Pseudo-Op Dictionary

Create a data word with target relocation TARG

Syntax

.TARG Jabs—expr_numeric-symbol

Purpose

The .TARG pseudo-op generates one data word with a value of abs—expr, and target
relocates it relative to numeric-symbol. Numeric-symbol must be an external (\-EXTN)
symbol, and should resolve to a .PENT symbol.

.TARG, along with .CALL, generates call and target data words for using the AOS and
AQOS/VS 16-bit resource manager. The Link utility resolves the contents of call and target
words based on the value of abs-expr and the program’s overlay structure. See the AOS/VS
Link and Library File Editor (LFE) User’s Manual for a detailed discussion of resource calls.

Example
.EXTN P
.CALL 4,P ; ?RCALL resource call word
.TARG 4,P ; ?RCALL resource target word

093-000242 Licensed Material--Property of Data General Corporation 7-119

Pseudo-Op Dictionary

FER

Entitle an object module JITLE
Syntax

.TITLECInumeric-symbol
Purpose

The .TITLE pseudo-op provides a name for your object module by placing numeric-symbol

in the module’s title block (described in the AOS/VS Link and Library File Editer (LFE)

User’s Manual).

The title you assign in the module appears at the top of each page in the assembly listing.

Numeric-symbol need not be unique (i.e., different from other symbols in your source

module).

If you do not include .TITLE in your source module, the assembler supplies the default name

“.MAIN.”

Note that the name you assign in the .TITLE statement has no relation to the name of the AT

object file (see the .OB pseudo-op).
NOTE: .TITL is an acceptable abbreviation of this pseudo-op.

Example

.TITLE MODULE1l

References

“Assembly Listing” — Chapter 4
AOS/VS Link and Library File Editor (LFE) User’s Manual - title block
“Numeric Symbols” — Chapter 2

7-120 Licensed Material-—Property of Data General Corporation 093-000242

Pseudo-Op Dictionary

Return item from top of stack TOP

Value

The permanent symbol .TOP has the value and relocation property of the last expression
placed on the assembly~time stack (using .PUSH). .TOP differs from .POP in that .TOP
does not pop the value from the stack.

If the assembler stack contains no values, MASM reports an error.

Example

.PUSH 2

LDA .TOP, 3,3
INC .TOP, .TOP
8TA .POP, 3,3

083-000242 Licensed Material--Property of Data General Corporation 7-121

Pseudo-Op Dictionary

Reserve a number of tasks TSK

Syntax
.TSKJabs-expr

Purpose

The .TSK pseudo-op specifies the maximum number of tasks that your program can initiate at
execution time. The argument you pass to .TSK must be an absolute expression and must be
less than or equal to 324;.

If several object files in the same Link command line contain .TSK declarations, Link uses
the largest.

You can override the .TSK pseudo-op at link time by using the /TASKS= switch on the Link
command line.

Example
.TITLE MOD
.TSK 5 ;This program may initiate
;up to 5 tasks at runtime.
References

“ Absolute Expressions” — Chapter 3
AOS/VS Link and Library File Editor (LFE) User’s Manual — /TASKS= switch

7-122 Licensed Material-—Property of Data General Corporation 093-000242

AN

Pseudo-Op Dictionary

Store a text string TIXT, .TXTE, .TXTF, .TXTO

Syntax

TIXTJ%string%

TXTE[O%string%
TIXTFZ%string%
TIXTO%string%

Purpose

This pseudo-op directs the assembler to store the octal equivalent of an ASCII text string in
consecutive memory words. In the above syntax description, string is an ASCII text string and
% represents a character that you use to delimit the string. The delimiter can be any character
except

® - a character that appears in text string string or
® carriage return, form feed, NEW LINE, tab, space, null, or rubout

You can use carriage return, form feed, and NEW LINE to continue a string from line to
line, but the assembler will not store these characters as part of the text string.

When the assembler encounters .TXT, it interprets the first character after the break ((T) as
the string delimiter. The assembler then stores the following characters in pairs in consecutive
memory words until it encounters the delimiting character again. That is, the assembler
generates one 16-bit storage word for every two characters in string.

Storage for one ASCII character requires seven bits of an eight-bit byte. The high-order bi,
the parity bit, of each byte can be controlled by the type of .TXT pseudo-op used:

.TXT Do not explicitly set parity bit.
.TXTE Set parity bit for even parity.
. TXTF Unconditionally set parity bit.
TXTO Set parity bit for odd parity.

The assembler allocates an 8-bit byte for each character (i.e., two characters per 16-bit
word). By default, the assembler packs the characters of your string from left to right within
memory storage words. You can alter this packing mode with the .TXTM pseudo-op.

If vour string contains an odd number of characters, the assembler pairs a null (all zero) byte
with the last character of the string. If your string contains an even number of characters, the
assembler stores a null word (2 null bytes) immediately after the string. You can suppress this
null storage word by using the .TXTN pseudo-op.

093-000242 Licensed Materlal-—-Property of Data General Carporation 7-123

Pseudo-Op Dictionary

STA
TXT, .TXTE, .TXTF, .TXTO (continued)
If you want to include an absolute expression in your text string, enclose the expression in
angle brackets (< >). The assembler evaluates this expression, truncates the result to 8 bits,
and stores it in the appropriate byte of memory. You cannot include logical operators within
the expression.
By using angle brackets, you can store the ASCII codes for characters that you could not
otherwise include in your text string. For example, you cannot include a NEW LINE
character in your text string. However, you can include the ASCII code for NEW LINE in a
text string if you enclose that value in brackets.
ITXT “A<12>”
This statement directs the assembler to generate a storage word that contains the ASCII codes
for “A” (101g) and “NEW LINE” (12g). By default, the Macroassembler stores a null (all
zero) word in the following location.
Example
01 00000000000 .TXTM 0 ;Pack character bytes from right
02 ;to left within memory words. AT
03 000000 041101 020103 .TXT "ABC D" ;These five statements store . '
04 000104
05 000003 041101 020103 .TXT +ABC D+ ;the ASCII code for text
06 000104
07 000006 041101 020103 .TXT /ABC D/ ;string “ABC D’ in memory.
08 000104
09 000011 041101 020103 .TXT ZABC DZ ;Note the various characters we
10 000104
11 000014 041101 020103 .TXT $ABC D$;use for string delimiters.
12 000104
See .TXTM and .TXTN for more examples.
References
“ Absolute Expressions” - Chapter 3
“ASCII Character Set” — Appendix A
“Special Integer-Generating Formats” - Chapter 2
“Text Strings” — Chapter 6

7-124

Licensed Material-—-Property of Data General Corporation 093-000242

Pseudo-Op Dictionary

Change text bytepacking JIXTM

Syntax
.TXTMOabs-expr

Purpose

The .TXTM pseudo-op directs the assembler to pack bytes either left to right or right to left
within memory words when it encounters a . TXT pseudo-op. If abs-expr evaluates to zero,
the assembler packs the bytes right to left; if abs—expr does not equal zero, the assembler
packs bytes left to right. The argument you supply to .TXTM must be an absolute expression.

If you do not use the .TXTM pseudo-op in your module, MASM packs bytes from left to
right, by default.

Value

You can use .TXTM as a value symbol. In this case, .TXTM represents the value of the last
abs—expr you supplied to it.

The default value for .TXTM is 1.

Example
01 000000 040502 041504 .TXT "ABCDE" ;Pack bytes left/right
02 042400
[sF:} ;within words, by default.
04 000003 00000000001 (.TXTM) ;Assemble the current value of
05 ; . TXTM (1, by default).
06 00000000000 . TXTM 0 ;Pack bytes right/left.
07 000005 041101 042103 .TXT "ABCDE"
08 000105
09 000010 00000000000 (. TXTM) ;Assemble the current value
10 ;of (TXTM.
References

“Absolute Expressions” - Chapter 3
“ASCII Character Set” — Appendix A
“Text Strings” — Chapter 6

093-000242 Licensed Material--Property of Data General Corporation 7-125

Pseudo-Op Dictionary

Determine text string termination JXTN

Syntax
.TXTN Jabs-expr

Purpose

The .TXTN pseudo-op specifies whether or not the assembler will place a null word at the
end of a .TXT text string that contains an even number of characters.

If abs—expr evaluates to zero, all text strings containing an even number of characters
terminate with a 16-bit null word (all zeros). If abs—expr does not equal zero, the assembler
does not place a null word after the last two characters in your string. The argument you
supply to .TXTN must be an absolute expression.

If you do not use .TXTN in your module, the assembler terminates even length text strings
with a null word, by default. When a string contains an odd number of characters, the
assembler stores a null byte with the last character, in all cases.

Value

You can use .TXTN as a value symbol. In this case, .TXTN represents the value of the last
abs—expr you passed to it.

The default value for .TXTN is 0.

Example
01 000000 030462 031464 . TXT 11234" ;Terminate even-length strings
02 000000
03 ;with a null word, by default.
04 000003 00000000000 (.TXTN) ;Assemble the current value of
05 ;. TXTN (0, by default).
06 00000000001 .TXTN 1 ;Do not add a null word to the
07 ;end of even-length strings.
08 000005 030462 031464 .TXT "1234"
09 000007 00000000001 (.TXTN) ;Assemble the current value of
10 (. TXTN (1).

References

“ Absolute Expressions” — Chapter 3
“Text Strings” — Chapter 6

7-126 Licensed Material--Property of Data General Corporation 093-000242

Pseudo-Op Dictionary

Store an expression in one word and return UWORD
an error if any high—order bits are set

Syntax

UWORD Gexpr

Purpose

Use the .UWORD pseudo-op to generate a 16-bit storage word with the value and relocation
property of expr.

The assembler first computes the value of the expression in 32-bit mode. Then, the
assembler truncates the high—order (most significant) 16 bits and stores the resulting value in a
single 16-bit word of memory.

If, before truncation, any of the original expression’s high—order 16 bits are set (i.e., equal
1), the assembler returns an error. MASM generates the 16-bit storage word regardless of
whether it returns an error.

The above discussion explains the Macroassembler’s actions if you supply .UWORD with an
absolute expression. However, if you specify a relocatable expression, MASM cannot
completely resolve it, and, therefore, cannot perform the .UWORD operation. In this case,
the truncation and error testing occur at link time, not assembly time.

Note that this pseudo-op does hot alter the global data placement mode (set with .ENABLE).

Example
01 000000 00000000002 2 ;By default, each data entry
02 000002 00000000003 3 ;occupies two words of memory.
03 000004 000004 .UWORD 4,5 ;8tore the values 4 and 5
04 000005
05 ;in single words of memory.
E 000008 121543 .UWORD 37721543
07 i The above statement generates
08 ;an error because the
09 ;high-~order 16 bits are not
10 ;all zeros.
11 000007 00000000012 12 ;The global data placement
12 000011 00000000013 13 ;mode still specifies two
13 ;words per data statement.

pass 2 errors:

EX7_48 1/5: listing

1 ASSEMBLY ERROR

References

093-000242

1/08:

“ Absolute Expressions” — Chapter 3
“Data Placement” - Chapter 6

“Expressions” — Chapter 2

“Relocatable Expressions” — Chapter 3

data value is out of range

Licensed Material--Property of Data General Corporation 7-127

Pseudo-Op Dictionary

Store an expression in one word WORD

Syntax
.WORD[Jexpr

Purpose

Use the .WORD pseudo-op to generate a 16-bit storage word with the value and relocation
property of expr. The assembler first computes the value of the expression in 32-bit mode;
then truncates the leftmost 16 bits of the result.

The previous discussion explains the Macroassembler’s actions if you supply .WORD with an
absolute expression. However, if you specify a relocatable expression, MASM cannot
completely resolve it and, therefore, cannot perform the .WORD operation. In this case,
expression evaluation and truncation occur at link time, not at assembly time.

Note that this pseudo-op does not alter the global data placement mode (set with .ENABLE).

Example
01 000000 00000000010 10 ;MASM allocates two words for each
02 000002 00000000011 11 ;data entry, by default.
03 000004 000013 .WORD 13,14,15 ;Store the values 13, 14, and
04 000014
05 0Q0015
[o]] ;15 in single words of memory.
07 000007 141762 .WORD 37541762 ;Truncate the leftmost 16 bits
08 rand store the result (141762)
09 ;in one word of memory.
10 000010 00000000021 21 ;The global data placement mode
11 ;still specifies two words per
12 ;data statement.
References

“ Absolute Expressions” — Chapter 3
“Data Placement” — Chapter 6
“Expressions” — Chapter 2
“Relocatable Expressions” — Chapter 3

7-128 Licensed Material--Property of Data General Corporation 093-000242

Pseudo-Op Dictionary

Delete symbol and macro definitions XPNG

Syntax
XPNG[<[isymbol>]

Purpose

The .XPNG pseudo-op allows you to delete symbol and macro definitions from the current
assembly. Using .XPNG, you can remove definitions for any and all symbols except
pseudo-ops (permanent symbols). After you delete a symbol’s definition, you can assign that
symbol a new definition.

You can redefine numeric symbols at any time, without using . XPNG.

If you do not pass any arguments to .XPNG, the assembler removes all macro and symbol
definitions, except permanent ones (pseudo-op definitions).

If you explicitly pass symbols to the .XPNG pseudo-op (in the symbol argument), then the
assembler removes only those definitions from the current assembly. Again, you can remove
any symbol, except permanent symbols (pseudo-ops), in this manner.

When MASM encounters the .XPNG pseudo-op on the first assembler pass, it immediately
removes the appropriate symbol definitions. Thus, those symbol definitions are not available
when MASM substitutes binary code for your source on pass two.

Since .XPNG operates on pass one, you can not use this pseudo-op to provide different
definitions for a symbol during a single assembly. For example, consider the following code:

ADD 0,1 ;Incorrect use of .XPNG to delete ADD.

. XPNG ADD
ADD: 24

This code first uses the symbol ADD as an MV/Family 32-bit instruction symbol (i.e., add
two accumulators). The .XPNG pseudo-op then removes symbol ADD’s definition (on pass
one). The subsequent source statement redefines symbol ADD as a label; i.e., the address of
the memory location that contains the value 24.

093-000242 Licensed Material--Property of Data General Corporation 7-129

Pseudo-Op Dictionary

XPNG (continued)

At the beginning of pass two, the Macroassembler recognizes ADD as a label, not an
instruction symbol. Thus, when MASM tries to substitute binary code for the statement

ADD 0,1

you receive an error indicating the incorrect use of symbol ADD. To avoid this problem,
place the .XPNG pseudo-op at the beginning of your source module.

. XPNG (continued)

Examples

The first example shows how .XPNG may remove specific symbol definitions.

ol .TITLE NEWSYM

02 .XPNG ADD, SUB ;Delete definitions for
03 ;instruction symbols ADD
04 ;and SUB,

05 00000000020 ADD: SUB=20 ;Redefine symbols ADD and
06 ;SUB as numeric symbols.

Our second example uses .XPNG to remove all symbol definitions, except pseudo—-ops

definitions.
o1 .TITLE DELALL
02 .XPNG ;Delete all symbol definitions
03 ;except pseudo-op definitions.
04 00000000010 ADD=10 ;Redefine symbols.
05 00000000020 SUB=20
06 00000000030 COM=30
07 00000000040 ADC=40
References

“Macroassembler Symbol Tables” ~ Chapter 8
“Symbol Tables” — Chapter 3
“Symbols” — Chapter 2

7-130 Licensed Material--Property of Data General Corporation 093-000242

Pseudo-Op Dictionary

Specify lower page zero relocation ZREL

Syntax
.ZREL

Purpose

The .ZREL pseudo-op directs the assembler to assign relocatable addresses in lower page zero
to subsequent source lines in your module; i.e., to assign locations in the predefined ZREL
memory partition. Lower page zero relocatable (ZREL) memory extends from location 504 to
377g. Thus, you can express any ZREL location in a displacement field of § or more bits (in
any memory reference instruction).

The words following the .ZREL pseudo-op receive relocatable addresses starting with zero. If
you leave the ZREL partition during an assembly and later return, the assembler continues

assigning ZREL addresses at the point where it left off.

At link time, all code in the ZREL memory partition is contiguous in memory.

Example
01 .TITLE 2
02 .ZREL iPlace the following code in lower
03 000000 ZR 00000000010 10 ;page zero relocatable (ZREL) memory
04 000002 ZR 00000000020 20 ; (note the address relocation base
05 ;in columns 11 and 12).
(o]] 00000000000 .NREL 0 ;Unshared code (NREL) memory
07 000000 UC 00000000030 30 ;partition.
08 000002 UC 00000000040 40
09 000004 UC 00000000050 50
10 000006 UC 00000000080 60
11 .ZREL ;Lower page zero relocatable (ZREL)
12 000004 ZR 00000000070 70 ;memory. Note that MASM continues
13 000006 ZR 00000000100 100 ;assigning ZREL addresses at the
14 ;point where it left off earlier.
References

AOS/VS Link and Library File Editor (LFE) User’s Manual
“Relocatability” — Chapter 3
“ZREL Partition” — Chapter 3

End of Chapter

093-000242 Licensed Material--Property of Data General Corporation 7-131

Macroassembler Operating Procedures

Macroassembler Operating
Procedures

This chapter provides a synopsis of procedures and conventions you need to follow to
assemble, link, and execute your source code.

MASM Command Line

The CLI command line that invokes the Macroassembler is

) XEQ MASM <function-switch...> path<arg-switch> <path<arg—switch>>...)

where:
XEQ is a CLI command that executes a program.
MASM is the name of the Macroassembler program.
function—-switch is one or more optional function switches (see Table §-1 below).
path is the pathname of a source file. You must include at least one

source file in each MASM command line. If you include more
than one source file, make sure that all but the last one end with
the .EOF pseudo-op; the last file should end with .END.

arg—-switch is the optional argument switch /PASS1 (see Table 8-2 for more
information on argument switches).

093-000242 Licensed Material--Property of Data General Corporation 8-1

Macroassembler Operating Procedures

When you issue the MASM command, the Macroassembler assembles one or more
source files (pathnames) and produces an object file and a variety of listings (depending
on which function switches you use). The object file is not executable; you must use the
Link utility to produce a program file (see “Linking and Executing Your Program” in this
chapter.)

TSI

By default (i.e., if you do not use any function switches), the object file bears the name
of the first filename on the command line (see “Filenames” in this chapter). Also by
default, the Macroassembler does not produce an assembly listing; it reports all assembly
errors to the generic file @OUTPUT. We describe the object file, assembly listing, and
other forms of Macroassembler output in Chapter 4.

An incorrect MASM command line generates a command line error. Refer 1o Appendix
C for descriptions of all command line errors.

Command Line Switches

You can use two types of switches on the MASM command line:
® function switches
® argument switches

A function switch appears after the word MASM and provides information global to the
current assembly. An argument switch appears after the name of a source file and
provides information local to that particular file.

The previous section provides information about the placement of switches in the MASM
command line. Note that all switches appear immediately after the term they modify; do
not insert any spaces before a switch. There is no limit to the number of switches that
can appear in a single command line.

Table 8-1 describes the function switches you can use in the MASM command line. For
a complete discussion of the various forms of Macroassembler output, refer to Chapter 4.
For a description of permanent, instruction, macro, and numeric symbols, see “Symbols”
in Chapter 2.

8-2 Licensed Material-—Property of Data General Corporation 093-000242

Macroassembler Operating Procedures

Table 8-1 MASM Function Switches

Function Switch Action

/16

Create a 16-bit object file that can be linked into a 16-bit process.
By default, AOS/VS MASM generates a 32-bit object. This switch
changes the structure of the object file and sets the default data size
size to 1 word, the same as a .ENABLE WORD pseudo-op.

/8 Treat $ as a special character. By default, $ is treated like an
alphabetic character. Setting this switch causes $ to be expanded
instead to a number unique to each macro call.

/CPL=<n> Set the number of characters per line on the listing and error file.

/E [=<filename>]

/ERRORCOUNT=<n>

<n> may be between 80 and 136, inclusive. The default humber of
characters per line is 80.

Append the error listing to <filename>. If this switch is omitted,
errors are appended to @OUTPUT. If the argument to this omitted,
and there is a listing file, the error file is suppressed.

Terminate MASM with a fatal error if more than <n> errors occur.
The default is 1024 (decimal).

/FF If necessary to produce an even number of listing pages, append an
extra form feed to the listing.
/HASH=<n> Set the hash frame size of the symbol table. Set this switch only if

/L [=<filename>]

/MAKEIN is also set.

Append a MASM listing to <filename>, or to @LIST, if <filename> is
absent.

/LOCAL Include local (nonglobal) user-defined symbols in the object file, as
well as global symbols. When the /LOCAL switch is also used on Link,
the local symbols can be used in debugging.

/LPP=<n> Make each page of the listing <n> lines long. The default is 60 lines
per page.

/MAKEIN (For use of Data Gensral MASM support personnel)

/MAKEPS Create a permanent symbol file for use with MASM. The symbol
table will have the name MASM.PS, or <filename>,PS, if you use the
/PS=<filename> switch. No previous PS file is read, and no object file
is created. MASM makes only one pass, and a listing may be
generated.

/MULTIPLE Report an error if symbols defined in equate statements have been
previously defined with a different value in the same assembly.

/N Do not generate an object file.

/NOPS Do not use a PS file with this assembly.

1 O=<filename>

/PS=<filename>
/STATISTICS

{SYMBOLS=<n>

/ULC

W

Name the object file <filename>.OB. By default, the object file is
elther named after the first source file, or with the .OB pseudo-op.

Use <filename>.PS as the PS file, rather than the default, MASM.PS.

Include elapsed and CPU time statistics in the listing (this switch
requires you use the /L switch).

Set the number of symbol name characters that MASM recognizes.
The number <n> may be between 5 and 32 characters. The default is
8 characters.

Treat uppercase and lowercase symbol names as distinct. By
default, “a” and "A" are the same symbol name. Note that
instruction and pseudo--op hames must be given in uppercase if the
/ULC switch is used.

Where there is a choice, use absolute {index mode 0) addressing,
instead of PC-relative (index mode 1). This switch is functionally
equivalent to the .ENABLE ABS pseudo-op.

093-000242

(continues)

Licensed Material--Property of Data General Corporation 8-3

Macroassembler Operating Procedures

Table 8-1 MASM Function Switches

AT
Function Switch Action
/XPAND Override ali listing-control pseudo-ops, including .NOCON, .NOMAC,
.NOLOC and the ** flag.
NONE Suppress or augment the listing cross-reference. /XREF=NONE
suppressfes the cr?sbs-lreference. /XgEF:USdEFfl_SYdMBOLS . bol
- cross-references labels, macros, and user-defined numeric symbols.
/XREF USERSYMBOLS /XREF=ALL adds instructions and pseudo-ops to the
ALL cross-reference. The default is USERSYMBOLS (requires the
/L switch).
/1Z Insert Data General proprietary header at the top of each listing
page.
/8 Ignored. (See Note 1.)
1A Ignored. (See Note 1.)
/B=<filename> Same as /O=<filename>. (See Note 2.)
/D Ignored. (See Note 1.)
IF Same as /FF. (See Note 1.)
/K ignored. (See Note 1.)
M Same as /MULTIPLE. (See Note 2.)
IMEM=<n> ignored. (See Note 1.)
/0 Same as /XPAND. (See Note 2.)
/P Same as /XREF=ALL. (See Note 2.} AT
/R Ignored. (See Note 1.)
/S Same as /MAKEPS. (See Note 2.)
U Same as /LOCAL. (See Note 2.)
(concluded)
Note 1. For compatibility with MASM16 and AOS MASM, AOS/VS MASM ignores this
command-line function switch.
Note 2. For compatibility with MASMI16 and AOS MASM, AOS/VS MASM recognizes
this command-line function switch.
Table 8-2 describes the argument switch /PASS1. This switch can appear after any
source filename in the MASM command line. For example:
) XEQ MASM MOD1 MOD2/PASS1 MOD3).

8-4 Licensed Material-—Property of Data General Corporation 093-000242

Macroassembler Operating Procedures

Table 8-2 MASM Argument Switches

Switch Description
<filename>/PASS1 The Input file need not be read on the second pass. as it
contains no code or data, only symbol and/or macro
| definitions.
/8 Same as /PASS1. (See Note.)

NOTE: For compatibility with MASMI16 and AOS MASM, AOSIVS MASM recognizes
the /S switch.

Linking and Executing Your Program

You cannot execute the Macroassembler output that MASM generates. You must first
process your object file(s) using the Link utility. The general Link command line is

) XEQ LINK file ... }
where:

file is the pathname of an object file. You need not specify the .OB
extension.

This command generates an executable file named file.PR. If you include more than one
object file on the Link command line, the .PR file receives the name of the first one, by
default.

The Link utility offers many options that we do not present in this manual. For example,
you can include a variety of switches on the command line, and you can also link library
files along with your object files. For a complete description of these and other features
of the Link utility, refer to the AOS/VS Link and Library File Editor (LFE) User’s
Manual.

To execute a program file generated by Link, type the command
) XEQ file)
where:

file is the pathname of a program file; you need not specify the .PR
extension

083-000242 Licensed Material--Property of Data General Corporation 8-5

Macroassembler Operating Procedures

Filenames

8-6

Table 8-3 summarizes the AQS/VS file-naming conventions. Note that the table lists
only the filename extensions, not the complete filename.

Table 8-3 AOS/VS Filename Extensions

Extension Contents of File

.OB Object file (generated by MASM)

.PR Program (executable) file (generated by Link)
.PS Permanent symbol file {generated by MASM)
.SR Assembly language source file

Normally, the names of your source files end with the .SR extension; e.g., filename.SR.
However, you need not specify the .SR extension in the MASM command line; e.g.,
filename is sufficient. The Macroassembler always searches for filename.SR first. If
MASM does not find this file, it searches for filename.

For example, the following two command lines are functionally equivalent:
) XEQ MASM FILE1 FILE2 }

) XEQ MASM FILELl.SR FILE2.SR)

The object file normally receives the name of the first source file in the command line,
less the .SR extension (if any) and with the .OB extension. You can specify a different
name for the object file by using the /O= function switch or the .OB pseudo-op. Table

-8—4 shows the file-naming priority employed by the Macroassembler.

Table 8-4 Object Filename

Priority Object Filename Description

1 (highest) /O=filename The object file receives the name you specify with the
/O= function switch on the MASM command line.

2 .OB[Ifilename The object file receives the hame you specify in an .OB
pseudo-op in a source file.

3 (lowest) Default filename The object file receives the name of the first source
file on the MASM command line.

Licensed Material--Property of Data General Corporation 093-000242

ro—

Macroassembler Operating Procedures

The following sample command lines will help clarify these naming conventions:

) XEQ MASM FILE1 FILE2 }

) XEQ MASM FILE1.SR FILE2.SR)

Both of the above command lines produce an object file with the name FILE1.0B.
) XEQ MASM/O=BOND FILE1 FILE2)

This command generates an object file named BOND.OB. The Macroassembler adds the
extension .OB to a specified filename only if the extension is not already present. Thus,

) XEQ MASM/O=BOND.OB FILE1 FILE2)
also produces an object file named BOND.OB.

Permanent Symbol File

The permanent symbol file is a way of cutting down assembly time by segregating lengthy
macros and/or assignments and assembling them ahead of time. To create a permanent
symbol file, you must use the /MAKEPS switch on the assembly command line. The
general MASM command for creating a permanent symbol file is

) XEQ MASM/MAKEPS sourcefile ...)

To create a permanent symbol file that contains definitions for all AOS/VS system calls
and system parameters, use the following command:

) XEQ MASM/MAKEPS PARU.32 SKIPS.SR SYSID.32 }

where:
PARU.32.SR defines the system parameters
SKIPS.SR contains skip macros and mnemonics for intrinsic and graphics
instructions
SYSID.32.SR contains definitions of all AOS/VS system calls

Normally, you need not issue this command line since we provide a copy of this
permanent symbol file with the Macroassembler software (in file MASM.PS).

The Macroagsembler places the permanent symbol file in MASM.PS, by default. If you
want to place the permanent symbol file in a different file, use both the /MAKEPS and
/PS= switches on the MASM command line as follows:

) XEQ MASM/MAKEPS/PS=filename sourcefile ...)]
where:
filename is the file that will contain the permanent symbol table
sourcefile contains definitions for all the symbols you want in the permanent

symbol file

093-000242 Licensed Material--Property of Data General Corporation 8-7

Macroassembler Operating Procedures

The above command line directs the Macroassembler to copy all the symbol definitions in P
sourcefile into disk file filename. If filename exists before the assembly, the '
Macroassembler deletes that file before creating your permanent symbol file.

Specifying a Permanent Symbol File for an Assembly

After you build a permanent symbol file, you may use that file during the assembly of
vour source modules. Specify a particular symbol file by using the /PS= switch in the
MASM command line. The Macroassembler then uses that permanent symbol file to
resolve the symbols in your source module. For example:

) XEQ MASM/PS=A.PS SOURCEFILE)

The Macroassembler uses file A.PS as the permanent symbol file when resolving symbols
in SOURCEFILE (as described earlier in this chapter).

If you do not use the /PS= switch to specify a permanent symbol file, the
Macroassembler uses file MASM.PS, if it is available.

Permanent Symbol File Size

The permanent symbol file can include up to 32,7674, symbols and their definitions.
This figure assumes that you do not include any macro definition strings. The more
macro text you place in the file, the smaller the amount of space available for symbol
definitions.

Increasing symbol length does not decrease the number of symbols you can define. The
following section describes symbol length in depth.

Symbol Length

The permanent symbol file specifies how many characters the Macroassembler should use
to resolve the symbols in your source program. The default value for symbol length is 8
characters.

During assembly, the Macrossembler ignores all excess characters; they do not generate
an error. Thus, the Macroassembler views the following three symbols as identical (if the
symbol length is 8 characters):

LOCATIONI1 LOCATION2 LOCATION_START

To alter the symbol length for an assembly, include the /SYMBOL= switch in the MASM
command line when building your permanent symbol file. Using /SYMBOL=, you may
indicate any symbol length from 5 to 32 characters, inclusive. For example:

) XEQ MASM/MAKEPS/PS=MASM25.PS/SYMBOL=25 SOURCE1)

This command directs the Macroassembler to create a permanent symbol file and store it
in MASM25.PS. This file will contain all the symbol definitions in file SOURCE1 and
will identify those symbols according to their first 25 characters. Thus, each time you
specify MASM25.PS as the permanent symbol file, MASM will resolve symbols according
to their first 25 characters. For example:

) XEQ MASM/PS=MASM25.PS SOURCE2)

This command directs the Macroassembler to use file MASM25.PS as the permanent
symbol file. The Macroassembler will identify the symbols in source file SOURCE2
according to their first 25 characters, as specified in the permanent symbol file.

Licensed Material--Property of Data General Corporation 093-000242

Macroassembler Operating Procedures

If you do not use a permanent symbol file during an assembly, the Macroassembler uses
the symbol length specified in the /SYMBOL= switch, if one is present. For example:

) XEQ MASM/NOPS/SYMBOL=15 SOURCE3 }

The /NOPS switch instructs the Macroassembler to assemble file SOURCE3 without
referring to a permanent symbol file. During this assembly, the Macroassembler resolves
the symbols in SOURCE3 according to their first 15 characters.

If you use the /NOPS switch but do not include /SYMBOL=, the Macroassembler uses
the first 8 characters to identify the symbols in your source code.

The Macroassembler ignores the /SYMBOL= switch if you do not also include either
/MAKEPS or /NOPS on the MASM command line.

End of Chapter

093-000242 Licensed Material--Property of Data General Corporation 8-9

Appendix A

ASCII Character Set

LEGEND:

Character code in decimal

10_
@
Tk? finrc]i the octal ;alue of a character, locate
the character and combine the first two ; : o
digits at the top of the character’s column EBCDIC equivalent hexadecimal cod /
with the third digit in the far left column. Character

ocTAL[o0 01 04_
(BaoK- ~~1 SPACE
SPABE) -

HT
(TAB)
NL

(NEW-
LINE)

"

(QuoTE) o=

VT
VERT
AB)

=51 (APOS)

14_

79| (GRAVE) g5

a
b
: ¢ [
92, 108 116
'. ::.: d o3 I e t |
v |12 101, 1og 117
) I 1 I - A 1 !
941 _ 102 110 118 _ -
\Y 5F T or 86, f 95, n A5, v AT (TILDE)
% 108 111 118 27| DEL
i . 51 W o] or-e] ¢ %] ©° Tas| W [gz]mrUBOLT)
Character code in octal at top and left of charts 1‘ or ~ means CONTROL
INT-00850

End of Appendix

093-000242 Licensed Material--Property of Data General Corporation A-1

Appendix B

Pseudo-Op Summary

Table B-1 lists and describes the AOS/VS Macroassembler pseudo—ops. Each entry in
the table indicates whether that pseudo-op can function as an assembler directive and/or
a value symbol. For more information, refer to the following sections of this manual:

Chapter 7 contains a complete description of each pseudo-op.
® Chapter 6 describes the various categories of pseudo-ops.

& “Permanent Symbols” and “Pseudo-ops” in Chapter 2 describe the properties of
pseudo-op mnemonics and also explain the difference between assemble directives
and value symbols.

e “Symbol Interpretation” in Chapter 3 explains how the Macroassembler resolves
pseudo-ops that appear in your program.

Table B-1 Pseudo-Op Summary

Assembler Value

Pseudo-op Directive Symbol Description
. (period} X Current value of location counter
.ALIGN X Align location to a memory boundary
LARGC, .ARGCT X Number of arguments passed to a macro
LASYM X Deflne an accumulating symbol
.BLK X Reserve a block of data words
.CALL X Create data word with call relocation
.COMM X Define a hamed common symbol
.CSiZ, .CSIZE X Set size of unnamed common area
.DALC X Define an ALC (ADD) instruction
.DCMR X Define ELDB-format instructions
.DEMR X Define EJMP-format instructions
.DERA X Define ELEF-~format instructions
.DEUR X Define SAVE-format instructions
.DFLM X Define FAMS-format instructions
.DFLS X Define FSST-format instructions

(continues)

093-000242 Licensed Material-—Property of Data General Corporation B-1

B-2

Table B-1 Pseudo~Op Summary

Appendix B

Assembler Value

Pseudo-op Directive Symbol Description
.DIAC X Define HLV-format instructions
.DICD X Define ADI-format instructions
.DIMD X Define ClOl-format instructions
.DIMM X Define ADDI-format instructions
.DIMS X Define WSEQI-format instructions
.DIO X Define NIO-format instructions
.DIOA X Define DIA-format instructions
.DISD X Define PSH-format instructions
.DISS X Define SGT-format instructions
.DIWM X Define WADDI-format instructions
.DIWS X Define WUGTI-format instructions
.DLBA X Define LLEFB-format instructions
.DLBR X Define LPEFB-format instructions
.DLCM X Define LNADI-format instructions
.DLMI X Define LCALL-format instructions
.DLMO X Define LNDO-format Instructions
.DLMR X Define LPEF-format instructions
.DLMS X Define LNDSZ-format instructions
.DLRA X Define LLEF-format instructions
.DMR X Define JMP-format instructions
.DMRA X Define LDA-format instructions
.DO X Repetitlvely assemble conditlonal code
.DTAC X Define NOVA-4 LDB-format Instructions
.DUNR X Define WRTN and other Instructions
.DUNS X Define DSZTS and other instructions
.DUSR X Define a user symbol
.DUWR X Define WDINC-format Instructions
.DUWS X Define NFSSS-format instructions
.DWMM X Define DERR-~format instructions
.DWMR X Define WBR-format instructions
.DWMS X Define WSKBO-format instructions
.DWORD X Create two-word data words
.DWXO X Define WXOP-format instruction
.DXBA X Define XLEFB-format instruction
.DXBR X Define XPEFB-format instruction
.DXCM X Deflne XNADI-format instruction
.DXMI X Deflne XCALL-format Instruction
.DXMO X Define XNDO-format instruction
.DXMR X Define XPEF-format instruction
.DXMS X Define XNDSZ~format instruction

Licensed Material--Property of Data General Corporation

{continues)

093-000242

)

Table B-1 Pseudo-Op Summary

Appendix B

093-000242

Assembler Value
Pseudo-op Directive Symbol Description

.DXoP X Define XOP-format instruction

.DXRA X Define XLEF-format instruction

.EJEC, .EJECT X Begin a new page of the listing

.ELSE X Reverse sense of conditional assembly

.ENABLE X Control defaults

.END X Terminate assembly

.ENDC X Terminate conditional assembly

ENT X Define a global entry symbol

.ENTO X Define an overlay entry symbol

.EOF X Explicit end-of-file marker

.EOT X Explicit end-of-file marker

.ERROR X Report a user-defined error message

.ESC X Macro escape character

LEXTC X Define a chain-link external

EXTD X Define 8-bit address external

.EXTDA X Define 8-bit address external

.EXTDAN X Define 8-bit address of one word

.EXTDAW X Define 8-bit address of two words

LEXTDD X Define 8-bit data external

EXTG X Define 32-bit data external

LEXTL X Define 32-bit address external

EXTLA X Define 32-bit address external

LEXTLAN X Define 32-bit address of one word

EXTLAW X Define 32-bit address of two words

.EXTLD X Define 32-bit data external

.EXTN X Define 16-bit address external

EXTNA X Define 16-bit address external

.EXTNAN X Define 16-bit address of one word

LEXTNAW X Define 16~bit address of two words

.EXTND X Define 16-bit data external

.EXTU X Make all undefined symbols external

.FORC, FORCE X Set library force-load flag

.GADD X Create data word with word relocation

.GATE X Create gate entry with ring field

.GLOC X Place data relative to location

.GOTO X Jump ahead in conditional assembly
(continues)

Licensed Material--Property of Data General Corporation B-3

Table B-1 Pseudo-Op Summary

Appendix B

Assembler Value

Pseudo-op Directive Symbol Description
.GREF X Create data word with gref relocation
.IFE X Begin conditional assembly
AFG X Begin conditional assembly
FL X Begin conditional assembly
AFN X Begin conditional assembly
.KCAL, .KCALL X Create data word with call relocation
.LCNS X Begin listing page with DG header
LMIT X {Not supported by AOS/VS MASM)
.LocC X X Place data relative to location
.LPOOL X Create a literal pool
.MACR, .MACRO X Define a macro
.MCAL, .MCALL X Return flag on first call to macro
NLUIT X Create literal pools in NREL
.NOCO, .NOCON X X Suppress listing of conditional code
.NOLO, .NOLOC X X Suppress listing of noncode
.NOMA, .NOMAC X X Suppress listing of macro expansions
.NREL X Place data in relocatable NREL
.OB X Name object file
.PART X Place data in a user-defined partition
.PASS X Return pass number
.PENT X Define a procedure-entry symbol
.POP X Return and pop item from top of stack
.PTAR, .PTARG X Create data with target relocation
.PUSH X Push item onto top of stack
.RB X Name object file
.RCAL, .RCALL X Create data word with call relocation
.RCHA, .RCHAIN X Create data word with call relocation
.RDX X X Radix for numeric input
.RDXO X X Radix for numeric output on listing
.REV X Set object module revision number
.SKIP X Flag if previous instruction may skip
.SWORD Create signed data words
.TARG Create data with target relocation
LTITL, LTITLE X Set object module title

Licensed Material--Property of Data General Corporation

(continues)

093-000242

VAR

Appendix B

Table B-1 Pseudo-Op Summary

Assembler Value

Pseudo-op Directive Symbol Description
.TOP X Return item from top of stack
.TSK X Set maximum concurrent task count
TIXT X Create data from text string
.TXTE X Create even-parity data from string
TXTF X Create one-parity data from string
TXTM X X Set high/low packing in text strings
TXTN X X Add nuil byte to text strings
.TXTO X Create odd-parity data from string
.UWORD X Create unsigned data words
WORD X Create one-word data words
XPNG X Delete symbols from symbol table
.ZREL X Place data In relocatable ZREL

{concluded)

End of Appendix

093-000242 Licensed Material--Property of Data General Corporation

Appendix C

Errors

The Macroassembler can generate two types of errors:
& command line errors
& assembly errors

Command line errors are errors you make when entering the MASM command line.
Assembly errors are errors in your source module itself.

The following two sections of this appendix list and describe the errors in these two
categories.

Command Line Errors

When you enter a MASM command line, the Macroassembler checks that it conforms to
the proper syntax. If it does not, MASM returns a short message describing the error. In
addition, if your command line is in error, MASM does not process your source module
at all.

Table C-~1 lists and describes the command line error messages.

Refer to Chapter 8 for a complete discussion on the MASM command line, including a
complete list and description of all MASM command line switches.

Assembly Errors

If your MASM command line is correct, the Macroassembler assembles your source
module into its binary equivalent. During this process, MASM may detect errors in your
source statements. We call these assembly errors.

The Macroassembler always produces a listing of error messages; you cannot suppress it.
By default, MASM places error messages in the generic file @OUTPUT. You can direct
the error listing to a specific file by using the /E=filename switch on the MASM
command line. In addition, MASM also reports errors at the end of each assembly
listing. Table C-2 lists and describes the assembly error messages. Refer to “Error
Listing” in Chapter 4 for more information about how MASM reports assembly errors.

083-000242 Licensed Material--Property of Data General Corporation C-1

Appendix C

Table C-1 MASM Command Line Errors

Error Message

Description

/<switchname> SWITCH REQUIRES AN
ARGUMENT (See Note 1.)

/<switchname>[=<argument>] IS A
DUPLICATE SWITCH (See Note 1.)

/<switchname>=<argument> |S AN
ILLEGAL ARGUMENT VALUE
(See Note 1.)

/<switchname>[=<argument>] IS AN
UNKNOWN OR NON-UNIQUE SWITCH
{See Note 1.)

/<swltchname>=<argument> SWITCH
DOES NOT ACCEPT AN ARGUMENT
(See Note 1.)

APPEND AND/OR WRITE ACCESS DENIED,
FILE <filename> (See Notes 1 and 2.)

COMMAND REQUIRES ARGUMENTS
(See Note 1.)

FILE ACCESS DENIED, FILE <filename>
(See Notes 1 and 2.)

FILE DOES NOT EXIST, FILE <filename>
(See Notes 1 and 2.)

ILLEGAL FILE TYPE, FILE <filename>
(See Notes 1 and 2.)

INVALID PS FILE REVISION,
FILE <filename> (See Note 1.)

READ ACCESS DENIED, FILE <filename>
(See Notes 1 and 2.)

WRITE ACCESS DENIED, FILE <filename>
(See Notes 1 and 2.)

The switch requires an argument, separated from it
with an “=".

The switch appears more than once on the same
argument, e.g., XEQ MASM/N/N.

MASM reports this error if a switch expects a
numeric argument and the argument was nonnumeric.
It is also reported if a numeric constant is badly
formed (12D4), or the value is not in the range
permitted, e.g., /CPL accepts values between 80 and
136 only.

The switch is either not known to MASM at all, such
as /XYZ, or is not unique (/X for /XPAND and
/XREF).

The switch cannot have an argument attached to it.

MASM was unable to either open or read to one of its
output files, either the error, list. object or PS file.

MASM was executed without giving it the name of at
least one input file on the command line.

MASM was able to open an input file, but was unable
to read it due to lts ACL (access control list).

MASM could not find <filename> either with or
without its assumed extension. This can occur on a
source file or a PS file.

MASM was unable to read <filename> because it was
not a text or data file. This usually occurs when
MASM has opened a directory.

Before MASM uses a PS file, it checks the header
revision field to be sure that it is valid. If it is not,
MASM aborts with this error. NOTE: AOS/VS MASM
will not accept PS files built by MASM16.

MASM was able to open an input file, but was unable
to read it due to its ACL (access control list).

MASM was unable to either open or read to one of its
output files, either the error, list, object or PS file.

Note 1.

Note 2.

FATAL ERROR.

AOS/VS SYSTEM ERROR.

Licensed Material-—Property of Data General Corporation

0393-000242

Appendix C

Table C-2 Assembly Errors

Error Message

Description

A MACRO MAY NOT BE USED IN AN
EXPRESSION

ARGUMENT IS NOT A VALID SYMBOL
NAME

ARGUMENT MUST BE FOLLOWED BY =

ARGUMENT VALUE IS OUT OF RANGE

CONFLICTING .ENABLE PSEUDO-OP

ARGUMENTS

CONFLICTING .PART PSEUDO-OP
ARGUMENTS

DATA VALUE IS OUT OF RANGE

DUPLICATE .PART PSEUDO-OP
ARGUMENTS

DUPLICATE .ENABLE PSEUDO-OP

ARGUMENTS

DUPLICATE <name> PSEUDO-OP

ENTRY SYMBOL IS UNDEFINED

ERROR IN A CONSTANT

ERROR IN .TXT PSEUDO-OP ARGUMENT

A macro symbol cannot be used as an operand in an
expression.

A symbol name is made up of 1 to 32 characters.
Certain characters are illegal in symbol names. See
the section “Symbol Names" in Chapter 2.

.DUSR and the instruction-defining pseudo-ops
expect a symbol name, followed by an =, followed by
either an instruction or an expression,

The value of an instruction’s argument is too large to
fit in the field given. The allowable range depends on
the type of instruction, the size of the field, and in
some cases, the index mode.

Two keyword arguments which are logical converses
of each other appear in a single .ENABLE statement.
An example is .ENABLE DWORD UWORD.

Two keyword arguments which are logical converses
of each other appear in a single .PART statement.
An example is .PART A SHORT LONG.

Signed or unsighed data words, generated with either
the .SWORD or .UWORD pseudo-ops. or with
.ENABLE SWORD or .ENABLE UWORD in force,
must fit within one 16-blt data word, For SWORD, a
data word must be In the range 10000 to +77777
(octal}, while for .UWORD., it must be in the range
000000 to 177777 (octal).

The same keyword argument appears more than once
in a single .PART statement.

The same keyword argument appears more than once
in a single .ENABLE statement.

Two pseudo-ops, .OB and .REV, can appear only
once per assembly.

If a symbol Is to be a .ENT, .PENT or .ASYM, its
value must be defined elsewhere in the assembly.

A constant, decimal constant, or floating-point
constant contained a numeric character not valid in
the current radix, e.g. 9 when the radix is 8.

The ASCI| values of characters can be given within
.TXT arguments by surrounding them with < and >,
e.g., .TXT <377>. MASM reports an error if a <
without a matching > ocecurs on the same line.

093-000242

(continues)

Licensed Material--Property of Data General Corporation C-3

Appendix C

Table C-2 Assembly Errors

A
S

Error Message

Description

EXPRESSION MAY NOT BE
RELOCATABLE

EXPRESSION OPERAND MAY NOT BE

RELOCATABLE

EXTRANEOUS ARGUMENTS TO .TXT

PSEUDO-OP

FORMAT ERROR

ILLEGAL ALC INSTRUCTION OPTIONS

ILLEGAL RELOCATION

INCORRECT NUMBER OF ARGUMENTS

INFINITELY RECURSIVE MACRO
ARGUMENT

INSTRUCTION IS TOO LARGE

INSTRUCTION MAY NOT BE
RELOCATABLE

A relocatable expression was used in a context where
only an absolute expression is allowable. For example,
most numeric pseudo-op arguments must be
absolute.

An operator within an expression, such as the *&” or
“1” operator. expects one or both of its operands to
be absolute.

The .TXT pseudo-op accepts exactly one argument.
but more than one argument was found. This error
occurs frequently when the text-delimiting character
is mistakenly used in the middle of a text string.

This error covers all other syntax errors, Including an
unexpected character. null arguments. etc.

Because ALC (MOV, ADD, INC, etc.) instructions
with the no load (#) option and either the no-skip or
always-skip option have the same value as other
instructions., MASM reports this as an error.

This error is reported whenever the relocation A
property of an expression is not allowed in the context

it was found in. Examples of this include: attempting

to muitiply a byte- relocatable expression by 2; using

a relocatable argument to an instruction where only

an absolute is expected; and conversely, using an

absolute expression where a relocatable one is

expected.

All instructions expect from 1 to 4 arguments, and,
depending on the type of instruction, some are
optional. If too few are given, MASM assumes they
are zero. If too many are given, they are ignored.
This error Is also reported when more than one data
item is given in a single source line.

An argument to a macro contains a reference to
Itself, either directly or indirectly. For example, the
first argument to a macro cannot contain a reference
to the first argument, e.g. “1.

If an instruction's value is assighed to a symbol, e.g.,
.DUSR .SYST=JSR@17, the instruction must be either
one or two words in size.

When setting a symbol to an instruction’s value, e.g.
.DUSR .SYST=JSR@17, the instruction's arguments
cannot be a label or any other relocatable expression.

Licensed Material--Property of Data General Corporation

(continues)

093-000242

Appendix C

Table C-2 Assembly Errors

Error Message

Description

INSUFFICIENT MEMORY AVAILABLE.
FILE <filename> {See Notes 1 and 2.)

INTERNAL EXPRESSION CONSISTENCY
ERROR (See Note 3.)
INVALID USE OF INDIRECTION

INVALID USE OF NOLOAD OPTION

INVALID USE OF .ELSE PSEUDO-OP

INVALID USE OF .ENDC PSEUDO-OP

INVALID .NREL PSEUDO-OP ARGUMENT
VALUE

LABEL IS MULTIPLY DEFINED

LABEL IS NOT A VALID SYMBOL NAME

LABEL VALUE PHASE ERROR
LITERAL POOL PHASE ERROR

LITERALS MAY NOT BE USED PRIOR
TO .NLIT PSEUDO-OP

MASM allocates memory dynamically for many of its
internal databases. If this memory is exhausted,
MASM aborts with this error. This error is almost
always caused by an Infinite recursion of macro calls,
e.g., a macro unconditionaily calling itself.

Some problem exists In the internal representation of
an expression. Correct all other errors (if any) first.

The indirection indicator (@) can be used only with an
instruction which can be indirected.

The no-load indicator (#) can be used only with the
ALC (MQV, ADD, SUB, etc.) instructions.

A .ELSE pseudo-op can occur only if a properly
nested .IFx pseudo-op appeared prior to it. A .ELSE
cannot terminate a .DO conditional loop, nor can it be
the target of a .GOTO pseudo-op.

A .ENDC pseudo-op can occur only if a properly
nested .IFx or .DO pseudo-op appeared prior to it. A
.ENDC cannot be the target of a .GOTO pseudo-op.

The only allowable values for the argument to .NREL
in AOS/VS MASM are: 0,1, 2,4,5,6o0r7.

A new definition of a symbol is in conflict with a
previous definition. The previous definition may be in
the same source, in the .PS file, or in MASM's
permanent table of instructlons and pseudo-ops.

A symbol name is made up of 1 to 32 characters, the
first being alphabetic, the rest being either alphabetic
or numeric.

Because AOS/VS MASM makes two passes over the
source, it checks that the relocatable value of labels
are the same from pass to pass, and reports an
error if they are not. This is usually due to omission
ar inclusion of code or data on the second pass and
not on the first. This can happen either from the use
of the /PASS1 command-line switch or the .PASS
pseudo-op.

The .NLIT pseudo-op affects placement of literal
pools, and so it must occur prior to any literal use in
the source. .NLIT is normally placed at the beginning
of a source file.

093-000242

(continues)

Licensed Material--Property of Data General Corporation C-5

Appendix C

Table C-2 Assembly Errors

Error Message

Description

UNKNOWN .PART PSEUDO-OP
ARGUMENT

UNKNOWN .ENABLE PSEUDO-OP
ARGUMENT

MISMATCHED PARENTHESIS IN AN
EXPRESSION

OPERAND OF THE B OPERATOR IS
OUT OF RANGE

OPERAND OF THE S OPERATOR IS
OUT OF RANGE

PARTITION ATTRIBUTES CONFLICT
WITH PREVIOUSLY DEFINED
ATTRIBUTES

POSSIBLE SKIP AT END OF PARTITION

POSSIBLE SKIP INTO DATA

POSSIBLE SKIP INTO INSTRUCTION

POSSIBLE SKIP INTO TEXT

STACK IS EMPTY

SYMBOL IS MULTIPLY DEFINED

The pseudo-op, .PART, accepts additional keyword
arguments controlling its operation. The arguments
must be in uppercase if case-sensitive assembly is

being done.

The pseudo-op. .ENABLE, accepts additional
keyword arguments controlling its operation. The
arguments must be in uppercase if case-sensitive
assembly is being done.

Parentheses must be properly nested and balanced in
expressions. Space, tab or any other break
character cannot appear in the middle of an
expression.

The second operand of the shift operator, B, must
be within its appropriate range (must be between 0
and 15 decimal).

The second operand of the shift operator, S,
must be within its appropriate range {must be
between 0 and 31 decimal).

The partition attribute keywords given on one partition
definition differ with those given on another definition
of the same partition in the same assembly. Some
attributes can be resolved without error, e.g.,
SHORT and LONG, but MASM reports an error for
SHARED-UNSHARED and DATA-CODE attribute
conflicts.

MASM generally knows when an instruction could
possibly attempt to skip the word following the
instruction. If the word directly following the
instruction is hot a one-word data item, MASM
reports that an instruction Is skipping either into a
two-, three—-, or four-word instruction, into a
two-word data item, or into a .TXT pseudo-op. This
error is also reported when the last instruction

In a partition skips.

Either the .POP and/or .TOP value pseudo-op was
used at a point in the assembly process when no
elements were pushed onto the stack.

A new definition of a symbol is In conflict with a
previous definition. The previous definition may be in
the same source, in the .PS file, or in MASM's
permanent table of instructions and pseudo-ops.

(continues)

C-6 Licensed Material-—-Property of Data General Corporation 093-000242

Appendix C

Table C~2 Assembly Errors

Error Message

Description

SYMBOL IS UNDEFINED
SYMBOL MAY NOT BE AN ENTRY

SYMBOL MUST BE AN EXTERNAL

SYMBOL TYPE CONFLICT

SYNTAX ERROR IN A CONSTANT

SYNTAX ERROR IN AN EXPRESSION

SYMBOL TABLE IS FULL, FILE
<filename> (See Note 1.}

TOO MANY ARGUMENTS TO A MACRO

UNTERMINATED CONDITIONAL

UNTERMINATED MACRO CALL

UNTERMINATED .TXT PSEUDO-OP
ARGUMENT

An expression refers to a symbol which is not defined
in this module, the PS file, or the permanent table.

A macro, external or permanent instruction symbol
cannot be a .ENT, .PENT or .ASYM.

The .CALL, .TARG and other pseudo-ops accept as
an argument a symbol, and that symbol must be an
external for the call to be resolved correctly.

A symbol cannot be an external and an entry, or an
external and macro, etc.

A constant, decimal constant or floating-point
constant contained an unexpected character, for
example, 45Z4.

An expression was not formed correctly. An operand
may be missing (4++5), or an operator may be
missing (LDA 4+,3). Note that MASM expressions
cannot contain spaces, e.g., 4 + 5 is not legal.

As of this writing, MASM's symbol table has room for
approximately 32.767 symbols. If this iimit is
exceeded, MASM aborts with this error. Note that
macro symbol definitions use significantly more
symbol table space than other symbols. Eliminating
unnecessary text from macros may eliminate symbol
table overflow,

A macro cannot be called with more than 64
arguments.

A conditional part of an assembly begun with a .DO
or .IFx must be explicitly terminated with a .ENDC
before the end of sither the macro or the file that the
conditional assembly began in.

Actual macro arguments on a macro call can be
passed inside of square brackets, and can extend
over several lines. However, if a [is seenbut no] is
seen by the end of the input file, MASM reports an
error.

The argument to .TXT must be a text string which
must begin and end with the same character. MASM
reports an error if it reaches the end of the input file
without finding a closing text delimiter.

(continues)

0393-000242 Licensed Material--Property of Data General Corporation c-7

c-8

Appendix C

Table C-2 Assembly Errors

Error Message

Description

USER ERROR

XPNG OF A PSEUDO-OP

<name> PSEUDO-OP ARGUMENT
VALUE IS OUT OF RANGE

<name> PSEUDO-OP ARGUMENT
VALUE MUST BE NON-NEGATIVE

<name> PSEUDO-OP DOES NOT
ACCEPT ARGUMENTS

<name> PSEUDO-OP MAY NOT BE
USED IN AN EXPRESSION

<name> PSEUDO-OP REQUIRES
ARGUMENT{(S)

.LMIT PSEUDO-OP IS NOT SUPPORTED

This error is reported whenever the .ERROR
pseudo-op is seen.

.XPNG can remove instructions, but not pseudo-ops,
from the permanent table of instructions and
pseudo-ops.

Arguments to .REV and .TSK must be in the range
0-255 (decimal) for MASM to format them correctly
in the object file. The .RDX pseudo-op accepts 2-20
(decimal), while .RDXO accepts 8-20 (decimal).
.ALIGN and .PART's ALIGN= attribute accept 0-10
(decimal).

The numeric arguments to the .BLK, .COMM,
.CSIZE, and .DO pseudo-ops must be zero or
greater.

Many pseudo-ops do not accept arguments, e.g., ho
text may appear after them on the line (except for
comments).

Some pseudo-ops return values when used in an
expression, e.q., .MCALL or .RDX. Others, like S
.MACRO or .NREL, do not.

Many pseudo-ops, including .ENABLE., .ENTO, .REV,
.PART, and .COMM require at least one argument,
and will accept more.

The .LMIT pseudo-op is permitted with MASM16 and
some other Data General macroassemblers, but not
with AOS/VS MASM.

Note 1. FATAL ERROR.

Note 2. AOS/VS SYSTEM ERROR.

Note 3. MASM INTERNAL ERROR.

(concluded)

If this error persists, and there are no other

user errors, please report it to your system manager or the appropriate Data
General MASM support personnel.

End of Appendix

Licensed Material--Property of Data General Corporation 083-000242

Appendix D

Compatibility between AOS MASM,
AOS/VS MASM16, and AOS/VS MASM

In general, AOS/VS MASM is upward-compatible from AOS MASM and AOS/VS
MASM16. AOS/VS MASM can usually assemble any assembler source that the 16-bit
assemblers can. The opposite is very often not true. The following are known
inconsistencies in upward—compatibility from AOS MASM and AOS/VS MASM16 to
AOS/VS MASM:

¢ Command-line changes: AOS/VS MASM recognizes both its switches and AOS
MASM’s. However, some items may require additional switches for compatibility with
AOS MASM. These switches are:

/16 Forces generation of a 16-bit object file, and makes the size of data
words 16 bits.

/$ Causes the $ character to expand to a macro invocation number.

/SYMBOL=5 Since AOS MASM’s default symbol length is five characters, and
AQOS/VS MASM’s default is eight. Omit this switch if the AOS
MASM /8 switch was used.

e Syntax of instructions using literals: When literals are used in AOS/VS MASM,
commas must be placed between instruction arguments. AOS MASM does not require
this. For example, “LDA 1,=2" is acceptable to both, but only AOS/VS MASM will
not accept “LDA 1 =27,

® Non-line-replacement macros: AOS MASM permits one-line macros to be defined
and used in the middle of statements, e.g., “. TITLERUNT [SYST] [REV]”, where
SYST and REV are macro names. AOS/VS MASM does not permit this and will
report a format error.

& MNacro termination character placement: The “%” that terminates a macro definition
must be the first character on the line in AOS/VS MASM. This restriction does not
exist in AOS MASM.

e Continued macros: AOS MASM permits a macro definition to be closed, then
restarted and additional text added. AOS/VS MASM considers this as a multiple
symbol definition error.

¢ Spelling errors in macro and pseudo-op names: Because AOS MASM uses only the
first five characters of macro and pseudo-op names, even when the /8 switch is set, it
would not flag spelling errors in the remaining characters. AOS/VS MASM will report
an error if, for instance, “.NOCON?” is misspelled as “.NOCOC”.

083-000242 Licensed Material-—Property of Data General Corporation D-1

Appendix D

“ " in constants to resolve “B.” “D.” and “E” ambiguities: When using radices
greater than 10, the characters “B”, “D” and “E” could be either digits or operators.
To resolve this ambiguity, AOS MASM permits an “_" to precede the character if it
is to be interpreted as an operator. AOS/VS MASM will not recognize this and will
report it as an error.

JIMIT pseudo-op: AOS/VS MASM will report that .LMIT is unimplemented.

.PUSH .LOC--.LOC .POP: AOQOS MASM recognizes a special case in .PUSH .LOC,
followed at some point by a .LOC .POP. The location is reset to the end of the
pushed partition, not the actual location pushed. AOS/VS MASM does not do this.

Conflicts with permanent symbols: AOS/VS MASM has many more pseudo-ops than
AOS MASM, and in addition has the instruction set permanently built into it.
Sometimes these permanent symbol names will conflict with user symbol name
definitions, and AOS/VS MASM will report an error.

Miscellaneous syntax errors: AOS/VS MASM will catch errors that AOS MASM will
miss, such as “LDA 1.TEMP” or “LDA 1,,TEMP,3”.

Unterminated conditionals: AOS MASM will automatically close any
conditional-assembly blocks at the end of a macro. AOS/VS MASM will report an
error.

Symbol name length may not be changed at assembly time: AOS MASM permits a
five~character PS file to be used in an eight-character assembly and vice-versa.
AOS/VS MASM permits the name length to be set only when the PS file is built.

Default index mode sometimes different: AOS MASM will generate index mode 0 in
a reference from .NREL 1 to .NREL 0, by default. AOS/VS MASM will generate
index mode 1 by default. In other cases, the default will be the same.

“.” and labels always relocatable: AOS MASM makes “.” and labels relocatable if
they are part of ZREL or NREL, and absolute if they are in absolute. Because of the
32-bit ring architecture, AOS/VS MASM always makes them relocatable, even in
absolute. This affects where symbols can be used in expressions.

Some relocatable expressions not permitted: AOS MASM allows some expressions
involving relocatable operands which AOS/VS MASM does not. “X/2”, where X is
byte-relocatable, is an example. This also is the case with the relational operators and
relocatable symbols.

Some expressions inside .TXT arguments: AOS MASM will assemble .TXT ‘<<”>>’
correctly. AOS/VS MASM will not.

T’ undocumented operator: T’ before a symbol name in AOS MASM gets relocation
information on the symbol. AOS/VS MASM does not support this and will report an
error.

Single— vs. double—precision internal results: AOS MASM uses single-precision in
expression evaluation while AOS/VS MASM uses double-precision. As a resulr,
177777==-1 is true in AOS MASM, false in AOS/VS MASM.

Licensed Material--Property of Data General Corporation 093-000242

A

Appendix D

PC-relative with an_explicit index of 1: If a memory-reference instruction has a
relocatable displacement and an explicit index of 1, AOS/VS MASM will
automatically subtract “.” from the displacement. AOS MASM will not. However,
AOS MASM sources which use “EJMP (X-.)&177777,1” 1o accomplish the same
result will still assemble correctly.

Range of ELEF arpuments: When using ELEF to load a constant, the constant must
be a 15-bit unsigned number (e.g., between 0 and 32767). AOS MASM would not
check this. AOS/VS MASM will check this and report an error.

Literal pool differences: AOS/VS MASM puts items in literal pools in the reverse
order from AOS MASM.

PS files: PS files built by AOS MASM are not usable with AOS/VS MASM.

Object files: Object files may or may not match word-lor-word, even if they are
functionally equivalent.

Listing files: Listing files will not be the same.
NREL, argument values: AOS MASM accepts any nonzero .NREL argument as

equivalent to “.NREL 1”. AOS/VS MASM allows only 0, 1, 2, 4, 5, 6 and 7 as an
argument to .NREL, and assumes particular meaning for each.

End of Appendix

093-000242 Licensed Material--Property of Data General Corporation D-3

093-000242

Index

Within the index, the letter “f”
following a page entry indicates “and
the following page”; the letters “ff”
following a page entry indicate “and
the following pages.”

A

Absolute

addresses 3-20, 3-27

code 3-11

expressions 2-29, 3-20

values 3-19
AC-relative addressing 3-27
Address space, logical 3-10
Addressing

absolute 3-20, 3-27

AC-relative 3-27

indirect 2-18, 2-29f, 2-39

PC-relative 3-27ff
ALIGN attribute 3-9, 3-12f, 7-1011ff
ALIGN pseudo-op 6-2, 7-3
Alignment, word 7-3
AND operator (&), logical 2-23
.ARGCT pseudo-op 5-10, 6-4, 7-4
Argument switches 8-2, 8-5
Arguments

dummy 5-3ff

formal 5-3ff

macro 5-3ff

null 5-8
Arithmetic and logic class instructions

2-30, 2-35, 7-10

Arithmetic operators 2-21
ASCII characters 2-1ff, A-1
Assembler directives 2-20, 2-36
Assembly 1-2f

errors C-1ff

language 1-2

language instructions 2-34

listing 1-4, 4-2, 4-4f

conditional 5-11ff, 6-3, 7-35,

7-56, 7-61, 7-81

Assignment statements 2-37

Asterisks (**) 2-30f, 4-7, 5-10

.ASYM pseudo-op 6-5ff, 7-5

At sign (@) 2-18, 2-29f, 2-39

Atoms 2-5f, 3-5
special 2-29

Attribute
ALIGN 3-9, 3-12f, 7-101(f
CODE 3-9, 3-12, 7-101ff
COMM 3-12, 7-101ff
DATA 3-9, 3-12, 7-101ff
GLOBAL 3-9, 3-13, 7-101ff
LOCAL 3-9, 3-13, 7-101ff
MESS 3-9, 3-13, 7-101ff
NOMESS 3-9, 3-13, 7-101ff
NORM 3-12, 7-101ff
SHARED 3-9, 3-12, 7-101ff
UNSHARED 3-9, 3-12, 7-101ff

B

Binary operators 2-21f
Bit alignment operator

B 2-9, 2-25ff

S 2-24ff
.BLK pseudo-op 6-2, 7-6
Byte pointers 3-23

C

.CALL pseudo-op 6-4, 7-7, 7-105
Call, macro 5-5ff
Case sensitivity 3-4
Characters

in macros, special 5-7

ASCII 2-1ff, A-1
CLI 1-7
2CLOC 7-9
CODE attribute 3-9, 3-12, 7-101{f
COMM attribute 3-12, 7-101ff
.COMM pseudo-op 4-8, 6-6f, 7-8
Command line errors C-1ff
Comments 2-31, 2-33f
Communication, inter-module 6-5ff
Compatability D-1ff
Conditional assembly 5-11ff, 6-3,

7-35, 7-56, 7-61, 7-81

Licensed Material--Property of Data General Corporation Index-1

Constants, .DWMM pseudo-op 6-11, 7-43
single—precision floating—point .DWMR pseudo-op 6-11, 7-44
2-13ff .DWMS pseudo-op 6-11, 7-43
/CPL= switch 4-6, 4-8 .DWORD pseudo-op 2-7, 2-38,
Cross-reference listing 1-4, 4-8f 6-4, 7-45, 7-57¢
.CSIZE pseudo-op 6-12, 7-9 .DWXO pseudo-op 6-11, 7-46
.DXBA pseudo-op 6-11, 7-47
.DXBR pseudo-op 6-11, 7-48
D : .DXCM pseudo-op 6-11, 7-49
.DXMI pseudo-op 6-11, 7-50
.DXMO pseudo-op 6-11, 7-51
.DXMR pseudo-op 6-11, 7-52
.DXMS pseudo-op 6-11, 7-52
.DXOP pseudo-op 6-11, 7-53
.DXRA pseudo-op 6-11, 7-54

.DALC pseudo-op 6-11, 7-10
DATA attribute 3-9, 3-12, 7-101{f
Data formatting pseudo-ops 6-4f
Data statements 2-38

.DCMR pseudo-op 6-11, 7-11
Debugging 1-3

Decimal, packed 5-15ff E
Delimiters 2-7

.DEMR pseudo-op 6-11, 7-12
.DERA pseudo-op 6-11, 7-13
.DEUR pseudo-op 6-11, 7-14
.DFLM pseudo-op 6-11, 7-15
.DFLS pseudo-op 6-11, 7-16
.DIAC pseudo-op 6-11, 7-17 .END pseudo-op 1-5f, 6-2f, 7-60
.DICD pseudo-op 6-11, 7-18§ .ENDC pseudo-op 5-11, 6-3, 7-35,
.DIMD pseudo-op 6-11, 7-19 7-61

.DIMM pseudo-op 6-11, 7-20 .ENT pseudo-op 4-8, 6-5ff, 7-62
.DIMS pseudo-op 6-11, 7-20 .ENTO pseudo—-op 7-63

.DIO pseudo-op 6-11, 7-21 .EOF pseudo~op 6-2f, 7-64

.DIOA pseudo-op 6-11, 7-22 .EOT pseudo-op 6-2f, 7-64
Directives, assembler 2-20, 2-36 .ERROR pseudo-op 6-7f, 7-65
.DISD pseudo-op 6-11, 7-23 Errors

.DISS pseudo-op 6-11, 7-23 assembly C-1ff

.DIWM pseudo-op 6-11, 7-25 command line C-1ff

.DIWS pseudo-op 6-11, 7-25 listing 1-4, 4-9ff

.DLBA pseudo-op 6-11, 7-26 messages C-1ff

.DLBR pseudo-op 6-11, 7-27 pass one 4-9

.DLCM pseudo-op 6-11, 7-28 pass two 4-9f

.DLMI pseudo-op 6-11, 7-29 syntax 3-5ff

.DLMO pseudo-op 6-11, 7-30 .ESC pseudo-op 7-66

.DLMR pseudo-op 6-11, 7-31 Executing

.DLMS pseudo-op 6-11, 7-31 MASM 1-2, 8-1

.DLRA pseudo-op 6-11, 7-32 vour program 8&-5

.DMR pseudo-op 6-11, 7-33 Expansion, macro 5-9f, 5-18ff
.DMRA pseudo-op 6-11, 7-34 Exponent 2-13

.DO loop 5-11 Expressions 2-6, 2-20{

.DO pseudo-op 5-11, 6-3, 7-35 absolute 2-29, 3-20

Dollar sign character (S§) 5-191 relational 2-23f
Double-precision integers 2-9f relocatable 2-29, 3-22f

.DTAC pseudo-op 6-11, 7-37 .EXTC pseudo-op 6-6f, 7-67
Dummy arguments 5-3ff .EXTD pseudo-op 3-18, 4-8, 6-6f,

/E= switch 4-11

.EJECT pseudo-op 4-6, 6-7f, 7-55

.ELSE pseudo-op 6-3, 7-56

.ENABLE pseudo-op 2-7, 6-12,
7-45, 7-57f, 7-117

Index—2

.DUNR pseudo-op 6-11, 7-38 7-68

.DUNS pseudo-op 6-11, 7-38
.DUSR pseudo—op 6-10f, 7-40
.DUWR pseudo-op 6-11, 7-42
.DUWS pseudo-op 6-11, 7-42

Licensed Material-—-Property of Data General Corporation

.EXTDA pseudo-op 6-6f, 7-68
.EXTDAN pseudo-op 6-6f, 7-68
.EXTDAW pseudo-op 6-6f, 7-68
.EXTDD pseudo-op 6-6f, 7-69

093-000242

Extension
OB 1-2, 4-2, 8-6
PR 1-2, 4-2, 8-6
.PS 8-6f
SR 1-2, 2-1, 4-2, 8-6
EXTG pseudo-op 6-6f, 7-71
.EXTL pseudo-op 3-18, 4-8, 6-6f,
7-5, 7-8f, 7-70
EXTLA pseudo-op 6-6f, 7-70
.EXTLAN pseudo-op 6-6f, 7-70
EXTLAW pseudo-op 6-6f, 7-70
EXTLD pseudo-op 6-6f, 7-71
.EXTN pseudo-op 3-18, 4-8, 6-6f,
7-8f, 7-72
.EXTNA pseudo-op 6-6f, 7-72
.EXTNAN pseudo-op 6-6f, 7-72
.EXTNAW pseudo-op 6-6f, 7-72
.EXTND pseudo-op 6-6f, 7-73
.EXTU pseudo-op 6-6f, 7-74

F

Factorial 5-14
/FF switch 4-6
File

object 1-2, 1-4

source 1-2
File termination 6-2f
File-termination pseudo-ops 6-2f
Filename extensions 8-6
Floating-point

constants, single-precision 2-13{f

number, normalized 2-13
.FORCE pseudo-op 6-12, 7-75
Formal arguments 5-3ff
Formatting, data 6-4f
Forward references 3-1
Function switches 8-2ff

G

.GADD pseudo-op 6-4, 7-76
.GATE pseudo-op 6-4, 7-77
Generated

numbers 5-18ff

symbols 5-18ff
GLOBAL attribute 3-9, 3-13,

7-1011f

Global symbols 2-17
.GLOC pseudo-op 3-11, 6-2, 7-78
.GOTO pseudo-op 6-3, 7-79
.GREF pseudo-op 6-4, 7-80

093-000242 Licensed Material--Property of Data General Corporation

I/0 instructions 2-35, 7-21f
IFE pseudo-op 5-11f, 6-3, 7-81
.IFG pseudo-op 6-3, 7-81
IFL pseudo-op 6-3, 7-81
JIFN pseudo-op 6-3, 7-81
Indirect addressing 2-18, 2-29f,
2-39
Indirection indicator 2-29f, 2-39
Input radix 2-8ff
Instruction symbols 2-17ff
Instructions
arithmetic and logic class - 2-30,
2-35, 7-10
assembly language 2-34
I/0 2-35, 7-21f
memory reference 2-29, 2-35,
3-271f, 7-12f, 7-57¢
Integer—generating formats, special
2-10ff
Integers
double-precision 2-9f
single-precision 2-7ff
Inter-module communication
pseudo-ops 6-5ff

K

KCALL pseudo-op 6-4, 7-83,
7-105

L

/L switch 4-6f, 4-9, 4-11
Labels 2-31ff, 3-7
.LCNS pseudo-op 6-7f, 7-84
Length, symbol 8§-8
Linking your program 1-2, 8-5
Listing
assembly 1-4, 4-2, 4-4f
cross-reference 1-4, 4-8f
error 1-4, 4-9ff
Listing-control pseudo-ops 6-7f
Literal pools 3-31, 6-5
Literal pseudo-ops 6-5
.LNCS pseudo-op 4-6
.LOC pseudo-op 2-20, 3-11, 6-2,
7-85

LOCAL attribute 3-9, 3-13, 7-101ff

Local symbols 2-17
Location
counter 3-10f, 7-2
pseudo-ops 6-2

Index-3

Index-4

Logical
address space 3-10
AND operator (&) 2-23
operators 2-21, 2-23
OR operator (1) 2-23
Long NREL 3-10
Loop, .DO 5-11
.LPOOL pseudo-op 6-5, 7-87
/LPP= switch 4-6, 4-8

M

Machine language 1-1
Macro
arguments 5-3ff
assembly pseudo-ops 6-4
call S5-5ff
expansions 5-9f, 5-18ff
symbols 2-19
MACRO pseudo-op 2-19, 4-8,
5-1ff, 5-5, 6-4, 7-88
Macroassembler 1-2ff
input 2-1f
Macros 2-36, 3-8, 5-1f, 6-4
special characters in 5-8
/MAKEPS switch 8-7, 8-9
Mantissa 2-13
MASM 1-2ff
executing 8-1
MASM.PS file 3-5, 4-1, 8-7
.MCALL pseudo-op 5-10f, 6-4,
7-89
Memory
locations 3-8f
partitions 3-9ff
reference instructions 2-29, 2-35,
3-27ff, 7-12f, 7-57f
MESS attribute 3-9, 3-13, 7-101{f
Messages, error C-1ff
Miscellaneous pseudo—ops 6-12
/MULTIPLE switch 6-10

N

/N= switch 4-2

Names, symbol 2-15

NLIT pseudo-op 3-31, 6-5, 7-90

No-listing indicator 2-30f, 4-7, 5-10

No-load indicator 2-30

.NOCON pseudo-op 4-6, 6-7f, 7-91

.NOLOC pseudo-op 4-6, 6-7f, 7-93

.NOMAC pseudo-op 4-6, 5-9f,
6-71, 7-95

NOMESS attribute 3-9, 3-13,
7-101ff

Licensed Material--Property of Data General Corporation

/NOPS switch 8-9
NORM attribute 3-12, 7-101ff
Normalized floating—point number
2-13
NOT operator, unary 2-22f
.NREL pseudo-op 1-6, 3-9, 3-11,
6-2, 7-97
NREL, 3-14
long 3-10
short 3-10
Null arguments 5-8
Number sign (#) 2-30
Numbers 2-7
normalized floating—point 2-13
generated 5-18ff
Numeric symbols 2-16f

o

/O= switch 4-2, 6-12, 8-6
.OB extension 1-2, 4-2, 8-6
.OB pseudo-op 6-12, 7-99
Object
file 1-2, 1-4, 4-2 -
module 1-2, 3-1
Operator priority 2-27ff
Operators
arithmetic 2-21
binary 2-21f
logical 2-21, 2-23
relational 2-21, 2-23
unary 2-21f
OR operator (!), logical 2-23

P

Packed decimal 5-15ff
.PART pseudo-op 3-9, 3-11, 3-14,
3-18, 4-8, 6-2, 7-101ff
Partitions,
memory 3-9f
predefined 3-13
user—defined 3-14
PARU.32.8R file 8-7
Pass one errors 4-9
.PASS pseudo-op 6-12, 7-104
Pass two errors 4-9f
PC-relative addressing 3-27ff
.PENT pseudo-op 6-5ff, 7-7, 7-105
Percent character (%) 5-3
Period (.) 7-2
Permanent symbol
files 1-4, 3-5, 3-8, 4-1, 8-7ff
table 3-2ff, 6-10
Pointers, byte 3-23
Pool, literal 3-31, 6-5

093-000242

093-000242

-POP pseudo-op 6-8, 7-106

PR
extension 1-2, 4-2, 8-6
file 8-5

Predefined partitions 3-13

Priority of operators 2-27ff

Program file 4-2

.PS
extension 8-6f
files 3-5, 3-8

/PS switch 8§-7f

Pseudo-op symbols 2-20

Pseudo-op
ALIGN 6-2, 7-3
ARGCT 35-10, 6-4, 7-4
ASYM 6-51f, 7-5
.BLK 6-2, 7-6
.CALL 6-4, 7-7, 7-105
.COMM 4-8, 6-6f, 7-8
.CSIZE 6-12, 7-9
DALC 6-11, 7-10
.DCMR 6-11, 7-11
.DEMR 6-11, 7-12
.DERA 6-11, 7-13
.DEUR 6-11, 7-14
.DFLM 6-11, 7-15
.DFLS 6-11, 7-16
.DIAC 6-11, 7-17
.DICD 6-11, 7-18
.DIMD 6-11, 7-19
.DIMM 6-11, 7-20
-DIMS 6-11, 7-20
.DIO 6-11, 7-21
.DIOA 6-11, 7-22
.DISD 6-11, 7-23
.DISS 6-11, 7-23
.DIWM 6-11, 7-25
.DIWS 6-11, 7-25
.DLBA 6-11, 7-26
.DLBR 6-11, 7-27
.DLCM 6-11, 7-28
.DLMI 6-11, 7-29
.DLMO 6-11, 7-30
.DLMR 6-11, 7-31
.DLMS 6-11, 7-31
.DLRA 6-11, 7-32
.DMR 6-11, 7-33
.DMRA 6-11, 7-34
.DO 5-11, 6-3, 7-35
.DTAC 6-11, 7-37
.DUNR 6-11, 7-38
.DUNS 6-11, 7-38
.DUSR 6-11, 6-10, 7-40
.DUWR 6-11, 7-42
.DUWS 6-11, 7-42
DWMM 6-11, 7-43

Licensed Material--Property of Data General Corporation

.DWMR 6-11, 7-44
-DWMS 6-11, 7-43
.DWORD 2-7, 2-38, 6-4, 7-45,

7-57f

DWXO 6-11, 7-46
-DXBA 6-11, 7-47
.DXBR 6-11, 7-48
.DXCM 6-11, 7-49
DXMI 6-11, 7-50
DXMO 6-11, 7-51
.DXMR 6-11, 7-52
.DXMS 6-11, 7-52
-DXOP 6-11, 7-53
.DXRA 6-11, 7-54
.EJECT 4-6, 6-7f, 7-55
-ELSE 6-3, 7-56
-ENABLE 2-7, 6-12, 7-45,

7-57f, 7-117

.END 1-5f, 6-2f, 7-60
-ENDC 5-11, 6-3, 7-35, 7-61
-ENT 4-8, 6-5ff, 7-62
.ENTO 7-63

.EOF 6-2f, 7-64

.EOT 6-2f, 7-64

-ERROR 6-7f, 7-65

.ESC 7-66

.EXTC 6-6f, 7-67

.EXTD 3-18, 4-8, 6-6f, 7-68
-EXTDA 6-6f, 7-68
-EXTDAN 6-6f, 7-68
-EXTDAW 6-6f, 7-68
-EXTDD 6-6f, 7-69

-EXTG 6-6f, 7-71

-EXTL 3-18, 4-8, 6-6f, 7-5,

7-8f, 7-70

EXTLA 6-6f, 7-70
-EXTLAN 6-6f, 7-70
-EXTLAW 6-6f, 7-70
.EXTLD 6-6f, 7-71

.EXTN 3-18, 4-8, 6-6f, 7-8f,

7-72

.EXTNA 6-6f, 7-72
EXTNAN 6-6f, 7-72
-EXTNAW 6-6f, 7-72
.EXTND 6-6f, 7-73
-EXTU 6-6f, 7-74
.FORCE 6-12, 7-75
.GADD 6-4, 7-76
.GATE 6-4, 7-77
.GLOC 3-11, 6-2, 7-78
.GOTO 6-3, 7-79
.GREF 6-4, 7-80
IFE 5-11f, 6-3, 7-81
JFG 6-3, 7-81

JFL 6-3, 7-81

JIEN 6-3, 7-81

Index-5

Index-6

.KCALL 6-4, 7-83, 7-10S5

.LCNS 6-7f, 7-84

.LNCS 4-6

.LOC 2-20, 3-11, 6-2, 7-85

.LPOOL 6-5, 7-87

.MACRO 2-19, 4-8, 5-1ff, 5-5,
6-4, 7-88

.MCALL 5-10f, 6-4, 7-89

NLIT 3-31, 6-5, 7-90

.NOCON 4-6, 6-7f, 7-91

.NOLOC 4-6, 6-7f, 7-93

NOMAC 4-6, 5-9f, 6-7f, 7-95

.NREL 1-6, 3-9, 3-11, 6-2,
7-97

.OB 6-12, 7-99

.PART 3-9, 3-11, 3-14, 3-18,
4-8, 6-2, 7-101ff

PASS 6-12, 7-104

.PENT 6-5ff, 7-7, 7-105

.POP 6-8, 7-106

PTARG 6-4, 7-105, 7-107

.PUSH 6-8, 7-108

.RB 6-12

.RCALL 6-4, 7-105, 7-109

.RCHAIN 6-4, 7-105, 7-110

.RDX 2-8, 6-9, 7-111{

.RDXO 4-6, 6-9, 7-113f

.REV 6-12, 7-115

.SKIP 6-12, 7-116

.SWORD 2-7, 2-38, 6-4, 7-571,
7-117f

. TARG 6-4, 7-7, 7-105, 7-119

.TITLE 1-5, 6-12, 7-120

.TOP 6-8, 7-121

.TSK 6-12, 7-122

TXT 2-38f, 6-9, 7-123(

.TXTE 6-9, 7-123f

.TXTF 6-9, 7-123f

TIXTM 6-9, 7-125

TIXTN 6-9, 7-126

TXTO 6-9, 7-123%

.UWORD 2-7, 2-38, 6-4, 7-571,
7-127

.WORD 2-7, 2-38, 6-4, 7-57f,
7-128

XPNG 2-19, 5-3, 6-10, 7-129f

ZREL 3-9, 3-11, 6-2, 7-131

Pseudo-ops 1-5, 2-36f, 6-1, B-1ff

conditional assembly 6-3

data formatting 6-—4f

file—termination 6-2f

inter-module communication
6-51f

listing control 6-7f

literal 6-5

location 6-2

Licensed Material-—-Property of Data General Corporation

macro assembly 6-4 -
miscellaneous 6-12
radix control 6-8f
stack control 6-8
symbol table 6-10f
text string 6-9
Pseudoinstruction 2-36
.PTARG pseudo-op 6-4, 7-105,
7-107
.PUSH pseudo-op 6-8, 7-108

R

Radix control pseudo-ops 6-8f
Radix, input 2-&ff
.RB pseudo-op 6-12
.RCALL pseudo-op 6-4, 7-105,
7-109
.RCHAIN pseudo-op 6-4, 7-105,
7-110
.RDX pseudo-op 2-8, 6-9, 7-111f
.RDXO pseudo-op 4-6, 6-9, 7-113f
References, forward 3-1
Relational
expressions 2-23f
operators 2-21, 2-23

Relocatability 3-15 L —
Relocatable o
" code 3-11
expressions 2-29, 3-22f
Relocation

bases 3-15ff

symbols 4-4f
Resolution, symbol 3-2ff
.REV pseudo-op 6-12, 7-115

S

S bit alignment operator 2-24ff
SHARED attribute 3-9, 3-12,
7-101ff
Short NREL 3-10
Single-precision
floating-point constants 2-13{f
integers 2-7(f
.SKIP pseudo-op 6-12, 7-116
SKIPS.SR file 8-7
Source
file 1-2
module 1-2, 2-1
statement 2-4f
Special
atoms 2-29 —
characters in macros 5-7{ '
integer—generating formats 2-10If
.SR extension 1-2, 2-1, 4-2, 8-6

093-000242

Stack control pseudo-ops 6-8
Statement '

assighment 2-37

data 2-38

terminators 2-4

types 2-34

body 2-31, 2-33
/STATISTICS switch 4-6f
Switch

argument §-2, 8-3

function 8-2ff

/S 2-16, 5-191

/CPL= 4-6, 4-8

/E= 4-11

/FF 4-6

/L 4-6f, 4-9, 4-11

/LPP= 4-6, 4-8

/MAKEPS §-7, 8-9

/MULTIPLE 6-10

/N= 4-2

/NOPS 8-9

/0= 4-2, 6-12, 8-6 /PS 8-7f

/STATISTICS 4-6f

/SYMBOL= 2-16, 3-4, 8-8f

/ULC 2-16, 3-4

/XPAND 2-30, 4-6f, 5-10

/XREF 4-6, 4-9 /Z 4-6, 6-7
.SWORD pseudo~op 2-7, 2-38, 6-4,

7-57f, 7-117f

Symbol

length 8-8

names 2-15

resolution 3-2ff
Symbol files, permanent 3-5, 3-8,

4-1

\symbol in macros 5-18f
Symbol table,

permanent 3-2ff, 6-10

pseudo-ops A-10f

temporary 3-2ff, 3-7
/SYMBOL= switch 2-16, 3-4, 8-8f
Symbols 2-15f

generated 5-18ff

global 2-17

instruction 2--17(f

local 2-17"

macro 2-19

numeric 2-16f

pseudo-op 2-20

value 2-20, 2-37
Syntax errors 3-5ff
SYSID.32.SR file 8-7
System calls 1-6

T

.TARG pseudo~op 6-4, 7-7, 7-105,
7-119

Temporary symbol table 3-2ff, 3-7

Terminators 2-4, 2-6

Text string pseudo—ops 6-9

.TITLE pseudo-op 1-5, 6~12, 7-120

.TOP pseudo-op 6-8, 7-121

.TSK pseudo-op 6-12, 7-122

TXT pseudo-op 2-38f, 6-9, 7-123(

.TXTE pseudo-op 6-9, 7-123f

.TXTF pseudo-op 6-9, 7-123f

TIXTM pseudo-op 6-9, 7-125

.TXTN pseudo-op 6-9, 7-126

TXTO pseudo~op 6-9, 7-123f

U

JULC switch 2-16, 3-4

Unary operators 2-21f

Underscore character () 5-1ff

UNSHARED attribute 3-9, 3-12,
7-101ff

Uparrow character (*) 5-11f

Upward compatability D-1ff

User—defined partitions 3-14

.UWORD pseudo-op 2-7, 2-38,
6-4, 7-57f, 7-127

'

Value symbols 2-20, 2-37

W

Word alignment 7-3
.WORD pseudo-op 2-7, 2-38, 6-4,
7-57f, 7-128

X

/XPAND switch 2-30, 4-6f, 5-10

.XPNG pseudo-op 2-19, 5-3, 6-10,
7-129f

/XREF switch 4-6, 4-9

z

/Z switch 4-6, 6-7

ZREL 3-10, 3-31

.ZREL pseudo-op 3-9, 3-11, 6-2,
7-131

093-000242 Licensed Material--Property of Data General Corporation Index~7

'CUT ALONG DOTTED LINE

)

¢vDataGeneral

TP _
TIPS ORDER FORM
Technical Information & Publications Service
BILL TO: SHIP TO: (if different)
COMPANY NAME COMPANY NAME
ADDRESS ADDRESS
CITY CITY
STATE ZIp STATE ZIP
ATTN: ATTN:
QTY | MODEL # DESCRIPTION E&‘,?E II')'II;(E: {,glrc“é‘
(Additional items can be included on second order form) [Minimum order is $50.00] TOTAL
Tax Exempt # Sales Tax
or Sales Tax (if applicable) —
Shipping
TOTAL

G Check or money order enclosed
For orders less than $100.00

O Other:
O Chargemy [OVisa [MasterCard O U.P.S. Blue Label
Acc'tNo.__________ Expiration Date O Air Freight
. Other

METHOD OF PAYMENT SHIP VIA
C DGC will select best way (U.P.S or Postal)

{0 Purchase Order Number:

NOTE: ORDERS LESS THAN $100, INCLUDE $5.00 FOR SHIPPING AND HANDLING.

Person to contact about this order Phone Extension
Data Qeneral quporation Buyer’s Authorized Signature Date
Educational Services/TIPS (agrees to terms & conditions on reverse side)
MS G214
2400 Computer Drive
Westboro, MA 01580 Title
(617) 366-3911, Extension 1610 -
DGC Sales Representative (If Known) Badge #

DISCOUNTS APPLY TO

MAIL ORDERS ONLY 012-1780

ecgRi2ee’

DATA GENERAL CORPORATION)
TECHNICAL INFORMATION AND PUBLICATIONS SERVICE oo
TERMS AND CONDITIONS

Data General Corporation (“DGC"") provides its Technical Information and Publications Service (TIPS) solely in accordance with the following
terms and conditions and more specifically to the Customer signing the Educational Services TIPS Order Form shawn on the reverse hereof
which is accepted by DGC.

1.

PRICES

Prices for DGC publications will be as stated in the Educational Services Literature Catalog in effect at the time DGC accepts Buyer's order or
as specified on an authorized DGC quotation in force at the time of receipt by DGC of the Order Form shown on the reverse hereof Prices are
exclusive of all excise, sales, use or similar taxes and, therefore are subject to an increase equal in amount to any tax DGC may be required to
collect or pay on the sale, license or delivery of the materials provided hereunder.

. PAYMENT

Terms are net cash on or prior to delivery except where satisfactory open account credit is established, in which case terms are net thirty (30)
days from date of invoice.

SHIPMENT

Shipment will be made F.0.B. Point of Origin. DGC normally ships either by UPS or U.S. Mail or other appropriate method depending upon
weight, unless Customer designates a specific method and/or carrier on the Order Form. In any case, DGC assumes no liability with regard
to loss, damage or delay during shipment.

. TERM

Upon execution by Buyer and acceptance by DGC, this agreement shall continue to remain in effect until terminated by either party upon
thirty (30} days prior written notice. It is the intent of the parties to leave this Agreement in effect so that all subsequent orders for DGC
publications will be governed by the terms and conditions of this Agreement.

CUSTOMER CERTIFICATION
Customer hereby certifies that it is the owner or lessee of the DGC equipment and/or licensee/sub-licensee of the software which is the subject
matter of the publication(s) ordered hereunder.

. DATA AND PROPRIETARY RIGHTS

Portions of the publications and materials supplied under this Agreement are proprietary and will be so marked. Customer shall abide by such

markings. DGC retains for itself exclusively all proprietary rights (including manufacturing rights} in and to all designs, engineering details

and other data pertaining to the products described in such publication. Licensed software materials are provided pursuant to the terms and

conditions of the Program License Agreement (PLA) between the Customer and DGC and such PLA is made a part of and incorporated into

this Agreement by reference. A copyright notice on any data by itself does not constitute or evidence a publication or public disclosure. A e

DISCLAIMER OF WARRANTY
DGC MAKES NO WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, WARRANTIES OF MERCHANT-
ABILITY AND FITNESS FOR PARTICULAR PURPOSE ON ANY OF THE PUBLICATIONS SUPPLIED HEREUNDER.

. LIMITATIONS OF LIABILITY

IN NO EVENT SHALL DGC BE LIABLE FOR (I) ANY COSTS, DAMAGES OR EXPENSES ARISING OUT OF OR IN CONNEC-
TION WITH ANY CLAIM BY ANY PERSON THAT USE GF THE PUBLICATION OF INFORMATION CONTAINED THEREIN
INFRINGES ANY COPYRIGHT OR TRADE SECRET RIGHT OR (Il) ANY INCIDENTIAL, SPECIAL, DIRECT OR CONSEQUEN-
TIAL DAMAGES WHATSOEVER, INCLUDING BUT NOT LIMITED TO LOSS OF DATA. PROGRAMS OR LOST PROFITS.

GENERAL

A valid contract binding upon DGC will come into being only at the time of DGC's acceptance of the referenced Educational Services Order
Form. Such contract is governed by the laws of the Commonwealth of Massachusetts. Such contract is not assignable. These terms and con-
ditions constitute the entire agreement between the parties with respect to the subject matter hereof and supersedes all prior oral or written
communications, agreements and understandings. These terms and conditions shall prevail notwithstanding any different, conflicting or addi-
tional terms and conditions which may appear on any order submitted by Customer.

DISCOUNT SCHEDULES
DISCOUNTS APPLY TO MAIL ORDERS ONLY.

LINE ITEM DISCOUNT

5-14 manuals of the same part number - 20%
15 or more manuals of the same part number - 30%

DISCOUNTS APPLY TO PRICES SHOWN IN THE CURRENT TIPS CATALOG ONLY.

. ¢y DataGeneral

TIPS ORDERING PROCEDURE:

Technical literature may be ordered through the Customer Education Service’s Technical Information
and Publications Service (TIPS).

1.
2.

Turn to the TIPS Order Form.

Fill in the requested information. If you need more space to list the items you are ordering, use an
additional form. Transfer the subtotal from any additional sheet to the space marked “subtotal”
on the form.

Do not forget to include your MAIL ORDER ONLY discount. (See discount schedules on the
back of the TIPS Order Form.)

Total your order. MINIMUM ORDER/CHARGE after discounts of $50.00.)

If your order totals less than 100.00, enclose a certified check or money order for the total (include
sales tax, or your tax exempt number, if applicable) plus $5.00 for shipping and handling.

Please indicate on the Order Form if you have any special shipping requirements. Unless specified,
orders are normally shipped U.P.S.

Read carefully the terms and conditions of the TIPS program on the reverse side of the Order
Form.

Sign on the line provided on the form and enclose with payment. Mail to:

Data Gencral Corporation
Educational Services/TIPS

MS G214

2400 Computer Drive
Westboro, MA 01580

(617) 366-8911, Extension 1610

We'll take care of the rest!

134-755-01

~ moisten & seal
Y
CUSTOMER DOCUMENTATION COMMENT FORM

Your Name Your Title

Company

Street

City State Zip

We wrote this book for you, and we made certain assumptions about who you are and how you would
use it. Your comments will help us correct our assumptions and improve the manual. Please take a
few minutes to respond. Thank you.

Manual Title Manual No.

Who are you? COEDP/MIS Manager O Analyst/Programmer [OOther
[Senior Systems Analyst OOperator
OEngineer OEnd User

How do you use this manual? (List in order: I = Primary Use)

— Introduction to the product — Tutorial Text —— Other
— Reference — Operating Guide

fold Yes No
About the manual: Is it easy to read? O 0
Is it easy to understand? 0O O
Are the topics logically organized? O O
Is the technical information accurate? 0 O
Can you easily find what you want? [} O
Does it tell you everything you need to know? O 0
Do the illustrations help you? O O

If you wish to order manuals, use the enclosed TIPS Order Form (USA only).

Comments:

S31V1S g3alINn
3HL NI
az7via 4l
AHVSS30AN
3OV.1LSOd ON

€166 - 18S10 YW 'oroqisep
aau(q emdwo) Q0¥

61¢-4 SKW

ToTIRIUBWNDO([I8WOoIsSN,)
[BRUSDERJ)

@assalppe Aq pied aq |jim abeisod

2LL10 YW ‘OHOEHLNOS 92 'ON LIWH3Ad SSV19 LSHId

TNVIN A1d3H SS3INISNA

134-755-01

ST,

134-755-01

moisten & seal

e
CUSTOMER DOCUMENTATION COMMENT FORM

Your Name Your Title

Company

Street

City State Zip

We wrote this book for you, and we made certain assumptions about who you are and how you would
use it. Your comments will help us correct our assumptions and improve the manual. Please take a
few minutes to respond. Thank you.

Manual Title Manual No.

Who are you? OEDP/MIS Manager OAnalyst/Programmer [1Other
OSenior Systems Analyst OOperator
O Engineer OEnd User

How do you use this manual? (List in order: I = Primary Use)

—— Introduction to the product —— Tutorial Text — Other
—— Reference — Operating Guide

fold Yes No
About the manual: Is it easy to read? O O
Is it easy to understand? O O
Are the topics logically organized? O O
Is the technical information accurate? O O
Can you easily find what you want? a O
Does it tell you everything you need to know? O]
Do the illustrations help you? 0 O

If you wish to order manuals, use the enclosed TIPS Order Form (USA only).

Comments:

S31V1S a3lIiNn
3HL NI
d3avi i
AHVSS3O3aN
JOVISOd ON

134-755-01

€166 -18S10 Y 'o1oqisem
aAly 1emdwo)) QOv¥
61¢-d SW

UOTRJUSWNOO(] ISWOSN))
[eRURD)ee(4p

a9ssaJippe Aq pied aq jm abejsod

o ————————————————
2..10 YN ‘'OHOBHLNOS 92 'ON LINH3d SSY1D 1SHId T

TIVIN AT1d3H SS3INISNg

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119
	Page 120
	Page 121
	Page 122
	Page 123
	Page 124
	Page 125
	Page 126
	Page 127
	Page 128
	Page 129
	Page 130
	Page 131
	Page 132
	Page 133
	Page 134
	Page 135
	Page 136
	Page 137
	Page 138
	Page 139
	Page 140
	Page 141
	Page 142
	Page 143
	Page 144
	Page 145
	Page 146
	Page 147
	Page 148
	Page 149
	Page 150
	Page 151
	Page 152
	Page 153
	Page 154
	Page 155
	Page 156
	Page 157
	Page 158
	Page 159
	Page 160
	Page 161
	Page 162
	Page 163
	Page 164
	Page 165
	Page 166
	Page 167
	Page 168
	Page 169
	Page 170
	Page 171
	Page 172
	Page 173
	Page 174
	Page 175
	Page 176
	Page 177
	Page 178
	Page 179
	Page 180
	Page 181
	Page 182
	Page 183
	Page 184
	Page 185
	Page 186
	Page 187
	Page 188
	Page 189
	Page 190
	Page 191
	Page 192
	Page 193
	Page 194
	Page 195
	Page 196
	Page 197
	Page 198
	Page 199
	Page 200
	Page 201
	Page 202
	Page 203
	Page 204
	Page 205
	Page 206
	Page 207
	Page 208
	Page 209
	Page 210
	Page 211
	Page 212
	Page 213
	Page 214
	Page 215
	Page 216
	Page 217
	Page 218
	Page 219
	Page 220
	Page 221
	Page 222
	Page 223
	Page 224
	Page 225
	Page 226
	Page 227
	Page 228
	Page 229
	Page 230
	Page 231
	Page 232
	Page 233
	Page 234
	Page 235
	Page 236
	Page 237
	Page 238
	Page 239
	Page 240
	Page 241
	Page 242
	Page 243
	Page 244
	Page 245
	Page 246
	Page 247
	Page 248
	Page 249
	Page 250
	Page 251
	Page 252
	Page 253
	Page 254
	Page 255
	Page 256
	Page 257
	Page 258
	Page 259
	Page 260
	Page 261
	Page 262
	Page 263
	Page 264
	Page 265
	Page 266
	Page 267
	Page 268
	Page 269
	Page 270
	Page 271
	Page 272
	Page 273
	Page 274
	Page 275
	Page 276
	Page 277
	Page 278
	Page 279
	Page 280
	Page 281
	Page 282
	Page 283
	Page 284
	Page 285
	Page 286
	Page 287
	Page 288
	Page 289
	Page 290
	Page 291
	Page 292
	Page 293
	Page 294
	Page 295
	Page 296
	Page 297
	Page 298
	Page 299
	Page 300
	Page 301
	Page 302
	Page 303
	Page 304
	Page 305
	Page 306
	Page 307

